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1 Abstract

Frailty indexes (FIs) capture health status in humans and model organisms. To accelerate our under-
standing of biological aging and carry out scalable interventional studies, high-throughput approaches
are necessary. We previously introduced a machine vision-based visual frailty index (vFI) that uses
mouse behavior in the open field to assess frailty using C57BL/6J (B6J) data. Aging trajectories are
highly genetic and are frequently modeled in genetically diverse animals. In order to extend the vFI to
genetically diverse mouse populations, we collect frailty and behavior data on a large cohort of aged
Diversity Outbred (DO) mice. Combined with previous data, this represents one of the largest video-
based aging behavior datasets to date. Using these data, we build accurate predictive models of frailty,
chronological age, and even the proportion of life lived. The extension of automated and objective
frailty assessment tools to genetically diverse mice will enable better modeling of aging mechanisms
and enable high-throughput interventional aging studies.
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2 Introduction

Aging is a terminal process that is highly heterogeneous [1, 2]. Frailty is used to quantify this bio-
logical age and its heterogeneity. It is defined as the state of increased vulnerability to adverse health
outcomes [3]. It is a clinically important measure in humans and is used preclinically in rodents in
numerous aging studies. The frailty index (FI) is used to quantify frailty [4, 5]. An individual is scored
on a set of age-related health deficits to produce a cumulative score [4]. Individual elements in a FI
are selected to survey a broad set of organismal systems. With the exception of quantitative measures
of body weight and core body temperature, all other characteristics were assessed on a scale of 0, 0.5,
or 1 for normal, partly affected, and affected, respectively, by a trained technician blinded to genotype
or age [2, 6]. All item scores are then summed to produce the cumulative FI score (CFI). Currently,
FI scores outperform other measures, including molecular markers, in the prediction of mortality risk
and health status [5, 7, 8].

The mouse frailty index represents a significant advancement in aging research, particularly for long-
term interventional studies conducted across multiple laboratories. However, the FI scoring process
requires trained personnel, hindering the tool’s scalability. Manually scoring FI for thousands of mice
is labor-intensive, thus limiting the size of studies employing FIs [9]. Additionally, concerns regard-
ing scorer-based variability and reproducibility arise due to the inherent subjectivity associated with
several FI metrics [10–12]. While studies generally report good inter-scorer reliability for FI, they
also highlight the crucial role of inter-scorer discussion and refinement in achieving high agreement
[10–12]. This process may not be practical in multi-site or long-term studies. For instance, in our FI
dataset of 515 mice, we found that the 42% of the phenotypic variation is use to the tester [13]. Fur-
thermore, certain frailty items are more subjective than others. Therefore, while FI serves as a highly
valuable tool for aging research, automating the scoring process to improve objectivity, scalability,
reliability, and reproducibility would significantly enhance its overall utility.

In a previous paper, we used machine vision, the combination of computer vision and machine learn-
ing, to develop a video based automated frailty index, which we called a visual frailty index (vFI) [13].
Using video data from an open field assay, we extracted morphometric, gait, and other behavioral fea-
tures that correlate with manual FI score and age. We use these features to train a regression model
that accurately predicts the normalized FI score within 0.04 ±0.002 (mean absolute error). Unnor-
malized, this error is 1.08 ±0.05, which is comparable to 1 FI item being mis-scored by 1 point, or
2 FI items mis-scored by 0.5 points. The vFI provides increased reproducibility and scalability that
will enable large-scale mechanistic and interventional studies of aging in mice. Overall, our work
provided strong evidence that biological aging produces changes in behavior and physiology that are
encoded in video data, i.e. we can visually determine the frailty of an animal based on their open
field behavior. However, the vFI was constructed using data from 643 1-hr open field assays from 533
C57BL/6J (B6J) mice. Thus, the current vFI is constructed using only a single inbred mouse strain.

The importance of integrating genetic diversity in laboratory studies is widely recognized, including
by the aging research community [14–17]. A B6J specific vFI is highly useful for mechanistic and
interventional studies using this reference strain. However, understanding how genetic variation reg-
ulates complex aging phenotypes requires the ability to carry out frailty assessments in genetically
diverse populations [18–20]. Indeed, studies of long-lived pedigrees indicate that 15-25% of the vari-
ation in lifespan is due to genetic factors [21–24]. Here, we extend the vFI to genetically diverse
mouse populations. We collect manual FI data as well as open field video on 313 Diversity Outbred
(DO) mice, and build models to predict chronologial and biological age, as well as proportion of life
lived.

