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Abstract

Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a
distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing
Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural
intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display
more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared
with individuals who have lower intelligence. This may be understood as a property of the DIPS.

Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency
hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the
correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for
Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed
neural basis for intelligence.

Conclusion: The present results support these claims and the neural efficiency hypothesis.
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Introduction

Jung and Haier [1] reviewed studies from functional (i.e.,

functional magnetic resonance imaging and positron emission

tomography) and structural (i.e., magnetic resonance spectroscopy,

diffusion tensor imaging and voxel-based morphometry) neuroim-

aging paradigms and reported a striking consensus, suggesting that

variations within a distributed network predict individual differ-

ences found in intelligence and reasoning tasks. They described

this network in the Parieto-Frontal Integration Theory (P-FIT).

The P-FIT model includes the dorsolateral prefrontal cortex (BAs

6, 9, 10, 45, 46, 47), the inferior (BAs 39, 40) and superior (BA 7)

parietal lobule, the anterior cingulate (BA 32), and regions within

the temporal (BAs 21, 37) and occipital (BAs 18, 19) lobes. White

matter regions (the arcuate fasciculus) were also implicated.

Various neuroimaging studies demonstrated that both frontal

and posterior brain regions are associated with intelligence. As a

result, it is now widely believed that a brain network characterized

by interactions between multiple brain regions is likely to be the

neural basis of intelligence [2].

The theory of Distributed Intelligent Processing Systems (DIPS)

was first developed in the field of Artificial Intelligence to formalize

systems comprised of multiple agents that have individual expertise

in solving defined problems but gain the ability to solve tasks of

greater complexity through cooperation. DIPS intelligence is,

therefore, a function of the types of tools used by its agents, as well

as how and for what purpose these tools are used [3–10].

Intelligence is both a function of agent diversity and the extent of

versatility and plasticity of the relationships shared by these agents.

Rocha et al have discussed at length the brain as DIPS [8,11,12].

DIPS reasoning is the cooperative activity among a collection of

agents coupled, as much as possible, in a decentralized and loose

manner that eventually provides a solution to a given problem. By

loose, we mean that the relationship between the agents can easily

be modified and can therefore account for a solution to a task. By

decentralized, we mean that both control and data are logically

and geographically distributed; neither global control nor global

data storage exist. The control structure is not dependent on the

knowledge and properties of specific agents (neurons). Instead, it is

embedded in the rules that govern messaging among agents, or

can be found in the chemical transactions at the synaptic level.

Messages are exchanged by mail systems because each agent

(neuron) knows how to address communication to, or has specific

connections with, other specific agents (neurons) that may

contribute to the task solution. Messages can also be exchanged

by blackboard systems (e.g., working memory), where agents post

information to be shared with or accessed by any other agents

(neurons) that may contribute to a specific DIPS reasoning process

(brain processing).

DIPS knowledge is distributed among its agents (neurons)

according to their specialization, and is primarily encoded by the

relationships (connections) shared by these neurons. In the case of

memory, for instance, some agents (e.g., sensory neurons) are

responsible for storing data (e.g., sensory information) while others
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(e.g., hippocampal neurons) keep track of the relationships

between these pieces of data by storing information about the

associations between these agents (e.g., connecting the different

sensory neurons). In the case of procedural knowledge, some

agents relate data (e.g., sensory or memorized information) to their

processing tools (e.g., motor actions). The complexity of DIPS

knowledge depends on the number of specialized agents (neurons)

and the complexity of their relationships.

Task distribution is an interactive process between an agent

with a task to be executed and a group of agents that may be

contributing to task execution. Many of these agents may propose

similar but not identical solutions to a given task, either because

they may share information from different sources or because they

use different tools to handle the same piece of information. This

redundancy supports the robust degradation properties of DIPS

because agents may be lost without greatly affecting the system’s

performance. However, this same redundancy may also cause

conflict, which, in turn, requires task solutions to be carried out

under the guidance of special rules implemented by specialized

agents (for examples, see [4,6,11,12]).

EEG mapping studies of the physiological correlates of human

intelligence have focused on the level and topographical

distribution of cortical activation. The experiments clearly showed

that EEG recordings correlate with intellectual abilities [13–20].

In fact, strong empirical evidence suggests that individuals with

higher intelligence display more focused cortical activation during

cognitive performance, resulting in lower total brain activation

compared with individuals who have lower intelligence. Such data

support the neural efficiency hypothesis [19,21]. Additionally, a high

level of expertise was beneficial for good task performance, but

exerted a topographically distributed influence on cortical

activation patterns. These findings suggest that higher cognitive

performance and the underlying cortical activation are not simply

a function of knowledge and competency in a specific domain.

They are also a function of the efficiency of information processing

by widely distributed systems [16].

Rocha et al [9,12] proposed that the brain is a DIPS formed by

collections of loosely interacting neurons (agents) specialized for

data collection (sensors), problem solving (associative neurons),

data communication (interneuronal systems), acting upon the

surrounding environment (motorneurons), etc. Based on the neural

efficiency and DIPS hypothesis, the authors developed a new

technique for EEG brain mapping, and applied it to the study of

arithmetic cognition in children and adults. The rationality of such

approach is presented in the Appendix S1. Principal component

analysis showed three distinct patterns of neuronal recruitment for

arithmetic calculations in all experimental groups, varying with the

type of calculation, age and sex (figure 8).

