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Abstract

Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective.
Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode
of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric
analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats.

Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats
(Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-
toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear
variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are
consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a
separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae,
we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The
evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the
separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats.

Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage,
morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions
peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable
morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in
reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional
diversity studies, and may reveal novel patterns of morphospace occupation.
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Introduction

Patterns of convergence and divergence of biological shape –

both in time and throughout the range of theoretical or realized

morphotypes – are key to understanding the dynamics of clade

evolution. To this end, a firm phylogenetic framework ensures that

convergence is distinguished from morphological similarity due to

shared evolutionary history; and that morphological dissimilarities

among closely related taxa can be evaluated in terms of

evolutionary time separating those taxa.

Cats (Carnivora; Felidae) are excellent model organisms for

macroevolutionary analyses of morphological shape diversification.

Their relatively recent origin (,10 million years ago [Ma] for extant

Felinae [1] and ,28.5–35 Ma for Felidae [2]) allows us to

investigate patterns of constraint, convergence, and divergence in

a successful group of predatory mammals. Extant cats consist of 36 to

41 species assigned to eight genotypic lineages in the subfamily

Felinae [1–4]. The extinct Machairodontinae, including the popular

saber-toothed cats, are generally regarded as the phylogenetically

closest relatives to Felinae [5]. The adaptations of cats to

hypercarnivory, coupled with their rapid speciation and relatively

recent evolutionary origin, explain in part their morphological

conservatism [3], particularly evident in the skull. The evolution of

skull form and function in fossil and living cats has been subjected to

considerable scrutiny [6–14], and phylogenetic thinking has

informed the interpretation of major patterns of shape change.

Several works that considered phylogeny [11–14] addressed

phylogenetic correction of variance in correlation coefficients [15]

linking shape to functional and ecological indices. However, the

application of explicit, quantitative phylogenetic comparative

methods to the study of felid cranial shape has not been undertaken.

Here, we examine in detail patterns of convergence and divergence

in skull shape for the majority of extant felines and a cross-section of

the best-known machairodontines, using combined morphometric,

phylogenetic, and disparity analyses.
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Our major goal is to reconstruct temporal transitions in patterns

of morphospace occupation. A proper understanding of these

transitions benefits greatly from the use of phylogenetic informa-

tion. To this purpose, we introduce a novel simple method to

visualize morphological diversity changes in the evolutionary

history of the group. This method – which we term ‘chronophy-

lomorphospace’ (CPMS hereafter) – plots the positions of

reconstructed ancestors both in morphospace and through time

using a known phylogeny. As an extension and improvement of

the phylomorphospace approach [16–22], this new method can be

applied to a broad range of studies that combine phylogeny and

morphospace analyses. Because it takes into account divergence

time of estimated ancestral morphotypes, the CPMS allows us to

track both phylogenetic and temporal routes through which cats’

ecophenotypical variety was attained.

Materials and Methods

Group Delimitations
For extant felid species, we follow the taxonomy of Werdelin et

al. [2], based on the molecular tree of Johnson et al. [1]. As a

convention, the eight genotypic lineages identified by Johnson et

al. [1] were treated as having equal taxonomic rank to the three

fossil lineages of saber-toothed cats used here, which we term the

‘Metailurus’, ‘Homotherium’, and ‘Smilodon’ lineages. These

three lineages are commonly referred to as the tribes Homo-

theriini, Metailurini, and Smilodontini, respectively [2,23]. All

saber-toothed felids were placed in the subfamily Machairodonti-

nae, whereas all extant felids (including the ‘Panthera’ lineage cats)

were included in the subfamily Felinae [23]. Although subspecies

assignments were recorded where information was available, the

operational taxonomic units (OTUs) were all considered at the

species level. As the specific status of some fossil specimens (e.g.,

F:AM 62192) is uncertain, they were treated as separate OTUs.

This approach offers a partial, independent test of the phyloge-

netic placement of these specimens. Lineage memberships for each

OTU is listed in Table S1.

Felid Phylogeny
To investigate the covariance in morphospace occupation due

to inherited phylogenetic history, and to track patterns of

morphological evolution leading to reconstructed morphospace

occupancy, we used the molecular tree from Johnson et al. [1] to

which we grafted a novel set of relationships for fossil species.

For the first time, we analysed simultaneously the relationships

of basal felids (Proailurus lemanensis, Hyperailurictis validus, and F:AM

62192), Felinae, and Machairodontinae using a maximum

parsimony analysis of 44 discrete characters coded in 14 fossil

taxa (see Table S2 for notes on specimens used) to which we added

Felinae as a supraspecific OTU (Table S3); 18 of these characters

are after Salesa et al. [24] (Text S1; see Table S3 for the character

matrix). Tree searches were conducted in TNT [25] and PAUP*

[26] with Proailurus lemanensis selected as an outgroup. In PAUP*,

after an initial heuristic search (5000 random stepwise addition

sequences followed by tree bisection-reconnection branch-swap-

ping searching, but holding only one tree in memory at any one

time), we searched with the option of unlimited maximum number

of trees, swapping branches of the trees in memory from the

previous run. These searches resulted in a single most parsimo-

nious tree (MPT; Fig. 1A). Identical options were selected in the

traditional search settings of TNT. We used a large number of

replicates (e.g. 99999, or as much as the memory permits) in each

case to ensure adequate coverage of tree space.

Subsequently, we replaced the Felinae OTU in the MPT with

the entire tree from Johnson et al. [1] (Fig. 1B) to produce a

composite phylogeny (Fig. 2). The rationale behind this approach

is that an all-encompassing species-level phylogeny of living and

fossil cats is beyond the scope of the present work, and must await

thorough scrutiny of data matrices published so far and a

comprehensive revision of both character formulation and

character-state delimitations. Three fossil felines, Panthera atrox, P.

spelaea, and Miracinonyx trumani, were inserted into their relevant

positions according to [27–29]. Because the position of Panthera

palaeosinensis found by [30] relies on a different set of relationships

among Panthera species from that in Johnson et al. [1], we omitted

this fossil species from our analyses. The Pleistocene North

American jaguar, Panthera augusta (or P. onca augusta) [31,32], was

placed as the sister taxon to the jaguar, P. onca. These fossil Panthera

species, P. atrox, P. spelaea, and P. augusta, were treated as separate

species-level OTUs rather than as subspecies of P. leo (lion) or P.

onca, to capture in greater detail morphological changes through

time.

