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ABSTRACT

The past decade has seen the publication of a large
number of cell-cycle microarray studies and many
more are in the pipeline. However, data from these
experiments are not easy to access, combine and
evaluate. We have developed a centralized database
with an easy-to-use interface, Cyclebase.org, for
viewing and downloading these data. The user
interface facilitates searches for genes of interest
as well as downloads of genome-wide results.
Individual genes are displayed with graphs of
expression profiles throughout the cell cycle from
all available experiments. These expression profiles
are normalized to a common timescale to enable
inspection of the combined experimental evidence.
Furthermore, state-of-the-art computational ana-
lyses provide key information on both individual
experiments and combined datasets such as
whether or not a gene is periodically expressed
and, if so, the time of peak expression. Cyclebase is
available at http://www.cyclebase.org.

INTRODUCTION

The cell division cycle is one of the most fundamental
processes of life, allowing cells to multiply and faithfully
pass on their genetic information to future generations.
The full complexity of this process became apparent
a decade ago with the first genome-wide microarray
studies of the mitotic cell cycle of budding yeast (1,2).
Since then, numerous other microarray studies have
been published on the cell cycle of the budding
yeast Saccharomyces cerevisiae (3,4), the fission
yeast Schizosaccharomyces pombe (5,7), human (8) and
the plant Arabidopsis thaliana (9).

Accessing, analyzing and comparing these many
datasets has unfortunately remained difficult for a variety
of reasons. First, there is no single database from which
one can download all the datasets in an unified file format.
The expression profiles for each experiment are often
stored on individual websites. Second, the same gene
identifiers are not used across datasets, making it difficult
to compare expression profiles from different studies on
the same organism. Third, a variety of different methods
have, with varying success, been used for identifying
the significantly regulated genes (1–28). The use of many
different algorithms has introduced uncertainty as to
which is the correct set of cell-cycle regulated genes.
Fourth, new experimental studies tend to disregard
already existing expression data, and thus only evaluate
cell-cycle regulation based on their own experiments.
Finally, general microarray repositories, analysis methods
and visualization tools have by nature not been designed
to meet the specific needs of the cell-cycle community.

Here, we present Cyclebase.org, a database and web
resource of cell-cycle microarray expression datasets
(see Table 1 for an overview of the datasets included in
Cyclebase). These datasets have been mapped to common
gene identifiers and normalized onto a common timescale,
facilitating direct comparison of expression profiles
between all experiments within an organism. The web
interface provides a good visual overview of all available
expression data on a given gene, as well as the results
from state-of-the-art computational analyses. This inter-
face aids the user in interpreting the combined evidence on
the cell-cycle regulation of a given gene.

PRESENTING CYCLEBASE

The interface of Cyclebase is designed to make it as simple
as possible for users to find and browse the genes of
interest. Searching for key terms such as standard gene
names (e.g. HTA2), systematic names (e.g. YBL003C)
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or descriptions (e.g. histone) will produce a list of
candidate genes for inspection. Genes in this list are
initially sorted by their match to the search criteria and
then in ascending order on the cell-cycle rank score
(most periodic genes at the top). The list can be sorted on
any of the other columns simply by clicking them. In
addition, an advanced search page allows the user to
browse for genes that match certain criteria; for example,
it allows researchers to find among the 100 most periodic
human genes, those that peak in S-phase.

When a gene of interest has been selected, or if a query
is entered that matches only a single gene, the user is taken
to the Gene Details page (Figure 1). This page is the
primary interface for viewing expression profiles, key
results from statistical analyses and general information
about the gene in question. By default, the statistical
results are based on all available experiments. Expression
profiles and analysis results for the individual experiments
can be accessed by clicking on a single experiment in the
experiments list (Figure 1A).