The purpose of the present paper is a) to introduce a formal

model of DIPS intelligence that may be useful for understanding

human intelligence and its neuropsychological substrates; b) to use

the above EEG mapping technology in order to investigate the

correlations between IQ (evaluated with WAIS [Wechsler Adult

Intelligence Scale] or WISC [Wechsler Intelligence Scale for

Children]) and brain activity associated with visual (puzzle solving

and mental rotation) and verbal processing (charade comprehen-

sion and text understanding); and c) test the validity of the

proposed theoretical construct.

Results

The mean adult IQ value was 103 and the mean child IQ value

was 99, thus, intelligence was equivalent in the two experimental

groups. There was no difference in IQ according to abilities of

visual and verbal reasoning (Table 1). No statistical IQ or RT

differences were observed between genders. RT was smaller for

adults compared with the children, and the correlation coefficient

for RT6A was 20.51 (R2 = 0.26).

The Z-scores results for the comparison between the Hypo-

thetical Brain and the Real brains of the studied population are

shown in figure 1 and they clearly demonstrate that entropy values

associated with the different types of brain are significantly

different, since the minimum Z-score obtained was 2.46.

Therefore, our null hypothesis was rejected. These differences

persisted throughout all other comparisons between the hypothet-

ical brain and the brains differentiated by gender (figure 2), age

(figure 3) and tasks (figure 4). For these comparisons, the Z-score

obtained for some electrodes did not reached the 0.05 significance

cutoff (shown as white areas in the figures). However, the number

of such electrodes were always smaller than the electrodes that

attained statistical significance.

Table 2 shows the calculated values for max h Nð Þð Þ,
min h Nð Þð Þ, jr and jh for each game. Mental Rotation (Mr)

was associated with the smallest and Story Understanding (St) with

the highest max h Nð Þð Þ. The value of min h Nð Þð Þ was almost the

same for all games. The values of jr ranged from 0.27 in the case

of the verbal games to 0.48 in the case of the puzzle. The value of

jh was around 0.7 for all games.

The multiple regression analysis revealed two statistical models

correlating IQ with age (A), RT, Dh eð Þ and h Nð Þ and with h eið Þ.
Model 1 positively correlated IQ with age (A) and Dh eð Þ, and

negatively correlated IQ with RT and h Nð Þ. The regression

coefficient R for this model was 0.54 and explained 0.29 of data

variance. Model 2 positively correlated IQ with age (A) and Dh eð Þ,
and negatively correlated IQ with RT. The regression coefficient

R for this model was 0.48 and explained 0.24 of data variance.

The multiple regression RT~azb1h e1ð Þz:::zb20h e20ð Þ was

used to generate the RT mapping in figure 5. RT decreased as

h(ei) increased for the anterior (mainly central and right)

electrodes and increased for the posterior (mainly central and

right) electrodes.

The multiple regression IQ~azb1h(e1)z:::zb20h(e20) was

used to generate the IQ mapping in figure 5. The h eið Þ values

calculated for FP1, FZ, CZ and OZ were directly related to IQ,

implying that IQ increased as h eið Þ for these electrodes increased.

In contrast, h eið Þ values obtained for C3, F4 and O2 were

inversely related to IQ; thus, IQ decreased as h eið Þ for these

electrodes increased.

The multiple regression IQ~azb1h e1ð Þz:::zb20h e20ð Þ, cal-

culated separately for women and men, was used to obtain the

Table 1. RT Factor analysis.

Factor Loadings (Unrotated)

Factor 1

Mr 0.862152

Pz 0.900775

Ch 0.738045

St 0.743899

Expl.Var 2.652798

Prp.Totl 0.6632

Eigen value 2.652798

Mr – Mental Rotation RT; Pz – Puzzle RT; Ch – Charade RT; St – story
understanding RT, Expl. Var – explained variance; Prp.Totl – probability.
doi:10.1371/journal.pone.0017355.t001

Brain Activity and Intelligence
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brain mappings shown in figure 2. The Pearson’s correlation

coefficient for these two mappings was 20.27. In women, high IQ
is mostly associated with high h(ei) for the left brain and with low

h(ei) for the right hemisphere electrodes. In men, an opposite

pattern was observed, with high IQ mostly associated with high

h(ei) for the right brain and low h(ei) for the left hemisphere

electrodes.

The multiple regression IQ~azb1h(e1)z:::zb20h(e20), cal-

culated separately for adults and children, was used to obtain the

brain mappings shown in figure 3. The Pearson’s correlation

coefficient for these two mappings was 20.16. The inverse

correlation between IQ and h eið Þ calculated for the right anterior

frontal and right posterior electrodes, was similar in both groups.

The main difference between the two mappings was the opposite

relationship between IQ and h eið Þ calculated for the left anterior

electrodes. For these electrodes IQ was inversely correlated with

h eið Þ in adults and directly correlated with h eið Þ in children.

Finally, a positive correlation between IQ and h eið Þ generally

dominated in children compared with adults.

