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Summary

Materials science literature has grown exponentially in recent years making it
difficult for individuals to master all of this information. This constrains the formu-
lation of new hypotheses that scientists can come up with. In this work, we
explore whether materials science knowledge can be automatically inferred
from textual information contained in journal papers. Using a data set of 0.5
million polymer papers, we show, using natural language processing methods
that vector representations trained for every word in our corpus can indeed cap-
ture this knowledge in a completely unsupervised manner. We perform time-
based studies through which we track popularity of various polymers for
different applications and predict new polymers for novel applications based
solely on the domain knowledge contained in our data set. Using co-relations de-
tected automatically from literature in this manner thus, opens up a new para-
digm for materials discovery.

Introduction

The number of papers published annually in all sub-domains of materials science and engineering

including in polymer science and engineering has increased exponentially in recent years. It is therefore

difficult for any single individual or group of individuals to master the information in the ever evolving

landscape of polymer science. This consequently limits inductive reasoning that fully exploits past knowl-

edge and the evolution of new hypotheses. Advances in the field of Natural Language Processing (NLP)

(Mikolov et al. (2013)) present a route through which we can represent this domain knowledge in a nu-

merical form, algebraically manipulate it and even formulate new hypotheses and predictions. NLP is

a discipline that aims to transform written text to a form that is easy for computers to manipulate (Col-

lobert and Weston (2008)). A basic building block of NLP is the notion of a word vector or word

embedding.

A word vector is a dense numerical representation of a word in a high dimensional vector space. Word

vectors were popularized by the work of Mikolov (Mikolov et al. (2013)) and have since become ubiqui-

tous in the field of NLP. The idea is to embed in a vector space, the semantic and syntactic information

implicit in a word, given its context. These word vectors can then be used as features for building down-

stream models for tasks relevant in NLP, such as document classification (Lilleberg et al. (2015)). Large

corpora of text are used as inputs to models such as Word2Vec (Mikolov et al. (2013)) or Glove (Penning-

ton et al., 2014) and vector representations for words in the corpus is the output. Word2Vec uses the idea

that words which occur before and after a word in a sentence, referred to as a context window, capture

its meaning. This is illustrated in Figure 1. The phrases ‘‘polystyrene undergoes’’ and ‘‘transformation at’’

form a context window of size 2 around ‘‘phase’’. Word2Vec is trained by predicting the context words

given the center word by sliding a context window centered at every word over the entire corpus. This is

known as the skip-gram variant of Word2Vec. When trained on a large corpus of text, the Word2Vec

model ‘‘sees’’ several contexts in which every word occurs and thus ‘‘learns’’ its meaning in the form

of a vector representation.

In order to train word vectors, the text in our corpus has to be tokenized. Tokenization is the process

of chopping up a sentence into units which are used for downstream processing (Figure 2). In the

simplest case, a sentence may be separated into words, i.e., space separated units and word vectors
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can be trained for those. In a polymer corpus, however there will be several chemical named entities

(CNEs) (e.g.: poly(lactic acid), poly(butylene succinate)), which should be treated as one unit and other

materials science specific terms such as characterization methods (e.g.: scanning electron microscopy)

and properties (e.g.: glass transition temperature), which are best treated as phrases for word vector

training.

Early work in the Chemistry and Bioinformatics literature to use NLP methods, focused primarily on named

entity recognition (NER). NER is a common task in NLP that seeks to identify words in text that correspond

to certain pre-defined categories such as locations, organizations, currencies, etc. In a materials science/

chemistry context, NER taggers focused on identifying spans of text corresponding to chemical species

and more recently have expanded to include categories like synthesis conditions and characterization

methods (Weston et al. (2019)). ChemSpot (Rocktäschel et al. (2012)) and ChemDataExtractor (Swain and

Cole (2016)) were early works to identify chemical species. The formulaic style of writing found in chemistry

papers also gave rise to rule-based tools to parse synthesis information from chemistry papers through the

tool ChemTagger (Hawizy et al., 2011).

The application of NLP techniques in materials science to generate insights from text data is more recent.

One of the earliest efforts in this direction used NLP techniques to extract synthesis insights for oxide and

zeolite systems from literature (Kim et al. (2017); Jensen et al., 2019). More recently, it was shown that word

vectors trained on a corpus of materials science abstracts could be used for materials discovery of inorganic

thermoelectrics Tshitoyan et al. (2019).