Tree Branch Scaling
The branches of the composite phylogeny were scaled to

reflect divergence dates between taxa. Branches were scaled

either according to node dates estimates in the molecular

phylogeny of Johnson et al. [1] or using fossil occurrence dates,

whichever yielded the older date for any given node (see

reference [6] for a more detailed description). As many extinct

taxa have uncertain dates (large stratigraphic range mostly

resulting from uncertain dating of the fossil-bearing strata in

some localities), midpoint dates of their respective stratigraphic

ranges were used (Table S4) [33,34]. Fossil occurrence dates

were compiled from various sources (Table S4) based on locality

and age information associated with the specimens. To

circumvent the problem of zero length branches (resulting from

the dating of internal nodes leading to terminal taxa with

identical earliest known occurrences), we followed the protocol

expounded by Brusatte et al. [22]. Extant branches were first

dated using first occurrence dates (Table S4) and further

extended to the current age (i.e., 0 Ma); fossil terminal branches

were not extended to their youngest stratigraphic range (but see

Text S2 for alternative combinations of dates, Figs. S7 and S8

for scaled trees using these alternative dates, and Fig. S9 for an

alternative CPMS plot). In estimating branch lengths, a larger

tree is preferable over a smaller tree (i.e., number of taxa

representing only those in the morphometric analysis) because

additional stratigraphic/divergence information from taxa inter-

spersed amongst those of the smaller tree contributes more

accurate age estimates for internal and increasingly more basal

nodes. This scaled composite tree was then pruned to reflect the

taxonomic sample of the morphometric data (Fig. 2). Similarly,

taxa that are not present in the phylogeny (Dinobastis serus;

‘Metailurus’ IVPP-5679) were discarded from the morphometric

data.

Morphometric Analyses
Twenty-nine cranial linear variables (see Fig. 3) were measured

in 332 specimens (Table S5) encompassing 34 extant and 18

extinct felid species, covering 37 felines, 13 machairodontines

and 2 basal taxa. As the measurements are linear, we adjusted

for the effect of size (isometric scaling) by dividing them by their

geometric mean for each specimen (Table S6) [35]. The

geometric mean (GM) is the kth root of the product of the

values of the k variables for the specimen in question, i.e., (Pai)
1/k

where ai is the morphometric variable of interest. As GM is in
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the same unit as the original variables, the resulting ratios are

dimensionless. These ratios – sometimes referred to as Mosimann

shape variables [9] – have been previously shown to perform

better than residuals as size adjusted shape variables [36].

Further, unlike residuals, Mosimann shape variables correct for

scaling using information that relates solely to the specimen that

is being measured, and do not rely on trends from other

individuals.

We conducted a Linear Discriminant Analysis (LDA) to

determine the ability of the transformed linear variables to

discriminate specimens based on their prior classifications. To

this purpose, 330 specimens (excluding Hyperailurictis validus and

F:AM 62192) were assigned to one of the extant lineages (‘Bay

Cat’, ‘Caracal’, ‘Domestic Cat’, ‘Leopard Cat’, ‘Lynx’, ‘Ocelot’,

‘Panthera’, and ‘Puma’) [1], or one of the fossil lineages

(‘Homotherium’, ‘Metailurus’, and ‘Smilodon’). Although the

phylogenetic analyses above found ‘Metailurus’ and ‘Smilodon’

lineages to be paraphyletic (Fig. 1A), we treated them here as

grouping categories for convenience and ease of description. The

classification accuracy of the LDA was assessed through a

jackknife approach (‘leave-one-out’ cross validation). Specifically,

LDA was performed N times, where N represents the total

number of specimens (330 in our case), but excluding one

specimen at a time. In each run, the resulting discriminant

functions were used to predict the classification of that specimen;

this prediction is unbiased by the specimen in question because

the discriminant functions are derived following the exclusion of

that specimen. Calculations were repeated for each specimen.

The overall proportion of specimens that are correctly assigned

to prior groups indicates how well the discriminant functions

predict classifications of new data. Classification accuracies of

each lineage can also elucidate patterns of morphological

similarities or distinctiveness between various lineages (Table S7).

A morphospace was built from a multivariate ordination of the

size-adjusted variables using Principal Components Analysis

(PCA), with all variables scaled to unit variance. Differences

between groups (i.e., the separation between lineages or species) in

morphospace were evaluated with a non-parametric multivariate

analysis of variance (NPMANOVA) in the software PAST v. 2.14

[37], to test the null hypothesis of equality of the variances of the

PC scores. Because NPMANOVA is non-parametric, it is

appropriate in the absence of information on the distribution of

the scores. The test’s F statistic and associated level of significance

were calculated with 9999 permutations, and adjusted with

sequential Bonferroni correction to account for multiple pair-wise

comparisons. Comparisons were made among the 11 felid lineages

Figure 1. Phylogeny of the Felidae. (A) Single most parsimonious tree from the cladistic analysis, with Proailurus lemanensis as the outgroup.
Felinae is treated as a single operational taxonomic unit (OTU) in the analysis, but is replaced with the topology in (B) for phylogenetic comparative
analyses. Bootstrap percent support values and decay index values (in bold) are shown above and below each node respectively. (B) Internal
relationships of Felinae based on [1], with extinct taxa inserted into relevant positions [27–29]. Asterisks denote taxa not included in the
morphometric analysis, but employed in the phylogeny for dating nodes. Felid lineages are color-coded as follows: black, Machairodontinae; red,
‘Panthera’; sky blue, ‘Bay Cat’; maroon, ‘Caracal’; blue, ‘Ocelot’; orange, ‘Lynx’; green, ‘Puma’; pink, ‘Domestic Cat’; light green, ‘Leopard Cat’.
doi:10.1371/journal.pone.0039752.g001
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(eight feline lineages plus three machairodontine lineages) on

PC1–PC11 axes, and excluding Hyperailurictis validus and F:AM

62192, as in LDA.