The multiple regression IQ~azb1h e1ð Þz:::zb20h e20ð Þ, cal-

culated for the visual and verbal games, was used to obtain the

corresponding brain mappings shown in figure 5. The Pearson’s

correlation coefficient for these two mappings was 0.22. The direct

correlation between IQ and h eið Þ calculated for the central (FZ,

CZ and OZ) and right posterior (P3 and O1) electrodes, was

similar in both groups. An inverse correlation of IQ with h eið Þ was

observed for the F4, F7, C3 and O2 electrodes in verbal games. In

contrast, the opposite relationship was seen for the FP1, T3 and

T5 electrodes when verbal and visual games were compared.

Discussion

In the field of physiological study of human intelligence, there is

strong evidence of a more efficient operation (i.e., less activation) of

the brain in brighter individuals (the neural efficiency hypothesis).

Haier et al. [22] observed a negative correlation between

intelligence and the extent of energy consumption (glucose

metabolism) in the brain during cognitive task performance.

These initial findings led the authors to formulate the neural

efficiency hypothesis of intelligence, claiming that ‘‘subjects performing a

complex task may well use a limited number of brain circuits and/

or fewer neurons, thus requiring minimal glucose use, while poor

performers use more circuits and/or neurons, some of which are

inessential or detrimental to task performance, and this is reflected

in higher overall brain glucose metabolism’’.

Here, because our null hypothesis was rejected (see figure 1), the

correlation coefficient ri,j between the EEG activity recorded by the

electrodes ei, ej was used to calculate (equations 1 to 4) the entropy

h eið Þ, quantifying the commitment of the neurons recorded by the

electrode ei to solving a task t . The recruitment h Nð Þ of the brain in

solving the game t (equation 5) was set depending on the number nj

and nk of neurons aj for which pi,j?1 and ak for which pi,j?0,

respectively (see figure 2 and equation 4). Finally, the brain

efficiency in handling the task t was defined as j~h tð Þ=h Nð Þ
(equation 6), where h tð Þ is the entropy of t.

In this context, the neural efficiency hypothesis implies
nkznj

� �

n
?0

and h Nð Þvvn2, in order to make h Nð Þ?h tð Þ and j?1. In other

words, the neural efficiency hypothesis requires the number nk of neurons

recruited for the task solution, and the number nj of neurons

forbidden from participating in the task solution, to be as small as

possible. Here, h
{

Nð Þwas statistically similar for the visual (40 bits) and

verbal (43 bits) games (43 bits). Therefore, h
{

Nð Þ&0:1n2 (n = number

of recording electrodes = 20). In other words, the brain recruitment as

measured by h
{

Nð Þ is equal to only 10% of the maximum entropy that

could be measured by the 20 recording electrodes.

In addition, the calculated jr was smaller than 0.5 and jh was

greater than 0.7 for all games. The neural efficiency j has to be

Figure 1. Comparison between a ‘‘Hypothetical’’ (H) and the Real (R) Brains. The Hypothetical brain was obtained by randomizing the
calculated entropies (see text for further details. The actual calculated entropies were used to obtain the Real brain. The mappings H and R depict the
averaging of these entropies. The comparison between averaging mappings H and R was quantified by the Z-scores shown by the mapping Z. Noted
that the minimum Z-score was 2.48 and the maximum was 11.
doi:10.1371/journal.pone.0017355.g001
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greater than jr if random strategies were used to solve the games,

and greater than jh when heuristics were used to solve the tasks

because h tð Þ~h ið Þzh dð Þzh mð Þ. It may be proposed, therefore,

that subjects solved the games with a neural efficiency j that was at

least greater than jr, and thus greater than 0.5. It may also be

hypothesized that h ið Þzh mð Þ?0 and jwjh, and therefore jw:8,

when individual knowledge increases and allows the subjects to

create heuristics for efficient task solutions. In any of these cases,

h Nð Þwh tð Þ because j cannot be greater than 1. Recall, however,

that IQ was inversely related to h Nð Þ. Therefore, heuristic

solutions must predominate for high IQ, in order to decrease h tð Þ
and keep h Nð Þwh tð Þ. Similarly, a random solution may be used in

the case of low IQ because h
{

Nð Þwh dð Þ for all games. As a

consequence, it may be concluded that jwjh for high IQ and, at

least jwjr for low IQ.

Although the present results seem to confirm the neural efficiency

hypothesis, caution is necessary because, as discussed above (see

methods), the expected values of h tð Þ were obtained under the

assumption that subjects used some optimizing strategies. In the

case of the puzzle, the analysis of the sequences of piece

placements showed that they used the proposed strategy of

organizing the puzzle pieces into meaningful items in order to

solve the game. However, there is no available information about

the kind of possible heuristic used to solve the other games. In

order to validate the present findings, future studies require

specially designed games that allow the analysis of strategies used

for their Solutions.

Graph theory allows the definition of what should be considered

an optimal network. The notion of an optimal network is closely

associated with the small-world phenomenon [23,24]. The

Figure 2. The EEG mappings for the calculated linear regression. IQ~azb1h e1ð Þz:::zb20h e20ð Þ calculated for females (F) and males (M)
Legends as in Figure 1. The Pearson’s correlation coefficient between the regression mappings F and M was 20.27. The Z mappings Zf and Zm

mappings show the differences between the averaging mappings ,F. and ,M. and the Hypothetical brain H in figure 4. The areas for which the
Z-score is smaller than 1.96 are shown in white, and the areas for the Z-score is greater than 1.96 are collored according to the magnitude of the Z-
score.
doi:10.1371/journal.pone.0017355.g002

Brain Activity and Intelligence
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so-called small-world network architecture is distinguished from

either ordered or random networks. On average, a sparsely

connected graph is expected to have a lower clustering coefficient

and longer path length compared with a densely connected graph

with the same topology. Networks with small-world architecture

are characterized by a combination of strong local clustering and a

short characteristic path length (an index of global integration).