To allow for inspection of the accumulated evidence for
transcriptional regulation during the cell cycle, all avail-
able expression data for a gene of interest are depicted in
the expression profile chart (Figure 1B). Easy comparison
of different experiments is obtained by placing each profile
onto a common time scale, which we have chosen to be in
percent of the cell division cycle with zero corresponding
to cytokinesis (M/G1-transition) (16,29,30). Such normal-
ization is necessary as the individual experiments vary
greatly in their absolute interdivision times, depending on
the experimental conditions. Subsequent alignment of the

timescales is also necessary, because different experiments
release the cells from different points in the cell cycle.
Finally, the expression values have been normalized to
a standard deviation of one over the entire experiment
to further aid comparison across experiments.
To provide an unbiased and comparable assessment of

the expression data, a common computational analysis
framework has been applied to all datasets in the
database. For every expression profile, two P-values are
calculated that assess the significance of periodicity and
regulation (16). The P-values are summarized across all
experiments in an organism and combined to a final score,
which is used to rank all genes in the genome (16)
(Figure 1C). A brief explanation of the algorithms is
provided in the Methods section of Cyclebase.
Based on independent benchmarking, this methodology

has previously been proven to be as good as or superior to
all other published methods for identifying periodically
expressed genes (16,29,30). We have expanded this bench-
mark to also include recent methods (1,2,5–28) and
experiments (Figure 2). Benchmark sets were compiled
that are enriched in cell-cycle regulated genes from targets
of known cell-cycle transcription factors (16,29,30). We
benchmarked each method’s ability to retrieve genes in
these sets. Figure 2 displays the benchmarking results,
which shows that the method used in Cyclebase provides
clear improvements over other methods and that combi-
ning all data for an organism is, not surprisingly, superior
to any single dataset analyzed on its own. Based on
the benchmarks, we have selected a set of significantly
periodically expressed genes within each organism

Table 1. Summary of cell-cycle microarray experiments in Cyclebase

Organism Group Microarray Samples Cycles Experiment name

Saccharomyces cerevisiae Cho et al. (1) Affymetrix 17 2 Cho-cdc28
Spellman et al. (2) Spotted 18 2 Spellman-alpha

24 2.5 Spellman-cdc15
de Lichtenberg et al. (3) Geniom one 16 2 de Lichtenberg-cdc15
Pramilla et al. (4) Spotted 25 2 Pramilla-alpha30

Spotted 25 2 Pramilla-alpha38
Schizosaccharomyces pombe Rustici et al. (5) Spotted 20 2 Rustici-cdc25-1

18 2 Rustici-cdc25-2
20 2 Rustici-elu1
20 2 Rustici-elu2
20 2 Rustici-elu3

Peng et al. (6) Spotted 37 2 Peng-cdc25
32 2 Peng-elu

Oliva et al. (7) Spotted 52 3 Oliva-cdc25
50 2.5 Oliva-eluA
33 3 Oliva-eluB

Homo sapiens Whitfield et al. (8) Spotted 11 2 Whitfield-thythy1
26 3 Whitfield-thythy2
47 3 Whitfield-thythy3
19 2 Whitfield-thynoc

Arabidopsis thaliana Menges et al. (9) Affymetrix 10 1 Menges-aph
6 0.5 Menges-suc

The table summarizes the experiments currently in Cyclebase. Group refers to the original publication on the data. Microarray lists the technology
platform used; either single-channel Affymetrix GeneChips (‘Affymetrix’), two-channel spotted cDNA microarrays (‘Spotted’), or in-situ synthesized
arrays using the Geniom one platform (‘Geniom one’). Samples denotes the number of samples or time points included in the experiments. Cycles is
an estimate of the number of full cell cycles covered by the experiment. Experiment name refers to the label used in Cyclebase for the experiment in
question. Please note that the technical replicates by Pramilla et al. (4) are treated as independent experiment, because this leads to better overall
performance of the analysis methods.
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Figure 1. Screenshot for budding yeast CLB1. The figure shows the Gene Details Page for the gene CLB1 (a cyclin). (A) The list of experiments in
which the gene is measured. Clicking any of these takes the user to another Gene Details Page with only data from that particular experiment.
(B) Expression profile chart. The experiments are normalized and aligned onto a common time-scale (in percent of the cell cycle). The individual
phases are marked along the time axis and the computationally determined peaktime is marked by a red dot. (C) Summary of the computational
analysis based on all data available for this gene in Cyclebase. ‘Rank’ signifies that this is the 78th most periodic gene in budding yeast, ‘P(per)’ and
‘P(reg)’ are P-values that quantify the significance of periodicity and regulation, respectively, and ‘peaktime’ estimates how far into the cell cycle
(from M/G1) the gene is maximally expressed. (D) Schematic illustration of the peaktime (red dot) and phase duration. The gene CLB1 peaks 63%
into the cell cycle, corresponding to the middle of G2 phase in budding yeast. (E) Gene aliases and description. (F) Download of data in various
formats.(G) Database documentation and download.
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(labeled with a small ‘Periodic’ icon). We found 600
periodic genes in budding yeast, 500 in fission yeast, 600 in
human and 400 in the plant A. thaliana. For these periodic
genes, we compute the ‘peaktime’ based on all available
expression profiles (16).