To our knowledge, this is the first work to apply NLP methods to the polymer domain to generate pre-

viously unknown materials science insights and inferences. As illustrated in Figure 2, we develop text-

mining tools to collect a large corpus of � 0.5 million published polymer papers. A treasure trove of in-

sights about polymer science that would otherwise be inaccessible, was inferred from the textual infor-

mation contained in our corpus. This includes trends such as which polymers and which applications are

most commonly mentioned in polymer literature and tracking how the popularity of various applications

for polymers has waned and waxed over the years. In addition, we clean-up and parse the data contained

in our corpus of papers to train word vector models (Word2Vec and fastText). We show that these word

vector representations which were trained in a completely unsupervised manner, can be used to recon-

struct known facts about polymer science. This is illustrated vividly by polymer analogies which capture

materials science relationships such as monomer-polymer and functional group name and corresponding

chemical species. We also show that word vectors for polymers cluster according to their application.

This demonstrates that word vectors can capture existing domain knowledge. Finally, by training word

vector models on a subset of our data, i.e., up to a certain year, we show that we can predict polymers

that were discovered in subsequent years for certain applications. This indicates that the domain knowl-

edge captured in the word vector space can be extrapolated to discover co-relations that were previ-

ously unknown.

Figure 1. Illustrating context window around a word

In the phrase ‘‘polystyrene undergoes transformation at’’, ‘‘phase’’ is the center word and ‘‘polystyrene’’, ‘‘undergoes’’,

‘‘transformation’’, ‘‘at’’ are its context words. A vector representation for ‘‘phase’’, shown here as anm-dimensional vector,

is trained based on all the contexts it is seen in, in the data set, of which this is one example.
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Results and discussion

Trends in data

We analyze certain aggregate trends in our corpus of papers, looking at only the frequency with which ma-

terials science relevant tokens occur in the corpus. Figure 3A plots the relative frequency of the 10 most

common polymer named entities (PNEs) occurring in our data set. Polystyrene is the most frequently occur-

ring polymer followed by polyethylene. It is interesting to note that polystyrene is almost 1.5 times as com-

mon in polymer literature as the next most common polymer, i.e., polyethylene. There was no systematic

bias toward any particular polymer or application while collecting our data set. Moreover, if we examine the

trend of occurrence of the 5 most common polymers over the last 20 years (Figure 3B), this trend has per-

sisted. The relative number of occurrences for each of these polymers has remained stable over the last 20

years.

Figure 3C also looks at the most common application tokens in our data set. The candidate list of applica-

tions is the materials science applications dataset by Lawrence Berkeley National Lab mentioned in the

Data Processing section (Weston et al. (2019)). The most common token is ‘‘membrane’’ which is more

than twice as frequent as the next token which is ‘‘fiber’’. This indicates that the most common application

by far for polymers in our data set is as a membrane.

Additionally, Figure 4 analyzes the historical trend of polymers and their corresponding applications. An appli-

cation ismarked as ‘‘corresponding’’ to a polymer CNE if it occurs in a context window of size 4 around it. Similar

approaches have been followed in literature to infer relationships between entities from co-occurrence (Crasto

et al., 2011; Li et al. (2009)). We validate our approach by randomly selecting polymer-application pairs that

appear at least 5 times in our corpus and verify that the corresponding sentence in the paper where the polymer

and application co-occur is indeed a true relationship and not a random co-occurrence. For 60 such polymer-

application pairs, we found that 50 (83.3%) co-occurrences were true relationships. For each polymer, we

consider multiple variations in how a polymer might occur in literature. For the polymers shown in Figure 4,

we manually construct a list of variations in polymer name for each of the polymers considered and consider

context windows corresponding to each PNE in that list. For instance, for polyethylene we also use the PNE’s

poly(ethylene), poly ethylene, and poly-ethylene. The rank on the Y axis corresponds to how frequently a partic-

ular application co-occurs with a given polymer up to a given year. Thus, the rank 1 application up to any given

year would be themost frequently co-occurring application for that polymer. The rank on the Y axis corresponds

to how frequently a particular application co-occurs with a particular polymer. Thus, rank 1 in any given year

would be the most frequently co-occurring application. Each year on the plot indicates that all papers up to

and including that year are considered for computing the rank of an application. The X axis for each plot consists

of all applications which were in the top 7 in any of the years in the plot. The applications are ordered according

to their rank observed up to 2006 in order to set a baseline for comparison. We consider the 5 most common

polymers as per Figure 3A.