This means that, although most of the connectivity is local, the

network remains highly integrated due to a small number of long

distance connections. Networks with scale-free architecture [25]

are characterized by the presence of nodes with a very large

number of long distance connections (the hub nodes). The

likelihood p kð Þ of a node having k connections is given by

p kð Þ~k{a, 2vav5. Broad-scale networks are characterized by a

degree distribution that has a power law regime followed by a

sharp cutoff that restricts the increase of p kð Þ. The cutoff function

constrains the maximum number of nodes that may connect to

hub nodes [26]. For example, p kð Þ~k1{a log k=kcð Þ is a ‘‘broad-

scale’’ network, where kc is the limiting degree. From equation 4,

broad-range and scale-free networks have clusters of well-

connected nodes ei and ej for which pi,j?0:5 because the

characteristic pathway length li,j tends to 2 and a small number of

hub nodes eh for which ph,j?1 if kvkc.

Micheloyannis et al [27] recorded EEG signals to study

neuronal interactions during working memory tests in individuals

who had few years of formal education (LE) compared with

individuals who had university degrees (UE). They quantified the

synchronization between EEG channels in several frequency

bands, and then converted EEG signal correlations into graphs to

estimate the clustering and distance characteristics of the

underlying processing networks. According to the authors, findings

supported the neural efficiency hypothesis and suggested that the

Figure 3. The EEG mappings for the calculated linear regression. IQ~azb1h e1ð Þz:::zb20h e20ð Þ calculated for adults and children Legends
as in Figure 1. The Pearson’s correlation coefficient calculated for these mappings was 20.16. The Z mappings Zc and Za mappings show the
differences between the averaging mappings ,C. and ,A. and the Hypothetical brain H in figure 4. The areas for which the Z-score is smaller than
1.96 are shown in white, and the areas for the Z-score is greater than 1.96 are collored according to the magnitude of the Z-score.
doi:10.1371/journal.pone.0017355.g003
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connections between brain areas of well-educated subjects

engaged in working memory tasks have less small-world

characteristics than those of less-educated volunteers. Iturria

et al. [26] used diffusion-weighted Magnetic Resonance Imaging

(DW-MRI) to estimated the anatomical connection probabilities

(ACP) between 90 cortical and subcortical brain gray matter areas.

They concluded that all the studied networks have small-world

and broad-scale characteristics. Van den Heuvel et al [28] used a

voxel-wise approach for a model-free examination of both inter-

regional as well as intra-regional connectivity in the human brain.

Resting-state 3 Tesla fMRI scans of 28 healthy subjects were

acquired and individual connectivity graphs were formed out of all

cortical and sub-cortical voxels with connections reflecting inter-

voxel functional connectivity. Graph characteristics from these

connectivity networks were computed. The clustering-coefficient

of these networks turned out to be much higher than the

clustering-coefficient of comparable random graphs. This result,

together with a short average path length, indicated a small-world

organization. Furthermore, the connectivity distribution of the

number of inter-voxel connections followed a power-law scaling

with an exponent close to 2, suggesting a scale-free network

topology. Their findings suggested a combined small-world and

scale-free organization of the functionally connected human brain.

The results were interpreted as evidence for a highly efficient

organization of the functionally connected brain, in which voxels

are mostly connected with their direct neighbors, forming

clustered sub-networks that are held together by a small number

of highly connected hub-voxels that ensure a high level of overall

connectivity.

The correlation coefficients ri,j calculated for the EEG activity

recorded by the electrode entropy ei and ej were assumed here to

be surrogates for the connectivity between the neurons recorded

Figure 4. The EEG mappings for the calculated linear regression. IQ~azb1h e1ð Þz:::zb20h e20ð Þ calculated for visual (V) and verbal (L)
games Legends as in Figure 1. The Pearson’s correlation coefficient calculated for these mappings was 0.22. The Z mappings Zv and ZL mappings
show the differences between the averaging mappings ,v. and ,z. and the Hypothetical brain H in figure 4. The areas for which the Z-score is
smaller than 1.96 are shown in white, and the areas for the Z-score is greater than 1.96 are collored according to the magnitude of the Z-score.
doi:10.1371/journal.pone.0017355.g004
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by these electrodes. In this context, h eið Þ calculated for the

recording electrode ei may be assumed to represent the connectivity

k of the neurons recorded by ei. In other words, the number of

instances n kð Þ, when the calculated h eið Þ is equal to k, is a measure

of p kð Þ in the studied population. The regression analysis showed

that n kð Þ~k{1,64 log k=10ð Þ, R2~0:88 and n kð Þ~k{3,51,

R2~0:74, leading to the conclusion that the solution of our games

was supported by broad-scale or scale-free networks.