Size adjustment, LDA and PCA were performed in the R

environment for statistical calculations [38]. Note that, because the

multivariate analyses were conducted on specimens rather than

species, we did not introduce correction for nonindependence

among observations. Such procedures (e.g. phylogenetic PCA and

phylogenetic LDA) are more appropriate in the case of species-

level morphospaces [39,40].

We did not include any fossil specimens with substantial

distortion to cranial proportions (e.g. crushing or shearing) since

these specimens tend to fall out at the extremities of morphospace.

We did however include three individuals with minor distortions:

Figure 2. Scaled, pruned composite tree used in phylogenetic comparative methods. The OTU, Felinae, in the single MPT (Fig. 1A) was
replaced with the whole tree of Johnson et al. [1] and the branches were scaled following Sakamoto et al. [6]. Extant nodes were dated using either
first occurrence or molecular divergence dates, whichever is the older, and terminal branches were extended to their last occurrence dates (i.e.
modern time). Since temporal ranges of fossil taxa often have large margins of uncertainties (e.g., Pleistocene: 1.81-0.0117 Ma), the midpoint value of
the age range was used to date each node and terminal fossil branches were not extended to their younger limit of the age range. Taxa not
represented in the morphometric data were pruned from the scaled, composite tree. Color codings are as in Fig. 1.
doi:10.1371/journal.pone.0039752.g002
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the Dinofelis cristata specimen, M3657; and the two casts of

Megantereon falconeri. The separation in morphospace between

M3657 and the other two ‘Dinofelis’ specimens F:AM 50445 and

F:AM 50446, but also the separation between the two M. falconeri

individuals, are relatively high (Fig. S2), but they are overall

comparable to the degree of separation of members in a well-

sampled, highly disparate taxon (e.g. Puma concolor, Leopardus

pardalis and some Panthera species). Thus it is not possible to

distinguish the difference between high within-taxon morpholog-

ical variability due to distortion from that due to natural

variability.

Phylogenetic Signal in Morphospace
In order to investigate the relationship between phylogeny and

morphospace occupation, phylogenetic comparative methods

(PCM) were employed. PCs were tested for the presence of

phylogenetic signal using two methods: phylogenetic eigenvector

regression (PVR) [41] and Blomberg’s K statistic [42]. PVR is a

type of multiple linear regression where the variable[s] of interest

represent the response variable(s) (i.e., the PC scores) and the

phylogenetic eigenvectors (obtained from a principal coordinates

[PCO] analysis of pair-wise Euclidean distances built from branch

lengths) represent the predictor variables (specifically, the PCO

Figure 3. Description of cranial measurements. A skull of a lion is shown with diagrammatic representations of the 29 cranial measurements
used in the morphometric analyses. The actual measurements are Euclidean distances between two points on the skull specimen and are not two-
dimensional projections as depicted here. 1, LSkT: total skull length (distance between inion and prosthion). 2, LFace: face length (distance between
prosthion and naso-frontal suture). 3, Wiof: distance between infraorbital foramina. 4, Wo: distance between orbits. 5, WPOC: width across postorbital
constriction. 6, WPOP: width across postorbital processes. 7, WBC: maximum braincase width (greatest distance between lateral margins of braincase).
8, Wsn: snout width (measured at level of snout mid-length). 9, WC1s: width across the snout (measured between bases of upper canines [C1s]). 10,
WNA: nasal aperture width (measured at rostral projection of nasals). 11, LN: nasal length (measured parasagittally between naso-frontal suture and
dorsal margin of external narial opening). 12, LNT: total nasal length (measured parasagittally as the distance between the naso-frontal suture and the
anteriormost tip of the nasal). 13, WMFS: width across the nasals (measured between the left and right maxillo-frontal sutures [MFS]). 14, WIC1s: inter-
canine width (measured between the upper canines). 15, WI3s-I3s: width across the incisor arcade (measured between left and right third upper
incisors [I3s]). 16, LC1sP3s: length of upper ‘diastema’ (measured as the distance between C1s and upper third premolars [P3s]); although species that
possess upper second premolars (P2s) do not show a diastema, we regarded their LC1sP3s as the topological equivalent of the mandibular diastema.
17, WSk: maximum skull width across zygomatic arches. 18, WP4s-P4s: palate width (measured between labial surfaces of upper fourth premolars [P4s]).
19, WPal: palate width (measured posterior to P4s and between lateral surfaces of maxillae). 20, LPal: palate length (measured parasagittally as the
distance between the prosthion and the posterior extremity of the palatal surface). 21, WPN: internal width of postnarial opening (measured as the
distance between left and right pterygoid flanges). 22, WPN.ant: internal width of anterior postnarial opening (measured immediately posterior to
palate). 23, WMP: width across mastoid processes. 24, WPocP: width across paroccipital processes. 25, WOC: occipital condyle width. 26, HOC: occipital
condyle height. 27, WFM: internal width (transverse diameter) of foramen magnum. 28, WFMV: ventral width of foramen magnum (distance between
left and right occipital condyles). 29, LP4s: length of superior fourth premolar or carnassial.
doi:10.1371/journal.pone.0039752.g003
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scores). The pruned tree was subjected to a PCO analysis. The

appropriate number of PCO axes was determined by an arbitrary

cut-off of 95% cumulative variance. The first 23 PCO axes

satisfied this cut-off threshold, and were thus retained and used in

PVR. Species-mean values of morphometric PCs were computed

for the taxa represented in the phylogeny. A matrix of the first

11 PC axes were treated as the response variable matrix. A

multivariate form of PVR (MPVR) [43] was conducted in R using

a script written by the senior author in order to assess the

proportion of variance explained by the regression model and to

determine its significance.