The DO is an advanced mouse population that originates from eight founder strains [25, 26]. There
are approximately 45 million segregating single nucleotide polymorphisms (SNPs) in this population,
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much higher than classical laboratory strains [27, 28]. The population has been used successfully
to model many complex phenotypes, including aging [29, 30]. DO mice have been used to study
various aspects of aging including effect of diet, fasting, health span, life span, changes in home
cage behavior, among others [31–37]. We hypothesize that mechanistic and interventional studies
using genetically diverse mice are more likely to capture heterogeneity in aging due to genetics and
generalize to humans. In addition to frailty, we are able to predict chronological age (vFRIGHT) and
proportion of life lived (vPLL) using video data. The extension of video-based frailty assessment to
genetically diverse mice greatly expands the utility of this noninvasive, objective, and sensitive tool.

3 Results

3.1 Exploratory Data Anlaysis

3.1.1 Data collection and study design

Our workflow is shown in Figure 1A. Mice were tested in the open field and then assessed for manual
frailty by experts. Using this data, we carried out a set of modeling experiments that are described in
Figure 1B. The input to the models were either manual FI item scores or video features. From these
inputs, we predicted chronological age (FRIGHT and vFRIGHT), biological age (vFI), or proportion
of life lived (mPLL and vPLL) using statistical machine learning. Where possible, we attempted to
compare performance of manual FI items with video features in the prediction task. We follow best-
practices for predictive statistical modeling and use multiple models, LM (penalized linear regression),
random forest (RF), and XGBoost (XGB). We also report multiple performance metrics in the main
text and supplementary figures MAE (median absolute error), RMSE (root mean square error), and R2

(Figures 4, 5, 6, S1). We describe each in detail below.
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Figure 1: Overview of the study and exploratory frailty data analysis. (A) We use Diversity Outbred (DO) mice to predict
chronological age, biological age, and predict proportion of life lived. We combine previous data from C57BL/6J mice that
was published in [13] photo credit: JAX) (B) Description of our models. We have two sets of inputs, manual frailty items
and video features. We describe 5 models that predict either chronological age, biological age, or percent life lived. (C)
Summary of the number of animals per strain and diet. (D) Distribution of cumulative frailty index score (CFI) score by
age. The black line shows a piece-wise linear fit (n = 126,260,335,252,172 mice) to the data. The center point is the mean,
and the error bars are the s.d. values. Color and shape indicate diet and mouse population, respectively (E) The cumulative
frailty index score (CFI) or frailty index score (FI) distribution across B6J and DO populations. (F) Effect of scorer on FI
data; 18% of the variability in manual FI scores was due to a scorer effect (RLRT = 9.22, p < 9× 10−4). (G) Individual
FI item usage in B6J and DO populations. We fit a cumulative link model for each frailty feature separately to examine
the effect of strain on the manual scores after adjusting for weight and diet. The positive coefficients (red) indicate that a
mouse belonging to the DO population increases the score, i.e., manual scores in the higher categories (0.5 or 1) are more
likely, and vice versa for negative coefficients (blue). We used FDR-based correction of the Wald-based p-values for tests
of the strain effect being zero for different frailty features. We colored a feature blue if at least 10% of individuals in either
population show variation in manual score.
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3.1.2 Exploratory analysis of manual FI data

We analyze three populations: B6J, DO, and combined B6J-DO (ALL) datasets as shown in Table 1.
The DO dataset was part of an ongoing study that has been previously described [31, 33, 36, 37]. We
combined the DO dataset with a previously published B6J dataset for modeling and analysis [13]. The
DO data comprises 500 data points collected on 313 unique DO mice. The DO mice were assigned to
one of the five diets: ad libitum feeding (AL), fasting one day per week (1D) or two consecutive days
per week (2D), and caloric restriction at 20% (20) or 40% (40) of baseline ad libitum food intake. The
combined B6J-DO data contains 1145 data points collected longitudinally on 828 unique mice (515
B6J, 313 DO) (Figure 1C). DO population was highly imbalanced in favor of females. We recorded
a top-down video of each mouse in a 1-hour open-field session according to previously published
protocols [13, 38, 39]. Following the open-field recording, a trained expert scored and assigned a
manual FI score. Consistent with previous data, in the B6J-DO dataset, we found that the mean FI
score and the heterogeneity of the FI score increase with age (Figure 1D). The cumulative frailty index
is largely identical between the two populations (Figure 1E).