In addition, the present results showed that IQ was inversely

related to h Nð Þ and directly related to Dh eð Þ. This means that

high-IQ individuals tended to recruit fewer (smaller h Nð Þ) highly

correlated (larger Dh eð Þ) neurons, compared with low-IQ
volunteers, to solve the games. Therefore, it may be proposed

here that IQ is correlated with the dynamics of broad-scale (or

scale-free) networks organized in the brain for different purposes

(e.g., [29–31]). The information flow in this type of network is very

efficient because it depends on a small number of connections

(axons) with the hub nodes, instead of relying on a large number of

randomly distributed connections, as is the case in random

networks (e.g., [23,26]).

The IQ mapping in figure 5 shows that IQ increased as h eið Þ,
calculated for FP1 and the central electrodes (FZ, CZ and OZ),

increased, and decreased as h eið Þ, calculated for C3, F4, PZ and

O2, increased. Lee et al [32] showed that high g-loaded tasks

specifically increased regional activity in the bilateral fronto-

parietal network that included the lateral prefrontal, anterior

cingulate and posterior parietal cortices. In addition, the regional

activations of the superior-g group were significantly stronger than

those of the control group, especially in the posterior parietal

cortex. Finally, regression analysis revealed that activity of the

superior and intraparietal cortices (BA 7/40) strongly covaried

with individual differences in g. Although EEG recorded activity

cannot be easily mapped to spatial location, there is an almost

perfect match between the IQ mapping in figure 5 and the map

shown in figure 2 of Lee et al [32].

Haier et al [33] showed that more gray matter in a number of

Brodmann areas (BA) was associated with higher IQ, and

suggested a distributed neural basis of intelligence similar to that

Table 2. The efficiency values.

max h Nð Þð Þ min h Nð Þð Þ hr dð Þ hh dð Þ jr jh

Mr 68 11 24 8 .35 .72

Pz 76 11 37 8.5 .48 .77

Ch 76 11 22 7.5 .27 .78

St 79 12 22 7.5 .27 .73

Mr - Mental rotation; Pz – Puzzle; Ch – Charade comprehension; St – Story
understanding.

jr~
hr dð Þ

max h Nð Þð Þ, jh~
hh dð Þ

min h Nð Þð Þ, hr dð Þ the entropy for random decision and

hh dð Þ the entropy for heuristic decision.
doi:10.1371/journal.pone.0017355.t002

Figure 5. The EEG mappings for the calculated linear regressions. IQ~azb1h(e1)z:::zb20h(e20) and RT~azb1h(e1)z:::zb20h(e20) Light
to dark blue areas are those for which biw0 and pink to dark red areas are those for which biv0. Max and Min – maximum and minimum values for
bih(ei) , respectively. The Pearson’s correlation coefficient between IQ and RT mappings was 20.16.
doi:10.1371/journal.pone.0017355.g005
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disclosed by our data. Recently, Jung and Haier [1] reported a

striking consensus among different papers suggesting that

variations in a distributed network predict individual differ-

ences found in intelligence and reasoning tasks. They described

this network as the Parieto-Frontal Integration Theory (P-

FIT). The P-FIT model includes the dorsolateral prefrontal

cortex (BAs 6, 9, 10, 45, 46, 47), the inferior (BAs 39, 40) and

superior (BA 7) parietal lobule, the anterior cingulate (BA 32),

and regions within the temporal (BAs 21, 37) and occipital

(BAs 18, 19) lobes. The P-FIT model includes, therefore, many

of the components presently identified by the IQ mapping in

figure 5.

Another experimental approach to elucidating basic cogni-

tive mechanisms that underlie general intelligence (psychomet-

ric g) is based on the attempt to relate psychometric g to the

speed of information processing [34]. Within this conceptual

framework, a large number of studies provided evidence for a

relationship between levels of psychometric g and certain

parameters of reaction time (RT ) derived from Hick’s law (e.g.,

[35]). In the present study, IQ and RT were also inversely

related.

The RT mapping in figure 5 shows that RT increased as h(ei),
calculated for the posterior right hemisphere, increased, whereas

h(ei) obtained from the right anterior electrodes decreased. There

is some overlap between the IQ and RT mappings (see figure 5);

however, the activity recorded by FZ, P4 and O2 was related to

IQ and RT in opposite ways. The Pearson’s correlation coefficient

for the RT and IQ mappings was 20.16. These findings show that

RT and IQ may share some common neural substrates but are

two different neural constructs.

The consensus view states that there are no sex differences in

intelligence. However, Lynn [36] has formulated a developmental

theory of sex differences in intelligence that challenges this view.

The theory states that boys and girls mature at different rates,

such that the growth of girls accelerates at the age of about 9

years and remains in advance of boys until 14–15 years. At 15–16

years the growth of girls decelerates relative to boys. From this

age on, boys continue to grow and increase their mean IQ

relative to that of girls. Colom and Lynn [37] presented new

evidence for the theory from the Spanish standardization sample

of the fifth edition of the Differential Aptitude Test (DAT). Their

results showed that sex differences for 18 year olds in the DAT

performance as a whole is a 4.3 IQ point advantage for boys, a

value that is very close to the advantage that can be predicted

from their larger brain size (4.4 IQ points). Jackson and Rushton

[38] found that 17- to 18-year old males averaged 3.63 IQ points

higher than did their female counterparts on the 1991 Scholastic

Assessment Test (SAT). Here, no IQ sex difference was observed,

although it must be noted that the experimental group was small

and involved both children and adults. Because of the small

number of individuals in each experimental subgroup (n = 20) no

gender statistics was separately analyzed for each of these

subgroups.