An alternative way of detecting phylogenetic signal is the

method of Blomberg et al. [42] implemented in R in the picante

package [44]. This method uses phylogenetically independent

contrasts (PIC; e.g., see [45]) to compare the variances of the

contrasts computed for a given variable on a particular tree

topology with those computed from random permutations of that

variable across the same tree (i.e., randomly reshuffling the values

of the variable amongst the OTUs while keeping the tree topology

constant). If the variances in the contrasts for the data in the

observed phylogenetic positions are lower than those from the

permutations, then there is a significant phylogenetic signal in that

data [42]. Blomberg’s K statistic [42,44] quantifies the strength of

this phylogenetic signal. If K ,1, then closely related OTUs have

values that are less similar than expected under a Brownian model

of evolution (such as a model of evolution with adaptive

constraints), while a K .1 would indicate that closely related

OTUs have values more similar than expected (strong phyloge-

netic signal) [42].

Chronophylomorphospace
Patterns of morphospace occupation across phylogeny can be

investigated by reconstructing a phylomorphospace [16–22]. This

typically involves ancestral character estimation of morphospace

coordinate values for each internal tree node, using squared

change parsimony [46] or maximum likelihood (ML) [47], among

other methods, and the reconstructed ancestral values are plotted

onto the two-dimensional morphospace together with the OTUs.

Internal nodes are then connected according to phylogeny

structure. This approach results in a two-dimensional projection

of phylogeny onto morphospace. However, a phylogeny does not

represent exclusively the interrelationships of the OTUs; it also

includes data on their temporal divergence. Thus, a two-

dimensional phylomorphospace accounts for the first aspect of

phylogeny, but does not necessarily faithfully represent the second

aspect. A more complete representation of the changes in

morphospace occupation in different groups and throughout the

sequence of branching events involves the inclusion of a time

component (i.e., branch lengths). This can be achieved by adding a

time axis as a third dimension to the two-dimensional phylomor-

phospace. The X-Y coordinates of ancestor values are recon-

structed as usual from terminal values and from a scaled

phylogeny using the ape R library [48], and are subsequently

plotted along the temporal Z-axis according to their positions in

time, such as is calculated from stratigraphic data of OTUs and

from branch length information (one-dimensional or single-trait

implementations have been presented previously [6]; but see also

Figs. S5, S6). A new R function, chronoPTS2D, was written to

plot an interactive three-dimensional CPMS (Video S1), utilizing

the rgl library [49], which allows for spinning, zooming in and out,

and generating animations. The function chronoPTS2D can be

implemented on other examples of two-dimensional trait space,

such as function space [43], and are available upon request.

Institutional Abbreviations
AMNH, American Museum of Natural History, New York,

USA; BCMAG, Bristol City Museum and Art Gallery, Bristol,

UK; BMNH, Natural History Museum, London, UK; BRSUG,

School of Earth Sciences, University of Bristol, Bristol, UK;

BRSUVA, Department of Anatomy, School of Veterinary

Science, University of Bristol, Bristol, UK; CM, Carnegie

Museum of Natural History, Pittsburgh, USA; F:AM, Frick

Collection, American Museum of Natural History, New York,

USA; HM-NH, Natural History, Horniman Museum and

Gardens, London, UK; KPM, Kanagawa Prefectural Museum

of Natural History, Odawara, Kanagawa, Japan; NSMT,

National Science Museum, Tokyo, Japan; PMU, Paleontological

Museum of Uppsala University; RCSOM, Hunterian Museum,

Royal College of Surgeons, London, UK. Other abbreviations

refer to high-fidelity skull replicas of specimens in official

repositories (e.g., Institute of Vertebrate Paleontology and

Paleoanthropology, Beijing, China), or to commercially available

casts (e.g., Bone Clones; Skulls Unlimited). Replicas and casts

were used where original specimens could not be accessed.

Access to each collection was granted by the collection manager

of the relevant institution.

Results

The tree of fossil cats (plus Felinae as an OTU) is 87 steps long,

with an ensemble consistency index of 0.667 (excluding uninfor-

mative characters), an ensemble retention index of 0.776, and an

ensemble rescaled consistency index of 0.526. Bootstrap percent-

age support (10,000 replicates; fast stepwise addition sequence) is

low to moderate, and some branches are collapsed in a 50%

majority-rule consensus topology built from all bootstrap replicates

(Fig. 1A). With reference to the most parsimonious tree, moderate

support is assigned to the node subtending all saber-toothed cats

more apical than AMNH 105446 (70%). Slightly higher support is

assigned to the node linking AMNH 105446 to more apical saber-

toothed cats (87%), to the clade formed by Homotherium nestianus,

Xenosmilus hodsonae, and Homotherium crusafonti (90%), and to the

clade formed by the latter two species (87%). Decay index values

(or Bremer support: that is, number of additional steps required to

collapse a tree node) are distributed as follows: four extra steps are

required to collapse the AMNH 105446-Megantereon-Smilodon-

F:AM 50462-Homotherium-Xenosmilus clade; three extra steps are

required to collapse the Megantereon-Smilodon-F:AM 50462-Homo-

therium-Xenosmilus clade, and the Homotherium-Xenosmilus clade; two

extra steps are required to collapse most internal nodes in the

machairodontines (except the Dinofelis clade nodes, which collapse

at just one extra step); all remaining nodes collapse at one

additional step. In the new phylogeny (Fig. 1A), some novel

patterns of relationship emerge, including: 1, the retrieval of the

‘Metailurus’ and ‘Smilodon’ lineages as grade groups rather than

clades, contrary to previous hypotheses [2,23]; and 2, the

paraphyly of Homotherium.

The LDA of the 29 transformed linear variables shows their

remarkable ability to separate specimens according to their prior

classification (i.e., specimen attribution to each of the 11 cat

lineages). Classification accuracy (i.e., proportions of correctly vs.

incorrectly attributed specimens) based on successive specimen

deletion (jackknife) is generally high (overall correct classification

rate = 88.2%), and ranges from 64% in the ‘Puma’ lineage to

100% in the ‘Smilodon’ lineage (Table S7). The low accuracy in

predicting ‘Puma’ lineage members is unsurprising as this lineage

encompasses three disparate morphotypes, namely the unique

cheetah (Acinonyx jubatus), the panther-like puma (Puma concolor),

Convergence and Divergence in Cat Skull Shape
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and the ocelot-like jaguarundi (P. yagouaroundi). Individual classi-

fications and posterior probabilities show that while cheetah and

most puma specimens are correctly assigned to the ‘Puma’ lineage,

all jaguarundi specimens were incorrectly assigned either to the

‘Bay Cat’, the ‘Caracal’, or the ‘Ocelot’ lineages (Table S8).