The peaktime is a measure of when in the cell cycle
a given gene is maximally expressed, and represents

a summary of all the expression data (16). The peaktime
is given as percent into the cell cycle (from when the new
cell is born in cytokinesis) and is depicted as a red dot in
both the expression profile chart (Figure 1B) and the
peaktime chart (Figure 1D). The phase length can
vary widely from organism to organism (e.g. G2-phase
occupies �60–70% of the cell cycle in fission yeast versus
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Figure 2. Benchmark of methods for identifying cell-cycle regulated genes. For each of the four organisms, a benchmark set was compiled of genes
whose promoters are bound by known cell-cycle transcription factors (16,29,30), under the assumption that these genes should be highly overlapping
with those that display cell-cycle regulation at the transcriptional level (i.e. periodic expression). The panels show the fraction of a benchmark set
retrieved as a function of the number of genes suggested for each individual method (1,2,5–28). Better methods should therefore be towards the upper
left corner of the plot. Methods which provide a ranked list of genes are displayed as a line, whereas those that only supply an unranked set of genes
appear in the plots as cross mark/plus sign. The black dotted line corresponds to picking genes randomly. In all four organisms, the combined
analysis of all data within an organism presented by Cyclebase outperforms all existing methods or suggested sets of periodically expressed genes. In
all organisms, the curves eventually display the same slope as the random performance curve (black dotted), indicating that including more genes
from this point on yields no enrichment in genes from the benchmark set.
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only �25% in budding yeast), and the peaktime chart is
therefore drawn differently for each species. Consequently,
the peaktime values cannot be directly compared across
organisms, since a specific percent (e.g. 60%) into the cell
cycle may correspond to different phases in different
organisms. The peaktime is only computed for genes that
display periodicity and the remaining genes are labeled
with ‘uncertain’ for the peaktime value. This label is also
used if the different experiments disagree too much for
a peaktime to be reliably assigned (16).
When comparing expression data across experiments,

one issue is that different gene names for the same gene
have been used in the different experiments. We have
solved this problem by combining expression data and key
results based on systematic gene identifiers. When they
exist, a list of aliases is provided in the Gene Details page
(Figure 1E), allowing the user to relate to the original
experiment and to crosslink to external databases.
The Gene Details page also contains a functional
description (Figure 1E) populated from external databases
(31–35) and is therefore not available for all genes.
All Cyclebase analysis results are available for down-

load, both as values for individual genes and as whole-
experiment datasets. XML and tab-delimited formats are
available, both of which are fully documented on the
website. Furthermore, where permission has been granted
from the original authors, expression profile datasets
are also available for download. Every page in Cyclebase
also contains links to information about the database
(FAQ and Methods), information about the individual
experiments, and a link to the datasets available for
download (Figure 1G).

OUTLOOK

Many more cell-cycle experiments may be performed in
the future, and we encourage researchers to contact us,
so that new cell-cycle experiments are analyzed consis-
tently, and can be included in Cyclebase. As other types of
large-scale experiments (e.g. metabolite information,
kinase activity or protein expression) become available,
it will become imperative that researchers integrate and
analyze these data together with existing datasets.
Cyclebase has been designed to store diverse data types
from time-series experiments and we intend for Cyclebase
to become a standard interface and tool for combining
cell cycle datasets beyond transcriptional regulation.
This would give researchers a one-stop shop for visualiz-
ing and downloading time-series events from the cell-cycle.
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