Despite the fact that no IQ statistical difference was observed

here between male and females, the IQ mappings calculated for

male and females separately (see figure 6) showed interesting

differences. The Pearson’s correlation coefficient for the gender

mappings is 20.27, the highest discrimination between all the

mappings in figures 2, 3, 4, and 5. The right hemisphere and the

anterior pole of the left frontal lobe are associated with high IQ
in males, whereas almost the entire left hemisphere correlated

positively with the female IQ (green and blue areas in figure 2).

In contrast, the left hemisphere (except O2) was negatively

related with male IQ, whereas female IQ decreased as h(ei)

increased for the right electrodes F4, F8, P4 and O2 (red and

pink areas in figure 2). Njemanze [39] evaluated cerebral

lateralization during Raven Progressive Matrices in female and

male subjects. Bilateral simultaneous transcranial Doppler

(TCD) ultrasound was used to measure mean blood flow

velocities (MBFV) in the right and left middle cerebral arteries

(MCAs) in 24 (15 females and 9 males) right-handed normal

subjects. The authors found that female subjects used a left

hemisphere strategy, whereas males used a right hemisphere

strategy to successfully solve Raven Progressive Matrices.

According to the author, these results imply that intelligence is

associated with neural systems within one hemisphere that are

gender-accessible to a variety of cognitive functions. Neubauer

et al. [19] found that in males, the highest correlations were

observed for spatial IQ, and in females for verbal IQ.

Furthermore, the sexes displayed topographical differences in

neural efficiency patterns. Jaušovec and Jaušovec [18] described

gender EEG differences concerning both general and emotional

intelligence. Rocha et al. [9] used the presently discussed EEG

brain mapping technology to study arithmetic cognition in

children and adults. Factor analysis showed three distinct

patterns of neuronal recruitment for arithmetic calculations in

all experimental groups, which varied according to the type of

calculation, age and sex. Males were faster in arithmetic

calculation than females, irrespective of age. However, individ-

uals of both sexes were equally accurate in their calculations. It

is plausible to conclude that males and females have different

cognitive styles that nevertheless result in no or minimal IQ or

cognitive differences.

Event-related brain potential (ERP) components showed typical

gradual decrements in latency and amplitude with increasing age

[40]. Regression analyses between Raven’s intelligence scores and

latency of the ERP components showed negative correlations for

the late endogenous components at age 9. At ages 10 and 11, the

earlier components showed positive correlations while the later

components continued to show negative correlations. The

amplitude measures showed only positive correlations, which

shifted from the exogenous P1 component at age 9 toward the

later endogenous components at ages 10 and 11. Here, the

Pearson’s correlation coefficient for the IQ mappings calculated

separately for children and adults (figure 3) was 20.16. The

general picture revealed by these mappings seems to be that the

children’s networks involved in game solutions were broader than

those used by adults. Fair et al. [41,42] analyzed the connectivity

of control networks and showed that adults, compared with

children, used control networks with fewer short-range connec-

tions and more long-range connections. The authors concluded, as

we did, that adult networks are more cohesive and interconnected

than the corresponding children’s networks.

In conclusion, we proposed a general prediction model that

assumes IQ to be linearly correlated with D(h(ei)), age (A),

response time (RT), h(ei) or h(N). This model relates IQ to: the

adequacy h(ei) of the recruitment of neurons for solving a given

task t of complexity h(t); the extent D(h(ei))~max(h(ei)){
min(h(ei)) of this recruitment andits neural efficiency measured as

j~h(t)=h(N), showing that these relationships are influenced by

age and correlated with RT. The IQ and RT correlations with

h(ei) indicate that IQ and RT are better understood as different

but correlated neural constructs.

Considering h(ei) to be a measure of the connectivity k of the

neural networks involved in our game solution, it was shown that

these networks have broad-scale and scale-free properties. Broad-

scale and scale-free properties are assumed to belong to efficient

networks from the point of view of information flow. Consequently,
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we proposed that IQ is associated with the broad-scale and scale-

free qualities of the neural networks that support reasoning and

cognition.

The network-based understanding of brain function is a very

recent paradigm that is being tested by neuroscientists as a formal

tool to model cerebral function. Here, we used such an approach

to study the relationship between IQ and the brain. The results are

promising; however, much more work remains to account for

some of the weak points of the present investigation and to

research complex issues such as IQ, sex and age.

Materials and Methods

The experiment
Volunteers of two experimental groups

a) Children (C): 20 children of both sexes (10 female and

10 male), age ranging from 7 to 11 years (mean = 9.15;

sd = 1.38), who were attending an elementary school

program, and

b) Adults (A): 20 adults of both sexes (10 female and 10 male),

age ranging from 23 to 45 years (mean = 29.2; sd = 5.85), all

having finished college

played four different types of computer games (figure 2) while their

EEG was recorded (20 electrodes placed according to the 10/20

system; impedance smaller than 10 Kohm; notch filter 50 Hz;

sampling rate of 256 Hz and 10 bit resolution). The subjects’ IQ

was evaluated by the Wechsler Intelligence Scale for Children

(WISC), or the Wechsler Adults Intelligence Scale for Children

(WAIS) in a different session.