Upon inspection several interesting trends are clear from Figure 4. In the case of polypyrrole and polyaniline, the

rank of ‘‘transistors’’ for both these polymers has increased from 2006 to the present day. This indicates that both

these polymers increasingly co-occur more frequently with applications other than ‘‘transistors’’ over the time

period in consideration. In the case of polystyrene, we note that it appears increasingly in the context of coatings

Figure 2. Our workflow begins with collecting records for DOI’s from polymer specific journals

The papers corresponding to these DOI’s are then downloaded. Plain text is extracted from the HTML/XML text followed

by which the text is tokenized using Spacy and ChemDataExtractor. This is the input which is used to train a word vector

model and word vectors for every token in our corpus is the output.
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over the same time period. Upon inspection, several interesting trends are clear from Figure 4. In the case of

polypyrrole and polyaniline, the rank of the polymer against ‘‘transistors’’ has increased from 2006 to the present

day reflecting the waning number of papers in this area. In the case of polystyrene, we note that it appears

increasingly in the context of coatings over the same time period. Membranes have consistently been the

rank 1 application across all years considered for polyethylene andpolypropylene. This is to be expected consid-

ering how ubiquitous both these polymers are as separators for lithium ion batteries (Lee et al. (2014)) and other

selective separation applications (Tan andRodrigue (2019)). In a similar vein,weobserve that ‘‘electrochemical’’ is

the highest ranked application for polyaniline in all years under consideration except 2006. This is tobeexpected

considering the conducting properties of polyaniline (Bijwe et al. (2019)). The other top application listed for pol-

yaniline such as ‘‘electrical’’ and ‘‘electroactive’’ also allude to its conducting nature. Solvents are a dominant co-

occurring application for polystyrene and in this case, this clearly refers to solvents which are used for dissolving

polystyrene and its variants and not the application of polystyrene as a solvent. This highlights a limitation of

context based approaches and human interpretation is still required to disambiguate cases like this.

Validation of word vector model

Polymer analogies

In addition to serving as feature vectors, it is known that word vectors capture intrinsically useful informa-

tion about the space of words. A prominent example of this would be analogies, shown schematically in

Figure 5. Given a relationship of the type

polystyrene: styrene:: polyethylene: ?, word vectors are able to predict the correct answer. Equation 1 is

used to compute the result of this analogy.

argmax
w˛vocab

vecðwÞ1 �
vecðstyreneÞ� vec

�
polystyrene

�
+ vec

�
polyethylene

��
= 1� octene

(Equation 1)

vecðwÞ in Equation 1 denotes the word vector associated with a particular word, w, and 1 indicates the

vector dot product. The vector sum vecðpolystyreneÞ � vecðstyreneÞ can be thought of as defining a vector

subspace from the vector space of all word vectors which encodes polymer-monomer relationships.

Observe that conditioned on styrene:polystyrene, using the above equation, the token with the highest

dot product is 1-octene which is known to be a commonly used monomer for producing polyethylene

Soga et al. (1996). Ethylene is also one of the top 4 predictions. This indicates that a non-trivial correlation

is being learned while training the word vectors. This process can be repeated for polymer name-abbrevi-

ation pairs. The result is illustrated in Figure 5. This plot was obtained by projecting the Word2Vec word

vectors of all CNEs onto 2 dimensions using principal component analysis (PCA). This structure observed

in Figure 5 in a lower dimensional linear subspace of the word vector space is indicative of the structure that

must exist in higher dimensions.

The intrinsic quality of word vectors can be evaluated using analogies to assess whether known patterns in

materials science are being accurately reproduced. We develop a data set of analogies for polymers and

consider 5 classes of polymer analogies shown in Table 1. To evaluate analogies, all possible pairs of anal-

ogy relationships in the data set are considered. The data set size shown in Table 1 corresponds to the data

set with all possible pairs of relationships. Best of 4 accuracy is reported, i.e., if the correct answer is found

among the top 4 words which have the highest dot product (Equation 1), then that data point is marked as

correctly predicted. Polymer-monomer pairs are poorly predicted. In all the other analogy classes, the 2

Figure 3. Relative frequencies of polymer and application tokens

(A–C) (A) The relative frequency of different polymers in our data set, (B)The relative frequency of the top 5 polymers in our

dataset over a period of time, (C) The relative frequency of different application tokens.
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entities in the analogy are likely to co-occur in text ex: PE is likely to be written in brackets next to polyeth-

ylene making this relationship easier to learn. For monomer-polymer pairs this may not always be the case.