We explored the usage of individual manual frailty index (FI) items between B6J and DO populations.
Given the genetic heterogeneity of DO, we hypothesized differential FI item usage. First, we examined
the overall distribution of the scores (0, 0.5, 1) and observed no significant changes (Figure 1F) which
is reasonable since the CFI distribution is similar between populations. We then looked at the usage
of individual FI elements (Figure 1 G). An item is considered useful if at least 10% of individuals
in either population show some variation (Figure 1G, blue vs. black). Some FI items are rarely
used in both populations, items such as cataracts, dermatitis, diarrhea, and rectal or vaginal prolapse
show inadequate variation. Overall, 18 of 27 (67%) of the FI items show sufficient variation to be
considered useful (Figure 1G, Blue). We then identified which of these 18 have significantly different
score distributions (0, 0.5, 1) between B6J and DO (Figure 1G, Top Ribbon). Seven of these 18 items
show differential use, suggesting frailty manifests differently in the two populations. For example,
coat condition, alopecia, and piloerection differ in frailty scores between B6J and DO.

3.2 Effect of environmental factors on manual frailty data

Next, we explored sources of variation in the manual FI data. A significant issue with manual FI scores
is the variability introduced by different scorers. Previously, a scorer effect of 42% was observed in our
B6J manual FI data [13] (reproduced in Figure S1A). We also detected a notable scorer effect in the
DO FI data (18%, Figure 2A) and consequently in the combined B6J-DO FI data (26%, Figure 2A).
For comparison, scorer-related variability in the manual FI data (18%) surpasses the variability due to
diet (14%) in the DO data that includes severe calorie restriction. Since sex was highly imbalanced
in favor of females (21M, 292F, Table 1), we did not analyze variation due to sex. To eliminate the
tester effect from manual FI scores, we subtracted the scorer effects estimated using a linear mixed
model (see Section 5) from the manual FI scores to obtain scorer-adjusted FI scores. In the following
modeling sections, we constructed clocks for scorer-adjusted FI score prediction.

Strain Num. animals Num. tests M F Age Frailty
DO 313 500 21 292 25 - 234 weeks 0.5 - 14
B6J 515 645 299 216 8 - 161 weeks 1 - 13.25

Table 1: Summary table of animals and frailty scores in our dataset.
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Figure 2: Variance due to tester, diet, and batch in the manual frailty data. (A) Using linear mixed models, we obtained the
variability in scores (%) due to three factors (the residual variation (RE) is not plotted). We plotted the estimated random
effects across scorers in (B) DO, (C) B6J, (D) B6J-DO, and across diets in the (D) DO dataset.

3.3 Open field video data processing and exploratory data analysis

We processed open-field videos using tracking and pose estimation networks to produce an ellipse fit
and a 12-point mouse pose for each frame as previously described [13, 39]. Next, we used these frame-
level measurements to calculate various per-video features, including traditional open-field measures,
gait and postural measures, and engineered features using the JAX Animal Behavior System (JABS)
[13, 39, 40]. Altogether, we extracted 59 features in three feature sets, open field, gait/posture, and
engineered [13]. We determined whether features within and across three sets provide similar or in-
dependent information through a correlation matrix (Figure 3A). We found the presence of correlated
blocks along the diagonal of the correlation matrix, indicating that measures within a feature set are
more correlated than across the feature sets. We handled the presence of multicollinear features within
and across sets through regularization of our predictive models in order to increase predictive accuracy.

Prior to modeling, we explored the relationships between the video features and the age and the man-
ual frailty score (Cumulative Frailty Index, CFI). The goal of this analysis was to determine which
video features correlate with age and frailty in the three populations. We calculated the feature corre-
lations for all three populations, using frailty scores and age (Figure 3C). We find that overall, similar
correlations are observed in the three goups. However, we also find distinct feature usage in the three
populations. We plot a set of features that show similar correlations in all three populations (Figure
3B, top row), a set that show opposite correlation in B6 and DO populations (Figure 3B, middle row),
and a set that shows correlations in a subset of three populations (Figure 3B, bottom row). To further
explore this population-specific feature correlations, we plot the correlation of each video feature with
CFI and age for the B6J and DO populations (Figure 3D,E, respectively). We find a group of video
features that are exclusive to DO (y-axis aligned) and B6J (x-axis aligned). In addition, we find a set
of commonly used features (middle of scatter plot). Surprisingly, we see population specific feature
correlations across the three sets of video features (open field, gait, and engineered). These results
led us to hypothesize that population specific models are needed to predict frailty, age, and proportion
of life lived. Therefore, in all our anaysis we construct a B6J, DO, and B6J-DO (ALL) population
specific models.