The games
Four different types of games were used (figure 6):

a) Puzzle solving (Pz): nine pieces of a scene must be assembled

over a nine-cell rectangle to match the template figure.

b) Mental rotation (Mr): the task is to mach the actual spatial

orientation of a target object to one out of four different

spatial orientations.

c) Charade solving (Ch): a verbal description of four attributes

of a fruit or animal is provided 500 ms before five different

pictures of fruits or animals are displayed. The task is to

match the verbal description to one out of five of these

pictures.

d) Story understanding (St): a verbal description of four

attributes of Christmas story scenes is provided 500 ms

before Christmas scenes are visually displayed 500 ms before

five different pictures of the story are displayed. The task is to

match the verbal description to one out of these five scenes.

Factorial analysis showed that RT for all games heavily

dependent on one general factor (Table 3).

The calculation of the efficiency j in solving each game requires

the estimation of its h(t) (see equation 6). The game solution

implies at least three main steps:

1) identification: recognizing the objects, scenes and puzzle

pieces as well as the meaning of each phrase that describes

their attributes;

2) decision-making: selecting the assumed game solution, and

3) mouse control: reporting the game solution

Figure 6. The games. The game rules are: a) Mental rotation (Mr): an object in a given spatial orientation is provided as a model to be matched to
one out of four possible spatial orientations of the same object. Each game session involved 10 decision-making trials designed to explore visual
reasoning; b) Puzzle solving (Pz): nine pieces of a scene, animal or object must be assembled over a nine-cell rectangle. The entire game includes
three different pictures to be assembled. A warning signal indicates any piece misplacement. In this case, the subject had to remove the misplaced
piece before trying another piece. Each game session involves at least 27 trials of decision-making designed to explore visual planning and reasoning;
c) Charade solving (Ch): a three to four phrase description of a fruit or animal (e.g.; ‘‘My juice is delicious, my colour is my name; …’’) is provided
500 ms before different pictures are displayed for decision making. Mean soundtrack duration for all charades is around 4 seconds. Each game
session involved 10 trials of decision-making designed to explore speech comprehension and semantic memory; d) Story understanding (St): a verbal
description of scenes of a Christmas story is provided 500 ms before five Christmas scenes are visually displayed for decision-making. Mean
soundtrack duration for all scene descriptions is 5 seconds. Each game session involved 10 trials of decision making designed to explore speech
comprehension and episodic memory.
doi:10.1371/journal.pone.0017355.g006
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These steps require specific computational capabilities estimated

as h(i), h(d) and h(m), respectively. Therefore:

h(t)~h(i)zh(d)zh(m) ð1Þ

The estimation of h(i) and h(m) is difficult, but the possible range

of h(d) variation may be estimated as proposed below and

provides some information about the lower limit of j because

jw

min(h(d))

h(N)
. Also, j?

(h(d))

h(N)
if h(i)zh(d)?0 because both vi-

sual and/or verbal decoding, as well as motor control, are well learned.

The actual value of h(d) depends on the strategy used to solve

the game. For example, the puzzle solution implies nine decisions

about the relation of each puzzle piece and its location in the

puzzle. If errors are made the number of decisions increases. A

brute-force or random puzzle solution implies that the uncertainty

hr(d) of this random decision is

hr(d)~log2(81)zlog2(64)zlog2(49)zlog2(36)zlog2(25)

zlog2(16)zlog2(9)zlog2(4)zlog2(2)%37bits

because:

a) first decision implies that each piece location has the same

probability of
1

9
� 1

9
~

1

81
;

b) second decision implies the same probability of
1

8
� 1

8
~

1

64
because if no error occurred in a), one piece of the puzzle was

already located,

c) and so on …

An alternative strategy to reduce the task entropy h(t) for puzzle

solution, is to identify and organize the puzzle pieces into

meaningful items. In the case of the puzzle in figure 6, these

meaningful items are: the house composed of seven pieces; the

wolf composed of three pieces; the tree composed of two pieces;

the girl composed of two pieces; the sun represented by one piece

and the flowers represented by one piece. If a subject decides first

to locate the wolf pieces and then the house pieces, the uncertainty

hh(d) of this heuristic decision is:

a) wolf: h(w)~log2(27)zlog2(16)zlog2(7)%3,5bits because

the probability of its pieces location are respectively
1

3
� 1

9
~

1

27
,

1

2
� 1

9
~

1

8
and

1

1
� 1

7
~

1

7
(as in a, b and c above)

and

b) h o u s e : h(h)~log2(30)zlog2(20)zlog2(12)zlog2(6)z
log2(2)%5bits because the probabilities of the location

of its pieces are respectively
1

5
� 1

6
~

1

30
, ,

1

4
� 1

5
~

1

20
,

1

3
� 1

4
~

1

12
,

1

2
� 1

3
~

1

6
and

1

1
� 1

2
~

1

2
because two of the wolf’s

pieces are also house’s pieces, and

c) hh(d)~h(w)zh(h)~8,5bits.

In the case of the rotation game, the total of all object

orientations to be discriminated is eight. A brute-force solution

implies hr(d)~4 � log2(64)~24bits because the volunteer has to

match (
1

8
� 1

8
~

1

64
) the orientation of the target and the orientation

of the four possible solutions. Again, heuristics may be used to

select meaningful general orientations like left, right, up, down,

etc. in order to reduce the task entropy h(t). For instance, in the

example in figure 2, a decision can be achieved in two steps: 1)

the up/down (u/d) decision that implies
1

2
� 1

2
~

1

4
and

h(u=d)~2 � log2(4)~4bits, and then 2) the left/right (l/r)

decision that implies
1

2
� 1

2
~

1

4
and h(l=r)~2 � log2(4)~4bits,

such that hh(d)~h(u=d)zh(l=r)~8bits.