A PCA of the 29 transformed linear variables resulted in 11

Principal Components (PC) axes that account for more than 90%

of the total morphological variance (see Table S9 for individual

scores along all axes). The PC1 axis accounts for 38% of the total

variance, while PC2, PC3, and PC4 account for 14%, 9.6%, and

7.6%, respectively (see Fig. S1 for PCA loadings on these four PC

axes). The overall separation among lineages in morphospace is

significant (NPMANOVA F = 40.1; p = 0.0001; see post-hoc

pairwise comparisons in Table S10), and the distribution density of

specimens is mostly unimodal (see profile of contour lines; Fig. 4A),

though there is a distinct separation between large and small-

medium cats (Fig. 4A; Fig. S2).

Three major features emerge from the two-dimensional

morphospace plot delimited by the PC1 and PC2 axes (Fig. 4A;

Fig. S2). The first feature is the presence of a size gradient along

PC1 (larger species towards positive PC1 scores). As the

morphological variables are Mosimann shape variables and are

adjusted for isometric scaling, this size-associated trend in PC1 is

interpreted as most likely reflecting some true allometric pattern in

shape change with size. This allometric pattern is associated with

an increase in facial length (Lface), palate length (Lpal), snout width

at the canines (WC1s), nasal width at the fronto-maxillary suture

(WMFS), nostrils width (WNA), nasal length (LNa, LNaT), width

across the incisor arcade (WI3s-I3s), mid snout width (Wsn), and

interorbital width (WO), and with a decrease in the postorbital

processes width (WPOP, WPOC), braincase width (WBC), foramen

magnum width (WFM, WFMV), and occipital condylar width

(WOC).

The second feature of the morphospace plot is the separation of

mid-sized cats into two distinct regions along PC2 (Fig. 4A; Fig.

S2). PC2 is primarily associated with a decrease in skull length

(LSkT), palate length (Lpal), mastoid process width (WMP),

paroccipital process width (WPocP), and P4 length (LP4s), on the

one hand, and with an increase in postnarial width (WPN, WPN.ant),

snout width at the infraorbital foramina (Wiof), interorbital width

(Wo), and postorbital constriction width (WPOC) on the other.

Thus, taxa that score positively along PC2 tend to have short stout

skulls while those that score negatively tend to have long narrow

skulls.

The third feature of the morphospace plot is the occurrence of

both unique (i.e., outliers) and convergent morphologies in various

phylogenetically distinct taxa. The cheetah (Acinonyx jubatus) and

the flat-headed cat (Prionailurus planiceps) offer examples of outliers,

as they plot out in diametrically opposite morphospace areas.

Eurasian lynx (Lynx lynx), the snow leopard (Panthera uncia), and the

extinct Metailurus parvulus – all exhibiting ‘bulbous’ skulls and wide

foreheads – offer examples of convergent skull morphologies.

Thus, although these three taxa are phylogenetically distinct, they

are close to one another in morphospace.

In the right-hand side of the plot, large Panthera species (the big

cats) plot out close to various large saber-toothed cats (e.g.;

Homotherium; some Dinofelis). However, some of the largest saber-

toothed cats, including Smilodon and Xenosmilus, occur more

Figure 4. Two-dimensional morphospace plots of species centroids (color-coded spheres) based upon PCA of 29 size-adjusted
cranial linear variables in 332 specimens of extant and fossil felids. (A) Two-dimensional morphospace plot delimited by PC1 and PC2, with
contour lines showing the spatial density of the specimen-level distribution. (B) Two-dimensional morphospace plot delimited by PC1 and PC3. (C)
Two-dimensional morphospace plot delimited by PC1 and PC4. Taxa labels are the same as in Fig. 2, except as follows: D, Dinobastis serus; M,
Metailurus IVPP-5679; P, Panthera paleosinensis; these three taxa were not included in the phylogeny. Color codings are as in Fig. 2.
doi:10.1371/journal.pone.0039752.g004
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peripherally at one extreme of the range of variation of large felids

as a whole. Thus, saber-toothed cats show a degree of cranial

shape diversity that is unmatched by that of the extant large cats.

The basal felid, Hyperailurictis validus, is phenetically very similar to

the leopard (Panthera pardus). Machairodontine taxa are further

separated from the feline taxa along PC3 (Fig. 4B; Fig. S3) but

more prominently along PC4 (Fig. 4C; Fig. S4). Machairodontines

(including the feline-like Metailurus parvulus and Dinofelis) score

positively along PC4 compared to felines with similar PC1 scores

(i.e., of similar sizes). Positive PC4 scores are associated with

increases in Wo, WI3s-I3s, and LP4s, and decreases in LN, LNT,

LC1sP3s, and WSk, thus reflecting a widening of the snout,

enlargement of P4, shortening of the nasals, reduction of the

upper diastema, and narrowing of the skull. All these features have

been traditionally used to distinguish machairodontines from

felines. Furthermore, they add to lower dental and postcranial data

that also ally Dinofelis to machairodontines [50].

Using MPVR, we found a significant correlation (p

= 3.25610213) between the morphospace matrix and the phylog-

eny matrix, with about 78% of variance in morphospace and,

separately, about 90%, 69%, 62% and 86% of variance in PC1,

PC2, PC3 and PC4, respectively, explained by phylogeny.

Blomberg’s test shows phylogenetic signal to be significant and

strong in PC1 (K = 1.24; p = 161024), significant but weak in PC2

(K = 0.305; p = 5.5061023), not significant in PC3 (K = 0.246; p

= 0.128) and significant but relatively weak in PC4 (K = 0.809; p

= 161024). This overall strong phylogenetic signal is evident in the

phylomorphospace plot (Fig. 5) where branch overlap within

lineages is minimal. The ancestral position of Felidae is

reconstructed proximally to the modern leopard (Panthera pardus),

which therefore provides a suitable modern analogue for the

ancestral felid skull morphology.