Using this data, we carried out a set of predictions that are described in Figure 1B. The input to the
models were either manual FI item scores or video features. We predicted chronological age, biologi-
cal age, or proportion of life lived using the FRIGHT, mPLL, vFRIGHT, vFI, or vPLL models. Where
possible, we attempted to compare performance of manual FI items to video features in prediction
task. We describe each in detail below.
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Figure 3: Exploratory analysis of the video features. (A) The estimated Pearson correlation matrix across all video features
captures the linear interdependence (relationship) across multiple video features in our dataset. The diagonal elements show
the variance of each individual variable, whereas the off-diagonal elements capture the correlation between each pair (row,
column) of color-coded variables. (B) Each row corresponds to a feature type; the column corresponds to data B6J (left), DO
(middle), and combined (right). We made a scatterplot for each feature type and strain combination and overlayed the best
linear fits (B6J (blue), DO (orange), combined (black)) for the feature having the maximum correlation with the score (CFI).
(C) Pearson correlations of all video features with frailty score (CFI) (top) and age (bottom). (D) A scatterplot showing
features that we found to correlate with score (left) and age (right) specifically for B6J (x-axis), DO (y-axis), and combined
datasets (dashed diagonal line).
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3.4 Prediction of Chronological Age

We constructed clocks to predict chronological age (vFRIGHT clock) and biological age (vFI clock)
from video features in the DO population. We labeled these clocks as DO-vFRIGHT and DO-vFI,
respectively. We successfully constructed accurate clocks for the isogenic mouse strain B6J, namely
B6J-vFRIGHT and B6J-vFI [13]. We showed that, in the B6J population, video features can accurately
predict the animal’s age and frailty and outperform manual frailty items in predicting the animal’s
age. We hypothesized that 1) B6J-specific clocks are not transferable to the DO population and would
perform poorly, 2) DO-specific clocks trained on a genetically heterogeneous mouse population will
be more accurate, and 3) a combined B6J-DO clock would perform better than individual population-
specific clocks.

To test our first two hypotheses for chronological age prediction, we trained the B6J-vFRIGHT clock
on the B6J data. We asked how well the B6J trained vFRIGHT clock predicted the age of DO data [13].
The B6J-vFRIGHT clock predicted the DO mice’ age with an MAE of 75.8 weeks, an RMSE of 85.9
weeks, and R2 of 0.03 (Table S1). In contrast, the DO-vFRIGHT clock, trained and tested on DO mice
using cross-validation, predicted the DO mice’ age with an MAE (median absolute error) of 14 ±0.06
weeks (Figure 4B), RMSE (root mean square error) of 18.7 ±0.05 weeks (Figure S1C), and R2 of 0.86
±0.06 (Figure S1A). These results showed that the models explicitly trained on the DO population are
far more accurate and that B6J-specific clocks are not transferable to the DO population. Next, we
asked the reverse question of how well the DO-vFRIGHT clock can predict the age of B6J mice. We
found it performed worse than the B6J-vFRIGHT clock, with an MAE of 74.6 weeks versus 12.1
weeks (B6J-FRIGHT clock) and similar poor performance in RMSE and R2 (Table S1). We plotted
the predicted versus actual values for the held-out test folds for the B6J (Figure 4C) and DO (Figure
4D). We obtained similar results for the vFI clocks shown later (Section 3.5).

To determine whether a combined B6J-DO model would outperform a single population-specific
model, we combined the B6J-DO data to construct the best-performing B6J-DO vFRIGHT clock. We
found that the B6J-DO clock performed similarly to the other two models, with an MAE of 13 ±1.3
weeks (Figure 4B), RMSE of 17.4 ±2.05 weeks (Figure S1C), and R2 of 0.89 ±0.03 (Figure S1A).
We plotted the predicted versus actual values for the held-out test folds for the B6J-DO model(Figure
4E).