Thus, this is a second order relationship which has to be inferred during the training process based on the

typical contexts that monomers and polymers occur in. An accuracy level of 42.3% is statistically non-trivial

and as is typical with neural network based methods, a larger data set of papers would likely produce much

better accuracy results. It should be noted that the morphological structure of the word is not taken into

account while trainingWord2Vec vectors and so polypropylene and propylene have independently trained

word vectors. Predicting ‘‘polypropylene’’ is thus not just a matter of figuring out the prefix ‘‘poly’’ but the

Figure 4. Tracking application trends for polymers

The plots above show the most frequently co-occurring applications for the top 5 polymers in Figure 3. Each application

shown was one of the top 7 applications in at least one of the years considered with applications ordered by 2006 ranks.

Rank 1 in a particular year corresponds to the top application that year.
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word in its entirety must be predicted. For the other categories, analogy accuracy is close to 80% indicating

that those semantic materials science relationships are being learned by our word vectors. Training a

Word2Vec model with phrases allows us to learn representations for distinct MSE keywords like ‘‘scanning

electron microscopy’’ which in turn allows the model to learn its relationship with the corresponding abbre-

viation ‘‘SEM’’. Our model is bench marked against other Word vector models in literature in Table S1.

Polymer CNE embedding

Three hundred dimensional Word2Vec word vectors are reduced to 2 dimensions using t-distributed sto-

chastic neighbor embedding (t-SNE) (Maaten and Hinton (2008)). Of all the tokens in our vocabulary, we

identify CNEs which occur in our corpus using ChemDataExtractor. Of these, we look closely only at

PNEs. � 25,000 PNE’s are recovered from our corpus in this manner. The PNE’s in our corpus are reduced

to 2 dimensions using t-SNE.We find the polymers with the highest dot product with each of the following 4

application categories, i.e., biodegradable, adhesive, conducting polymers and semiconducting polymers

and plot the first 35 polymers for each category in Figure 6A. We automatically label a polymer with its

application this way. All 4 categories appear as distinct clusters with polymers of similar application clus-

tered together. Moreover, the clusters for conducting and semiconducting polymers which share chemical

similarities such as conjugated double bonds appear to be close together. This indicates that our word vec-

tors are learning meaningful chemical trends.

A closeup of the t-SNE embeddings for the category of conducting polymers is shown in Figure 6. For the

purpose of showing a clear plot, we show only a subset of the polymers in this category. The polymers in the

Figure 6B are indeed conducting polymers. This is likely due to the fact that polymers and their applications

often co-occur in text. The reader will note that some CNEs appear multiple times in Figure 6B. An example

would be polypyrrole and polypyrole, the latter of which is a misspelling but is commonly found in literature

(Ishtiaq et al. (2020); Bello et al. (2016); Khan et al. (2017)). This is because each of these tokens is distinct and

has a separate word vector associated with it. In order to have a single word vector for both representa-

tions, we would have to carry out named entity normalization, i.e., identify all separate tokens used to refer

to the same real world entity. We intend to take up this problem in the future.

Extrapolating to new knowledge and predictions

The performance of word vectors onmaterials science word analogy tasks, i.e., monomer-polymer relation-

ships and the clustering by application suggests that chemical information is encoded in these word vec-

tors. We test if a model trained on a subset of our data up to a particular year can predict polymers that