Our CPMS (Fig. 6; Video S1) adds a temporal axis to the

standard two-dimensional phylomorphospace plot (Fig. 5), and

reveals three notable patterns. The first is at the base of Felidae.

Here, Hyperailurictis validus and F:AM 62192 are both morpholog-

ically distinct and occupy separate phylogenetic positions (Fig. 1A).

Hyperailurictis validus diverges very little from the reconstructed

position of the ancestral felid node in the two-dimensional

morphospace. Unlike Hyperailurictis validus, F:AM 62192 has a

unique evolutionary trajectory, in that it diverges considerably

from its ancestral node, and plots out in a morphospace region

that is subsequently convergently occupied by the modern puma

(Fig. 5).

A second remarkable pattern is the early and conspicuous

divergence between machairodontines and felines. Successive

internal nodes of the machairodontine phylogeny plot out along

a less steep trajectory than internal nodes leading to major feline

lineages; this trajectory appears to ‘spiral out’ towards the diversity

of the largest members of the saber-toothed cats. The ancestral

nodes in the machairodontine portion of the phylogeny overlap

with the ancestral nodes of the large Panthera cats in the two-

dimensional projection of phylomorphospace (Fig. 5), but are

chronologically well separated from those (Fig. 6; Video S1).

Finally, on the feline portion of the tree, we remark a second

early and conspicuous divergence, between the clade of large cats

(‘Panthera’ lineage) and the clade of small-medium cats (all other

lineages). This divergence is also characterized by almost complete

non-overlap in the history of these two clades. The small-medium

cats appear to be fairly constrained in their patterns of ancestral

morphospace occupation. In particular, whereas the respective

basal nodes of the modern small-medium cat lineages tend to

occur far apart, the deeper internal nodes from which these basal

nodes diverge are more closely spaced. The CPMS further

highlights the remarkable outlying position of the flat-headed cat

and the cheetah, due to their early divergence from their

respective ancestral nodes.

Discussion

While molecular phylogenetics have recently advanced our

understanding of the relationships amongst modern cats, the

mutual phylogenetic positions of Felinae, Machairodontinae, and

various early felids (e.g., Proailurus, Hyperailurictis, F:AM 62192)

have received less attention. A previous analysis of the interrela-

tionship of North American ‘Pseudaelurus’ taxa [51] recovered this

genus as a paraphyletic ‘grade’ along the stem of Felinae

(represented by Lynx canadensis and Puma concolor), but the analysis

in question did not include any machairodontine taxa. Other

authors have hypothesized that various Pseudaelurus-like taxa could

be ‘ancestral’ to both ‘conical’-toothed cats (Felinae) and saber-

toothed cats (Machairodontinae) [2,23]. Our analysis shows that at

least one Pseudaelurus-like taxon (F:AM 62192) is more closely

related to Felinae than it is to any other felid species (including

Hyperailurictis validus and all machairodontines). Thus our results

find Pseudaelurus-like taxa to form a polyphyletic assemblage, as

proposed by [2,23], although since we have not analyzed those

Pseudaelurus species previously hypothesized to be on the machair-

odontine stem (such as P. quadridentatus [2,23]), our new phylogeny

cannot be used to test this hypothesis. Further, it is also possible

that F:AM 62192 is actually a member of Felinae, but since we

have treated the latter as a supraspecific OTU, further analysis

including numerous feline taxa is necessary to resolve this.

The detailed species-level interrelationships of machairodontines

have also received limited treatment within a cladistic framework,

certainly in terms of number of species considered [24,52]. To the

best of our knowledge, our analysis is the first to include all major

machairodontine lineages (in particular the ‘Metailurus’ lineage

cats) in a single cladistic matrix, and offers a preliminary numerical

test of phylogenetic hypotheses put forward by previous authors

[2,23]. We recover a monophyletic Machairodontinae, with the

three major saber-tooth lineages – ‘Metailurus’, ‘Smilodon’ and

‘Homotherium’ –, being more closely related to each other than to

other felids (Felinae, Hyperailurictis, and Proailurus). However, the

shape of the machairodontine phylogeny differs from previous

hypotheses in two major aspects.

First, the ‘Metailurus’ lineage, commonly referred to as

Metailurini [2,23], does not form a monophyletic group, and

emerges instead as a grade group. Within the latter, Dinofelis forms

a monophyletic genus, with D. cristata as the sister taxon to F:AM

50446. F:AM 50445 and 50446 are from the same locality

(Ruscinian – Villafranchian of Niu Wa Kou, Shanxi, China), and

their separation in the phylogeny is exclusively due to different

states of character 34, concerning the shape of the naso-frontal

suture.

Second, the ‘Smilodon’ lineage, commonly referred to as

Smilodontini, and including the genera Megantereon and Smilodon,

is similarly recovered as a paraphyletic group instead of a clade.

Failure to retrieve support for the monophyly of two of the three

major clades in this analysis may be due in part to limited

character and taxon sample size, and future rigorous analyses

based on expanded character and taxon sets are likely to cast new

light on the nature of the conflict in published phylogenetic

hypotheses. While we acknowledge the limitations of the current

analysis of fossil taxa, we believe it is a small step forward towards

future, more comprehensive undertakings; by far the greatest

challenge is a proper evaluation of character polarity of Felidae as

a whole in light of simultaneous inclusion of fossil and extant taxa.

Convergence and Divergence in Cat Skull Shape
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While the overall distribution of taxa in morphospace and

patterns of shape change are consistent with previous analyses [7–

14], the convergence of the machairodontine, Metailurus parvulus,

with the Eurasian lynx and with the snow leopard contrasts with a

recent study [11] in which Metailurus plots out with Panthera species

other than the snow leopard. This discrepancy may be due to the

fact that the analyses in [11] used lateral projections of the skull,

whilst our work also considers variables that relate to skull width.