In addition to building the vFRIGHT clocks using the (v)ideo features for the individual and combined
populations, we constructed FRIGHT clocks using manual frailty items as features (Figure 4F). Data
from B6J mice showed that our vFRIGHT model could more accurately and precisely predict age than
the FRIGHT clock. Our vFRIGHT versus FRIGHT comparisons revealed similar results in both DO
data and the combined B6J-DO data. In the DO data, we found that the video features outperform
manual frailty items in predicting age with an MAE of 14.2± 0.24 weeks versus 16.5± 0.3 weeks,
RMSE of 18.7± 0.39 weeks versus 24.5± 0.52 weeks, and R2 of 0.89± 0.01 versus 0.76± 0.02
(Figure 4G). Similarly, for the combined B6J-DO data, we found that the video features outperformed
manual frailty items in predicting age, i.e. MAE of 12.7±0.23 versus 19.5±0.26, RMSE of 17.6±
0.34 versus 27.5±0.36 and R2 of 0.89±0.004 versus 0.74±0.007 (Figure 4G).
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Figure 4: Age prediction using video features (vFRIGHT clock). (A) Modeling workflow for constructing vFRIGHT clock.
(B) We tested three models (LM (penalized linear regression), random forest (RF), and XGBoost (XGB)) using 10× 5
nested cross-validation (outer folds = 10, inner folds = 5). First, we tuned the model hyperparameters on the inner folds.
Then, we performed model selection using the tuned models on the outer folds using mean absolute error (MAE, y-axis)
across three datasets (x-axis) separately. (C) Scatterplots of predicted age versus true chronological age for B6J, (D) DO,
and (E) combined from the best model (color-coded) obtained via model selection. Points represent individual folds from
each of the 50 independent test sets. Lines represent linear regression for each of the 50 independent folds. (G) Modeling
workflow for constructing FRIGHT clock. (H) Video features (vFRIGHT) outperform manual frailty features (FRIGHT) in
predicting age. Each dot represents the error of one fold in a 50-fold cross validation setup.

3.5 Prediction of Frailty (Biological Age)

Next, we addressed the goal of constructing frailty clocks: predicting manual FI scores using video
features for the DO and B6J-DO mouse populations (Figure 5A). First, we asked how the B6J-vFI
clock performed on the DO mice. We predicted the frailty of DO mice using the B6-vFI clock trained
on B6J mice and obtained an MAE of 3.31, RMSE of 3.87, and R2 of 6×10−6 (Table S1). The B6J-
vFI trained and tested on B6J mice using cross-validation had an MAE of 1.19 ±0.12. In contrast, the
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DO-vFI clock trained and tested on DO mice using cross-validation had an MAE of 1.53 ±0.18 (Figure
5B). These results validated our hypotheses that the B6J-vFI clock is not transferable and that a DO-
vFI clock is more accurate in predicting the frailty of a DO mouse. The combined B6J-DO vFI clock
had an MAE of 1.38 ±0.11 (Figure 5B), RMSE of 1.83±0.52(Figure S1D), R2 of 0.70±0.05(Figure
S1B). The error, adjusted for the number of frailty items, is 0.06 (FI scores range can range from 0 to
1; our DO dataset had a range of 0.05 to 0.53). Compared to the manual FI items, an error of 1.6 is
akin to either one FI item incorrectly scored as one and another FI item incorrectly scored as 0.5 and
three items incorrectly scored at 0.5. We plotted the residuals for B6J, DO, and combined B6J-DO
data to look at the predictions at the animal level and didn’t notice any irregularities (Figure 5 C,D,E).

B

C

A

D E

Figure 5: Biological age (frailty) prediction using video features (vFI clock). (A) Modeling workflow highlighting (in
yellow) the clocks we construct using the video features as input to predict biological age (frailty). (B) We tested three
models (LM (penalized linear regression), random forest (RF), and XGBoost (XGB)) using 10x5 nested cross-validation
(outer folds = 10, inner folds = 5). First, we tuned the model hyperparameters on the inner folds. Then, we performed model
selection using the tuned models on the outer folds using mean absolute error (MAE, y-axis) across three datasets (x-axis)
separately. (C) Scatterplots of predicted age versus true chronological age for B6J, (D) DO, and (E) combined from the best
model (color-coded) obtained via model selection. Points represent individual folds from each of the 50 independent test
sets. Lines represent linear regression for each of the 50 independent folds.