Figure 5. Polymer analogies

Relationships of the formmonomer: polymer: abbreviation are captured in this plot. The word vector for each entity in this

plot is reduced to 2 dimensions using PCA. The structure observed in 2 dimensions in a linear subspace of the original

word vector space is indicative of the structure that must be present in the higher dimensional word vector space.
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occur in the context of a new application in subsequent years. Predictions are made by taking the dot prod-

uct of the word vector associated with a particular application with a candidate list of polymers. The top 250

polymers are taken as the predictions of our model (1% of the candidate list). Three applications are

selected for investigation denoted by the keywords ‘‘membranes’’, ‘‘electrodes’’ and ‘‘magnetic’’. The

candidate list of polymers is not normalized and we manually remove duplicate polymers which occur in

our validated set of predicted polymers. A caveat to note, is that our predictions point to polymers that

are likely to occur in the context of an application and can be used for that particular application in a num-

ber of different ways. For instance a polymer that occurs in the context of the term magnetic need not itself

be magnetic but might be used as say a coating material for magnetic particles. Similarly a polymer occur-

ring in the context of ‘‘membranes’’ may be used directly as a membrane or may be used in a formulation

that is used to make a membrane. Context-based prediction can be thought of as a coarse filter that nar-

rows the set of materials we should focus on. Our method can only predict polymers that may be appro-

priate for a new application that have already occurred in literature in the time window considered but

within the context of other applications.

Our results are shown in Figure 7. The number of polymers that were ‘‘discovered’’by our model, is plotted

as a function of the year up to which a word vector model was trained. ‘‘Discovered’’ here, refers to poly-

mers that were predicted by the model trained up to a particular year despite never co-occurring with that

application, and co-occurred in subsequent years. We consider predictions using fastText and Word2Vec

embeddings for these 3 applications. These two embedding methods are considered as they represent

different schools of thought in how word embeddings are constructed. Word2Vec has a vector represen-

tation for each polymer token while fastText constructs its vector representation from sub-word informa-

tion. The results in Figure 7 show that there is no major difference between these 2 methods across the

application categories considered with the exception of membranes. Incorporating sub-word information

appears to be beneficial in predicting new membranes. In general, the set of polymers predicted by both

these methods are different (Refer Tables S2–S4). Observe that there is a downward trend in the number of

polymers predicted with time. This is because the set of polymers yet to be discovered becomes smaller

over time and despite the increased size of the model, there are not that many polymers that are left to

be predicted. The polymers predicted in earlier years are in general supersets of polymers predicted in

later years, falling out of the predicted list once they are ‘‘discovered’’.

In order to validate our model, we use randomly generated embeddings of unit norm of the same dimen-

sion as the word vector as a baseline. A different set of random embeddings is generated for each year

considered in Figure 7 for the polymers and applications. We make predictions for the random embed-

dings in the same way as Word2Vec and fastText. From Figure 7, it is clear that the word vector models

outperform randomly generated word embeddings. This indicates that the model is learning meaningful

correlations.

Table 1. Performance of the Word2Vec model on material science-specific analogy tasks

Analogy class Sample analogies Data set Size Accuracy (best of 4)

Polymer abbreviations PE : polyethylene

PP : polypropylene

PS : polystyrene

3192 85.8%

Monomer-polymer styrene: polystyrene

propylene: polypropylene

lactic acid: poly(lactic acid)

1122 42.3%

Functional groups OH: hydroxyl

SH: thiol

CH3: methyl

506 82.2%

MSE abbreviations DFT: density functional theory

LC: liquid crystal

XRD: X-ray diffraction

992 77.7%

Chemical formulas H2SO4: sulfuric acid

KBr: potassium bromide

CO2: carbon dioxide

2352 88.8%
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In the next section, we look at some specific case studies and explore the reason why the model is able to

make these predictions.

Illustrative examples

A complete list of predicted polymers can be found in Tables S2–S4. To take one particular example, the poly-

mer polyrhodanine is a predicted polymer in the context of ‘‘magnetic’’ by the fastTextmodel trained up to 2010

data. Before 2010, polyrhodanine is mentioned as an anti-microbial agent (Kong et al. (2009)). As an anti-micro-

bial agent, metal ions adsorbed in the polymer matrix are released when a bacterium makes contact with the

polyrhodanine-metal polymermatrix leading to cell death of the bacterium. Before 2006, there are several poly-

mers such as poly(HEMA) (Punyani and Singh (2008); Horák et al., 2000), polyurethanes (Francolini et al. (2006);

Schmidt (2006)) and poly(MMA) (Sayar et al. (2006); Patel et al. (2004)) which co-occur in the context of both ‘‘anti-

microbial’’ and ‘‘magnetic’’. Polyrhodanine is, in fact used as an encapsulating polymer for Fe2O3 magnetic

nanoparticles which is first reported in our data set in 2015 (El-Sonbati et al. (2016)). In this case too, polyrhoda-

nine is adsorbed on the surface of the metal. Thus, these two seemingly unrelated applications have the poly-

mer’s ability to adsorb metal in common, which the model ‘‘figures’’ out.