Furthermore, Metailurus resembles the snow leopard in limb

robustness, and the Eurasian lynx in limb proportions [53]. These

similarities suggest that Metailurus presumably partly occupied

similar ecological roles to these extant taxa in the open woodlands

of Greece or the subarid steppes of China, where its remains have

been found [54,55]. This suggestion is entirely speculative and

requires further testing in light of other character correlates and

detailed palaeoecological analyses.

On a purely methodological note, our study demonstrates the

effectiveness of an adequate sample of morphological descriptors

in morphometric analyses. For example, the machairodontine,

Dinofelis, was found to be phenetically close to Panthera in [9,11].

However, our analyses place it in proximity to other large

machairodontines, based upon its skull proportions, its robust and

wide snout, and its elongate face.

Overall, size-adjusted linear measurements summarize a large

amount of morphological variation and produce multivariate

ordination results that are comparable to those from landmark-

based geometric morphometric analyses. Further, LDA reveals

that they can accurately predict lineage memberships. For these

reasons, size-adjusted linear variables (and by extension traditional

morphometrics) remain a powerful tool in studies of biological

shape that complements the thrust and potentials of geometric

morphometrics.

Phylogeny provides a useful framework for mapping trait

evolution [6,16–22,43]. Phylogeny reconstruction embodies,

among others, two aspects of evolutionary history: 1, the interre-

lationship amongst OTUs; and 2, the temporal scale of branching

events. A phylogeny mapped onto morphospace (phylomorpho-

space; e.g., see [21]) only incorporates the first aspect of phylogeny

but lacks temporal information. A more accurate way of depicting

the evolutionary dynamics of morphospace occupation across

phylogeny is to include temporal data. Our CPMS (Fig. 6; Video

S1) accomplishes this by visualizing changes in morphospace

occupation among various lineages and through time.

The CPMS reconstructs the early history of cat morphospace

occupation as being relatively restricted to the regions of

morphospace where medium-large sized cats plot out. This could

potentially be due to lack of fossils of small-sized cats from this time

(the oldest unequivocal feline, Pristifelis attica is known from around

5–9 Ma [2,56]), and it is possible that future discoveries will fill this

gap. The remarkable ‘burst’ of morphospace occupation does not

occur until slightly later (at around 10 Ma) when the respective

ancestors of large-bodied taxa (Machairodontinae and ‘Panthera’

lineage cats) diverge from the small/medium-bodied (non-

‘Panthera’ lineage). While the full extent of morphospace

exploitation is not reconstructed for this time slice, our CPMS

shows that the majority of the morphological divergence had

occurred by this time. This complements a previous observation

by Werdelin [8] of a separation in morphospace occupation by the

small/medium- and large-bodied cats (contra [9]). Our CPMS

indicates that this separation has a deep-rooted history and that

Figure 5. Two-dimensional phylomorphospace plot. The felid phylogeny (Fig. 2) was superimposed onto the two-dimensional morphospace
delimited by the first two PC axes (Fig. 4A) using maximum likelihood ancestor character estimation. Arrows indicate ancestral nodes for clades of
interest and color-coded as in Fig. 2 but also: open, Felidae; and grey, Felinae. Numbers and colors are as in Fig. 2.
doi:10.1371/journal.pone.0039752.g005
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skull shape evolution did indeed follow different trajectories in

small/medium- (including Puma concolor) and large-bodied cats. We

emphasize that shape may never be under direct selection forces,

its evolution being a trade-off between selection on latent factors

such as function, ecology/environment, or development.

Throughout cat evolution, machairodontine ancestral nodes are

consistently reconstructed as being separate from contemporary

feline nodes, implying that large cats as a whole (‘Panthera’ lineage

and large machairodontines) appear to have distinct trajectories in

morphospace occupation through time. It appears as though large

‘Panthera’ lineage taxa move into regions of morphospace that

were previously occupied by machairodontines, which themselves

continuously expand outwards in morphospace. Thus, there is a

sequential filling of morphospace, first by machairodontine

ancestors, then by ‘Panthera’ lineage cats. As a caveat, we

consider the possibility that the full range of morphospace

occupancy of the ‘Panthera’ lineage deeper in time is not fully

reconstructed, because the positions of ancestors are reconstructed

Figure 6. Chronophylomorphospace of Felidae. The transition of two-dimensional morphospace occupation through time can be visualised as
a chronophylomorphospace plot. Positions in morphospace of ancestors were estimated using maximum likelihood and a composite phylogeny of
Felidae with scaled branch lengths (Fig. 2). Two-dimensional coordinates of ancestors and terminals were then plotted against time as the third axis.
Color-coded arrows point to the latest common ancestor of each lineage. The grey arrow points to the last common ancestor of Felinae. The drop-
down shadow shows a planar projection of the chronophylomorphospace on the two-dimensional morphospace area delimited by the PC1 and PC2
axes. Numbers and colors are as in Fig. 2.
doi:10.1371/journal.pone.0039752.g006
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primarily from morphospace coordinates of younger taxa.

Nevertheless, the method does take into account possible ancestral

conditions, and it would be interesting to see how further fossil

discoveries match the patterns inferred from internal nodal

reconstructions.

In conclusion, despite their relatively recent origin and unique

specializations, cats have experienced significant changes in

cranial construction, exhibiting instances of convergence, devel-

opment of ‘extreme’ morphologies, and disjoint spatial and

temporal patterns of morphological space occupation. We use a

popular animal group to highlight the thrust of large-scale trees

[57] as an invaluable tool to quantify the dynamics of character

changes, and we hope that this study will promote renewed

interest in similar adaptive radiations, both among mammals and

in other organisms.

Supporting Information

Figure S1 Loadings for the first four PC axes from the
PCA of 29 size-adjusted cranial linear variables in 332
specimens of extant and fossil felids. The loadings for the

first four PC axes are shown as bar plots. Numbers correspond to

the variables listed in the legend for Fig. 3.

(TIF)

Figure S2 Two-dimensional morphospace delimited by
the first two PC axes from the PCA of 29 size-adjusted
cranial linear variables in 332 specimens of extant and
fossil felids. A specimen-level morphospace was built using PCA

and the first two PC axes were plotted. Lineages are shown in

different colours, except machairodontine lineages (‘Machairodus’,

‘Metailurus’, and ‘Smilodon’ lineages), which are all treated as a

single group, Machairodontinae, in this plot. Numbers correspond

to MorphID in Table S1.