3.6 Prediction of Proportion of Life Lived

Since our clocks can accurately predict age and frailty, we asked if we could also predict the animal’s
mortality (Figure 6A). To answer this question, we defined the proportion of life lived (PLL) for each
animal as the ratio of age at the test (in weeks) to age at death (in weeks). We used video and manual
frailty items to compare their predictive performance in predicting PLL (Figure 6A). We used video
features to predict PLL with an MAE of 0.072±0.02, RMSE of 0.086±0.25, and R2 of 0.37±0.27.
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Similarly, we predicted PLL using manual frailty items with an MAE of 0.074± 0.020, RMSE of
0.09± 0.02, and R2 of 0.35± 0.25 (Figure 6B). We didn’t see an improvement in the performance
using the combined set of features (video + frailty).

A B

Figure 6: Proportion of Life Lived Prediction from manual frailty and video features. (A) Modeling workflow, highlighting
(in yellow) the clocks we construct using the video and manual frailty features as input. (B) We tested two beta regression
models; linear model (LM) and random forest (RF). The boxplots show the MAE and R2 across of the held out folds in 50
fold cross-validation.

4 Discussion

The frailty index is an invaluable tool for aging research [9, 41, 42]. As the method becomes widely
adopted, large centers such as the Nathan Shock Center for Aging Research at JAX and the Inter-
ventional Testing Program (ITP) will use it for longitudinal studies [15, 43]. These centers employ
many trained staff for frailty assessments and often work on multiple multiyear studies simultaneously.
Manual frailty assessment has subjectivity, even with trained staff, as testers can differ from each other
and themselves over time. Recent work has shown that the professional background of scorers affects
FI scores. Specifically, inter-scorer reproducibility was poor between animal technicians and research
scientists [11]. These studies on inter-scorer agreement strongly emphasize the importance of inter-
scorer discussion and refinement in obtaining high agreement [10–12]. In fact, it has been shown that
in the absence of discussion and refinement, inter-rater reliability does not improve solely by practice
and experience [11]. This discussion and refinement is not always feasible in multi-site or long-term
studies. This variance can represent a critical challenge for aging studies in rodents that span several
years. Indeed, in our previous B6J dataset consisting of 643 tests collected at the JAX Shock Center,
we found that the tester accounted for 42% of the variability in manual FI scores. In the current DO
dataset, 18% of the variation is due to the tester. For comparison, the variation due to diet, which
introduces severe caloric restriction, was only 14%. Thus, the technical effect is larger than the diet
effect.

We created the visual frailty assay (vFI) to provide an objective, sensitive, and scalable assay that
can complement the manual frailty assay. We were quite surprised by how much information about
chronological and biological age is encoded in the behavior of the animal. The vFI could accurately
predict the frailty status of with an error of 1.08 ±0.05, which is comparable to 1 FI item being mis-
scored by 1 point, or 2 FI items mis-scored by 0.5 points on our assay [13]. Our previous results also
demonstrated that video was much more accurate in predicting chronological age than manual frailty
items. One limitation of our work was that it used only the B6J strain of mice. Here, we extend our
methods to genetically diverse mice.

Aging is highly genetic, and studies of long-lived individuals indicate that 15-25% of the variation
in lifespan is due to genetic factors [21–24]. Studying aging in one inbred mouse strain, even if it
is the reference strain, is akin to deeply studying one individual. Findings may not generalize to
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an entire population or across species. Impactful animal studies must incorporate genetic diversity
into its design [18–20]. The DO and its companion Collaborative Cross (CC) are advanced mouse
populations designed to model high genetic variance with balanced alleles. They are ideally suited
for high-resolution genetic mapping and for modeling diverse populations for complex traits [25,
30]. We took advantage of an ongoing study at JAX to extend our behavior-based models to predict
chronological age, biological age, and proportion of life lived. However, studying genetically diverse
mouse populations introduces their own set of concerns, particularly for methods that use computer
vision [38]. DO mice are highly genetically diverse, with concomitant phenotypic variation. This
includes visual variation in size, coat color, as well as variation in behavior. In exploratory analysis,
we observed population-specific usage of manual frailty items and video features. When we applied
the previously trained B6J vFRIGHT and vFI model to the DO dataset, we saw poor performance. We
concluded that population-specific models are needed for the prediction of chronological age, frailty,
and PLL prediction.