To take another example, polysulfobetaine is predicted by the fastText model trained up to 2006 data in

the context of ‘‘membranes’’. This polymer does not occur in the context of membranes before 2006. It

is used to modify the surface of cellulose membranes starting from 2013 in our data set (Yuan et al.

(2013); Wang et al. (2015)). In the cited references, polysulfobetaine was used to modify the surface of cel-

lulose membranes in order to confer it with antibiofouling properties. Sulfobetaine was polymerized on the

surface of the cellulose membrane using reversible addition-fragmentation chain transfer (RAFT) polymer-

ization. Before 2006, polysulfobetaine is mentioned as a polymer that undergoes RAFT polymerization to

form copolymers (Donovan et al. (2003)) which form two phase solutions with water (Ali et al. (2003)) and are

used as stimuli-responsive polymers for water remediation and fluid modification. There are other refer-

ences to water-insoluble polymers like polystyrene forming graft polymers on cellulose via RAFT (Hernán-

dez-Guerrero et al. (2005)) before 2006. The model thus ‘‘joined the dots’’ and predicted polysulfobetaine

as a relevant polymer in the context of ‘‘membranes’’.

Summary and outlook

This is the first work to use NLP methods in the polymer domain, establishing the use of NLP methods to

augment the field of polymer informatics (Kim et al. (2018)). A corpus of � 0.5 million polymer journal papers

has been collected, which has allowed us to examine trends in polymer literature by simple frequency and

context window based approaches. We show that word vectors trained using this corpus in an unsupervised

manner are able to encode materials science knowledge. This was demonstrated through polymer analogies

which showed the different kinds of materials science knowledge embedded in our word vector space and

through embedding polymer word vectors in 2 dimensions which also showed that meaningful chemical trends

are encoded in this vector space. The polymer domain word vector space so generated can be used to predict

new polymers for particular applications. This illuminates a new pathway through which materials discovery may

take place. In addition to the traditional methods of experimental and computationally driven materials

Figure 6. Clustering of polymer word vectors by application

(A and B) (A) Word vectors for polymers associated with four common applications projected in 2 dimensions using t-SNE,

(B) Close-up of region corresponding to conducting polymers.
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discovery, we see that new applications for known materials can be found automatically by extrapolating the

domain knowledge contained in literature using NLP methods.

In addition to building vector spaces of the domain knowledge contained in our corpus, the textual infor-

mation contained therein can be used to parse polymer properties such as glass transition temperature,

dielectric constants etc. Building databases of these properties, enables building better models that can

predict polymer properties (Kim et al. (2018)) and in turn be used to design new polymers (Sharma et al.,

2014). These are the future directions we intend to investigate.

Limitations of the study

Application of NLP methods to polymers present certain unique challenges. Although IUPAC naming con-

ventions do exist for polymers, common names of polymers are frequently used. These names are not stan-

dardized andmay vary such as ‘‘polyethylene’’, ‘‘poly ethylene’’ and ‘‘poly-ethylene’’. A bottleneck we faced

in this work faced while ‘‘predicting’’ new polymers was that polymer names had to be normalizedmanually,

i.e. duplicate names after taking dot product had to be discarded. Normalization of PNE’s to create a list of

known unique polymers will be addressed in future work.

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Rampi Ramprasad (rampi.ramprasad@mse.gatech.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The Word2Vec model is uploaded at Figshare: https://doi.org/10.6084/m9.figshare.13211015 and code to

access the same has been uploaded to https://github.com/Ramprasad-Group/polymer_knowledge_

extraction. In addition, these can also be accessed from khazana.gatech.edu.

Methods

All methods can be found in the accompanying Transparent Methods supplemental file.

Supplemental information

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101922.

Figure 7. Polymers predicted by the word vector model

Polymers are predicted by taking dot product of a polymer’s word vector and that of an application and considering the

top polymers. Of the predicted polymers, each validated polymer plotted above, did not co-occur in the years up to which

the word vector model was trained but was ‘‘discovered’’ in subsequent years.