(TIF)

Figure S3 Two-dimensional morphospace delimited by
PC1 and PC3 from the PCA of 29 size-adjusted cranial
linear variables in 332 specimens of extant and fossil
felids.

(TIF)

Figure S4 Two-dimensional morphospace delimited by
PC1 and PC4 from the PCA of 29 size-adjusted cranial
linear variables in 332 specimens of extant and fossil
felids. Note machairodontine taxa separating out in morpho-

space from feline taxa.

(TIF)

Figure S5 A one-dimensional chronophylomorphospace
plot along PC1. Transition of PC1 across phylogeny through

time can be plotted following the methods of Sakamoto et al. [6]

using maximum likelihood ancestor character estimation. The 95%

confidence intervals of the ancestor estimates are shown as error

bars. Node and branches are coloured according to monophyletic

clade membership. Colours and numbers are as in Fig. 2.

(TIF)

Figure S6 A one-dimensional chronophylomorphospace
plot along PC2. Transition of PC2 across phylogeny through

time can be plotted following the methods of Sakamoto et al. [6]

using maximum likelihood ancestor character estimation. The

95% confidence intervals of the ancestor estimates are shown as

error bars. Node and branches are coloured according to

monophyletic clade membership. Colours and numbers are as in

Fig. 2.

(TIF)

Figure S7 Tree of Fig. 2 with branches scaled using an
alternative method. Branches were scaled by using first and

last occurrence dates for all taxa (assuming fossil age ranges as

known temporal distributions).

(TIF)

Figure S8 Tree of Fig. 2 with branches scaled using a
third method. Branches were scaled by taking midpoint dates

for all taxa (assuming the modern time slice as the upper margin of

error).

(TIF)

Figure S9 Two-dimensional CPMS plot using the tree of
Fig. S7. A two-dimensional CPMS was plotted using the first two

PC axes and a tree with branch lengths scaled according to the

second method outlined in Text S2. Note that while the branching

patterns of the extant taxa are not that different from those in Fig. 6

and Video S1, those for machairodontines are noticeably different.

Particularly in that the branching events are bunched together in a

narrower period of time resulting in very short internal branches,

while each of the terminal branches are very long.

(TIF)

Table S1 Felid taxa for morphometric analysis. Lineage

membership and identification numbers are listed for each taxon.

MorphID, identification key for specimen-level morphometric

plots in Supplementary Materials; PhyloID, identification key

according to phylogeny and used throughout the main text.

(XLS)

Table S2 Notes on taxa used in cladistic analysis. The specimens

observed for each OTU along with other relevant information

such as locality or age are noted.

(XLS)

Table S3 Data matrix for cladistic analysis. Character numbers

(columns) correspond to character descriptions given in Text S1.

The supraspecific OTU, Felinae, is scored using the five feline

taxa, Felis silvestris, Leopardus pardalis, Puma yagouaroundi, Panthera leo,

and Panthera tigris, according to the following scheme: Characters

are scored such that if the sum of the five taxa for any given

character = 0, then score for FELINAE = 0; if sum = 1, then

FELINAE = 0; if sum = 2, then FELINAE = [0 1]; if sum = 3,

then FELINAE = [0 1]; if sum = 4, then FELINAE = 1; and if

sum = 5, then FELINAE = 1. The above scheme is suitable for

binary character scorings (0 or 1), so excludes character 18 in

which 4 out of 5 taxa are scored 2, thus FELINAE = 2. Character

scores for each feline taxa are given separately from the main

character matrix. Matrix is formatted for TNT [25].

(XLS)

Table S4 First and last occurrences of extant taxa, and mean age

of fossil species, all expressed in millions of years. These dates were

used to scale the branches of the composite phylogeny (Fig. 2).

Mean ages for the fossil taxa were used, but see Text S2 for

alternative methods and their effects on branch lengths.

(XLS)

Table S5 Raw variables. The raw measurements of the 29

variables are shown for each specimen.

(XLS)

Table S6 Mosimann’s transformed variables. The 29 variables

(Table S5) were adjusted for size through Mosimann transforma-

tion for each specimen.

(XLS)

Table S7 Cross tabulation of prior classifications and predictions

in LDA for each lineage. The rows are the prior classifications while
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columns are predicted lineage classifications. The values within

each cell are the numbers of specimens in a given row (prior

classification) assigned the classifications according to the columns,

with correct classifications in blue and incorrect classifications in

pink. For instance, the total number of specimens in the Bay Cat

lineage is 13 but only 9 have been correctly assigned to the Bay Cat

lineage, while 3 have been classified as Caracal lineage and 1 as

Puma lineage; the accuracy is the proportion 9/13 = 0.692.

(XLS)

Table S8 Prior classifications, predicted classifications, and

posterior probabilities in LDA for each specimen. The prior

classifications and classifications predicted by LDA is shown, with

correct classifications in blue and incorrect classifications in pink.

Posterior probabilities for each specimen are also shown.

(XLS)

Table S9 Scores of all specimens on all PC axes. The Mosimann

transforms were subjected to PCA and the first 11 PC axes were

used for subsequent analyses. The scores of each specimen along

all 29 PC axes are presented here.

(XLS)

Table S10 NPMANOVA post-hoc pairwise comparisons be-

tween lineages using PC1–PC11. The upper off-diagonal cells are F-

values while the lower off-diagonal cells are p-values with sequential

Bonferroni significance. Significant p-values are highlighted in pink.

(XLS)

Text S1 List of characters used in phylogenetic analysis. The 44

characters along with their states are listed and described. The

coded data matrix is in Table S3.

(DOC)

Text S2 Details on branch scaling and the effect of different

choices in terminal ages on PCM results.

(DOC)

Video S1 Three-dimensional movie output of the chronophylo-

morphospace. This was generated using the new R function,

chronoPTS2D, and outputted as a spinning movie through the rgl

R library [49]. Fig. 6 is an annotated screen capture of this plot.

(GIF)
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