Our models can accurately predict chronological age (vFRIGHT), frailty (vFI), and proportion of life
lived (vPLL). The vFRIGHT and vFI clocks for DO have slightly worse performance than the B6J
clocks, although the decrease in performance is incremental. We also compared the performance of
FRIGHT and vFRIGHT clocks to compare the predictive value of manual frailty items and video
features, respectively, in chronological age prediction. Our previous analysis using B6J showed that
the video features are more predictive of chronological age than the manual frailty items in B6J.
This is also seen in DO models. PLL clocks, also called the FRIGHT clock [5], attempt to predict
the normalized life expectancy of an animal. We find that both manual FI and vFI have a similar
predictability of PLL (mPLL and vPLL).

Overall, we have now generated one of the largest datasets of frailty data in the mouse that includes
data from inbred and outbred mice. The accompanying video data can be used to model with both
supervised and unsupervised methods to derive new behavior-based features. Our vFI is constructed
using open field data and as proof of principle that video encodes informative aging features. Al-
though the vFI is an important advance, the democratization of this technology remains a barrier. The
method requires behavioral testing expertise and equipment, as well as computational expertise to
implement, i.e. it is not plug-and-play. Although these resources are generally available in behav-
ioral neuroscience laboratories, many geroscientists lack access, which prohibits the adoption of the
method. Future developments need to alleviate the need for computational and behavioral expertise.
One possible solution is continual monitoring of frailty using digital cages. Video based home cage
monitoring is a rapidly advancing field and can be adopted for aging studies [32, 44], although no
commercial systems are available. Ideally, a home cage monitoring system can provide a continu-
ous frailty assessment without the need for computational expertise throughout the life of the animal.
Data from social behaviors, sleep/wake states, feeding/drinking, and nesting behaviors can be com-
bined with gait, posture, and other information described for the vFI to derive this continuous scale.
An advanced home-cage monitoring system would offload the data management and compute require-
ments for scalable analysis to cloud compute resources, since such platforms would create terabytes
of video data. In fact, there is still a large room for innovation and improvement in these digital
approaches.

5 Methods

All animals and methods have been previously described. We carried out behavior tests according to
published methods [38–40, 45]. The DO diet intervention dataset has been previously described [33,
36, 37]. All animals protocols followed JAX IACUC guidelines and no new animals were generated
for this study.
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We estimated the tester effect from the FI scores using a linear mixed model with the lme4 R package
[46]. We had five testers in our DO data, and each tester tested a different number of animals. We
subtracted the tester effects, estimated with the best linear unbiased predictors using restricted maxi-
mum likelihood estimates, from the FI scores of the animals. We labeled them as the tester-adjusted
FI scores, ỹi j.

We modeled the tester-adjusted FI scores with video-generated features using a linear regression
model with elastic net penalty [47], random forest [48], and gradient-boosting machine [49] with
trees as base learners. We trained several supervised machine learning models (Figure 4A) to test
our hypotheses and constructed different sets of clocks. We tested three models: penalized linear re-
gression (LR), random forest (RF), and extreme gradient boosting (XGB). We used a k-fold nested
cross-validation resampling strategy for every model to tune model hyperparameters, perform model
selection, and assess our models’ prediction accuracy and generalization performance to new unseen
data. We ensured that the repeat measurements from the same animal belonged to either the training
or the test data and not both. We used three performance measures to quantify how well the model
predictions match the ground truth: mean absolute error (MAE), root-mean-squared-error (RMSE),
and R2.
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A B

C D

Figure S1: Modeling performance of vFRIGHT (A, C) and vFI clocks (B, D) quantified with R2 (A, B) and RMSE (C D)
across different models and datasets.
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Training Inference Model MAE RMSE R2

B6J DO vFRIGHT 75.8 (weeks) 85.9 (weeks) 0.03
B6J DO vFI 3.31 (unnormalized FI) 3.87 (unnormalized FI) ≈ 0
DO B6J vFRIGHT 63.3 (weeks) 74.6 (weeks) 0.05
DO B6J vFI 2.26 (unnormalized FI) 2.76 (unnormalized FI) 0.06

Table S1: Cross performance of model trained on one population on the other. We trained vFRIGHT
and vFI clocks (models) on the B6J and DO populations and tested their predictive performance on
DO and B6, respectively. We found that the clocks did not generalize well to the mouse populations
outside the training set, as evidenced by large mean absolute error (MAE), root mean squared error
(RMSE), and high R2 values.
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