(A–C) correspond to the keywords ‘‘magnetic’’, ‘‘electrodes’’ and ‘‘membranes’’, respectively. Randomly generated

embeddings are used as a baseline.
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Rocktäschel, T.,Weidlich,M., and Leser, U. (2012).
ChemSpot: a hybrid system for chemical named
entity recognition. Bioinformatics 28, 1633–1640.

ll
OPEN ACCESS

10 iScience 24, 101922, January 22, 2021

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)31119-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref2
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref3
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref5
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref5
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref5
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref5
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref5
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref6
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref7
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref7
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref7
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref7
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref8
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref8
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref8
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref8
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref8
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref9
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref9
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref9
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref9
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref10
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref11
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref12
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref12
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref12
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref12
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref12
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref15
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref15
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref15
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref15
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref15
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref16
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref16
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref16
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref16
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref16
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref17
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref17
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref17
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref17
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref18
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref18
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref18
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref18
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref18
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref19
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref19
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref19
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref19
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref19
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref21
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref21
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref21
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref22
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref22
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref22
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref22
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref24
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref24
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref24
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref25
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref25
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref25
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref25
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref25
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref26
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref26
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref26
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref26
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref27
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref27
http://refhub.elsevier.com/S2589-0042(20)31119-6/sref27
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1. BENCHMARKING MODEL PERFORMANCE
In Table S1 we compare the performance of our model against other Word2Vec models
reported in literature. The metric used is the performance on a set of grammatical
analogies consisting of ∼ 15,000 analogy pairs. This consists of analogies such as plurals
i.e., jacket: jackets:: person: people ; opposites i.e., tall: short :: hot: cold and so on.
We report the best of 1 performance here to be consistent with reported benchmarks
elsewhere. All three models are clearly of similar performance by this metric.

Table S1. Benchmarking analogy performance, Related to Table 1

Work Dataset used Grammar analogies
accuracy

This work Corpus of polymer papers (∼ 0.5 million docu-
ments)

60.9 %

Tshitoyan et al. (2019) Inorganic papers abstract (∼ 3 million docu-
ments)

61.6 %

Mikolov et al. (2013) Large Newspaper dataset (1 billion words) 61.0 %

2. VALIDATED POLYMERS

Table S2. Validated polymers corresponding to ‘magnetic’, Related to Figure 7

Year Word2Vec fastText

2006

polydiphenylamine, poly(styrene-co-divinylbenzene)

poly(N-vinylimidazole), poly(divinylbenzene)

poly(NIPAAm-co-AA)

polyoxotungstates, polypyridyl

polyoxomolybdate

2008
poly(divinylbenzene), polydiphenylamine

poly(NIPAAm-co-AA)
polyoxotungstate

2010 poly(NIPAAm-co-AA) polyrhodanine, polyoxotungstate

2012 - polyrhodanine, polyoxotungstate

2014 polyrhodanine polyrhodanine

2016 - -



Table S3. Validated polymers corresponding to ‘electrodes’, Related to Figure 7

Year Word2Vec fastText

2006

poly(2-methoxyaniline), poly(vinylferrocene)

poly(9-vinylcarbazole), poly(5-amino-1-naphthol)

polyacetate

polyazomethine, poly(3-methoxythiophene)

polybenzimidazole, polypyridine

polyyne

2008
poly(vinylferrocene), poly(5-amino-1-naphthol)

polyacetate

polypyridine, polybenzimidazoles

polyviologen, polyyne

2010
poly(vinylferrocene), poly(5-amino-1-naphthol)

polyacetate

polypyridine, polyviologen

polyyne

2012
poly(thionine), polyviologen

poly(5-amino-1-naphthol) polyacetate

polypyridine, polyviologen

polyyne

2014
poly(thionine), poly(5-amino-1-naphthol)

polyacetate

polyporphine, polyviologen

polyyne

2016 poly(thionine), polyacetate polyyne

Table S4. Validated polymers corresponding to ‘membranes’, Related to Figure 7

Year Word2Vec fastText

2006 polyvinylimidazole
polybetaine, polyetheramines

polyprenol, polysulfobetaine

2008 - polybetaine, polyetheramines, polytriazoles, polysulfobetaine

2010 - polysulfobetaine

2012 - -

2014 - -

2016 - -



3. TRANSPARENT METHODS

A. Data acquisition
The workflow followed in this work, starting from data acquisition to training word
vectors is illustrated in Fig. 2 in the main paper. Polymer relevant DOI’s are searched
for from the DOI index Crossref (Lammey (2015)) by using polymer specific keywords
and by retrieving all records for papers from polymer relevant journals. The papers
corresponding to those records from publishers Elsevier, Wiley, Springer Nature and
Royal Society of Chemistry are automatically downloaded. The first three publishers
have Text and data mining policies which allow text mining at subscribing institutions.
Permission was obtained from Royal Society of Chemistry for text mining. In case
of Elsevier, the ScienceDirect API (https://dev.elsevier.com/) was used. We restrict
ourselves to HTML/XML version of documents as these are easier to parse compared
to pdf files. As HTML/XML files for scientific papers are mostly available only after
2000, we also restrict ourselves to papers published after 2000. Our corpus consists of ∼
0.5 million documents.

B. Data Processing
Plain text is extracted from the HTML/XML documents in our corpus and pre-processed
to remove references and numeric data as this would have increased the vocabulary
size for word vector training making it more computationally expensive. Numeric
information is replaced with the dummy token _NUM_. The abstract as well as the
body of the paper is used for training the model.

We use the python library Spacy (https://github.com/explosion/spaCy) for English
language tokenization. ChemDataExtractor (Swain & Cole (2016)) is used to identify
and tokenize Chemical Named entities (CNE). In particular, polymers are identified
out of the set of chemical named entities by the presence of the string ’poly’ , referred
to as polymer named entities (PNE). This is imperfect and misses out some polymers
like cellulose and will include CNE’s like ‘polysulfide’ but this heuristic appears to
work well in practice. For other materials science entities, a dataset of materials science
named entities released by Lawrence Berkeley National Lab (Weston et al. (2019)) is used.
Consecutive space separated words which match entities present in this dataset are
merged into a single token. This dataset was obtained based on models that were trained
on inorganic materials but contains named entities which are common to inorganic
materials as well as polymers. We use the named entities in this dataset corresponding to
properties, applications and characterization methods. This amounts to 34,200 materials
science named entities.

C. Word Vector Training
We use the python library Gensim (https://radimrehurek.com/gensim/) for training
word vectors. 300 dimensional Skip-Gram (a variant of Word2Vec) and fastText word
vectors are trained using a minimum count of 5 occurrences in our corpus, i.e., a word
vector is generated only if a particular token occurs at least 5 times in the corpus. We
use a context window of size 8 and train the model for 10 epochs. In case of Word2Vec,
we use negative sampling with n=5. Word2Vec generates a vector representation for
every token in the corpus. In contrast, fastText (Bojanowski et al. (2017)), uses subword
information in every token and adds up the vector representation for each subword to
obtain the vector representation for a word. For instance, the vector representation for
’polyethylene’ would be the sum of the subword vector representations associated with
’poly’, ’eth’ and ’ylene’.

D. Dimensionality reduction
We use two different methods of dimensionality reduction in this work. We use standard
scikit-learn (https://scikit-learn.org/) functions for both.



Principal Component Analysis (PCA): PCA (Ringnér (2008)) is used for determining
the directions within a high dimensional vector space (containing some data points)
which explain the greatest variance among the data points in that vector space. This
is done by computing the co-variance matrix of the data points and finding the eigen-
vectors corresponding to the largest eigenvalues. Thus PCA enables us to see certain
patterns in the data.

T-distributed Stochastic Neighbor Embedding (t-SNE): t-SNE (Maaten & Hinton
(2008)) preserves distance with high probability when projecting from a high dimen-
sional space to a low dimensional space. t-SNE is better able to capture non-linearity in
high dimensional spaces and preserves clustering information with high probability.
t-SNE is more computationally intensive than PCA. Thus the 300 dimensional vectors
are reduced first to 50 dimensions using PCA and then t-SNE is used to reduce that to 2
components. We use a perplexity of 30, early exaggeration of 12 and 10,000 iterations to
generate the t-SNE embeddings.
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