In the cases of the charade and story games, each of the four

verbal descriptions has to be matched to each of their visual

counterparts in five different pictures; that is, each description has

to be matched against 20 visual alternatives. A brute-force solution

implies hr(d)~log2(80)zlog2(57)zlog2(36)zlog2(17)%22bits

because the volunteer has four decision steps represented by the

probabilities
1

4
� 1

20
~

1

80
,

1

3
� 1

19
~

1

57
,

1

2
� 1

18
~

1

36
and

1

1
� 1

17
~

1

17
. However, because the number of attributes necessary

to solve many of the tests is smaller than four, the volunteer may

use different strategies to reduce h(t). The reduction to three

discriminating factors decreases hh(d) to 14 bits, whereas the

reduction to two discriminating factors decreases hh(d) to 7.5 bits.

The EEG recording and processing
Two networked personal computers were used (figure 7): one to

record the EEG and the other to display the game. Times for each

test display (t0) and decision (t1) were recorded and synchronized

with the EEG recording. Table 3 shows the mean RT~0{t0 and

SD calculated for each game. After the experiment, EEG was

visually inspected for artifacts that could compromise the analysis,

and such records were discarded. Two EEG epochs of two seconds

(from t1{2 to t1, and from t1{4 to t1{2) preceding the decision

were selected to calculate the entropy h(ei) for each recording

electrode ei according to equations 1 to 4. We assumed the linear

regression coefficient ri,j calculated for the EEG activity recorded

by the electrodes ei, ej as the measure of the pi,j of message

exchange between the neurons recorded by these electrodes.

Equation 6 was used to calculate h(N).

Here, we assumed that the null hypothesis states that the

entropy calculated as above is equal to the brain activity of a

hypothetical brain obtained by 1) randomly reordering the

recorded EEG activity by the 20 channels and then 2) computing

the entropy of a ‘‘hypothetical’’ brain using the randomized EEG

activity. Any difference between this ‘‘hypothetical’’ and the real

brains of the studied sample is quantified by calculating the Z

scores between the hypothetical and these real brains.

The following efficiency coefficients were calculated:

jr~
hr(d)

max(h(N))
, jh~

hh(d)

min(h(N))
ð2Þ

Since jrƒ1 and jhƒ1 then:

hr(d)ƒmax(h(N)), hh(d)ƒmin(h(N)) ð3Þ

Table 3. The mean response time for each game.

RT SD

Mr 4.07 1.01

Pz 7.63 2.34

Ch 5.36 1.51

St 10.49 3.32

Mr - Mental rotation; Pz – Puzzle; Ch – Charade comprehension; St – Story
understanding.
doi:10.1371/journal.pone.0017355.t003
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Multiple regression analysis was used to calculate:

IQm~azb1h(e1)z:::zb20h(e20) and

RTm~azb1h(e1)z:::zb20h(e20)
ð4Þ

as well as the significance p-level pi of each angular coefficient bi.

In addition, the number n{b
m of negative angular coefficients with

piwpr and the number nzb
m of positive angular coefficients with

piwpr were obtained for a given significance level pr. Finally, the

values of max(bih(ei)), min(bih(ei)) and D~max(bih(ei)){
min(bih(ei)) were obtained.

The normalized values of bih(e) ~
bih(ei){min(ih(ei))

D
were

used to build the brain mappings to display the results of the

regression analysis (figures 2, 3, 4, and 5). The mapping color-

encoding routine was obtained with commercial software (Icelera

Inc.). Statistically positive bih(e) values (piƒpr~0:05) are en-

coded from red (bih(e)?max(bih(ei))) to yellow (bih(e)?0:5);

statistically negative bih(e) values (piƒpr~0:05) are displayed

from blue (bih(e)?min(bih(ei))) to green (bih(e)?0:5), and

Figure 7. The experiment. Two networked microcomputers were used to record the EEG activity (10/20 system) while the individual is solving a
specific cognitive task. The beginning of each task and the moment a decision is made are saved in the database together with the type of decision-
making (D) and time required (response time ST) to achieve such decision. The linear correlation coefficients ri,j for the recorded activity at each
recording electrode ei, with reference to the recorded activity for each other 19 recording sites ej, were calculated for each game (COG) performed by
a given subject. These ri,j were used to calculate the correlation entropy h(ei) for each recording electrode ei. In this way, h(ei) was calculated for all 20
recoding electrodes. The corresponding values of h(ei) constitute the Entropy Data Base. Regression analysis between RT and h(ei) was used to build
the cognitive mapping. Each mapping shows the contribution bi hm(ei) of each electrode ei to ST. hm(ei) is the average of h(ei) calculated for all
subjects. IQs values of each subject were added to each corresponding data base record.
doi:10.1371/journal.pone.0017355.g007
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statistically non-significant bih(e) values (piwpr~0:05) are shown

in orange. Brain contours are used as references for spatial

location of the 10/20 system electrodes. The Pearson’s correla-

tion coefficient was used to measure the similarity between

regression mappings.

Multiple regression analysis was also used to study the

correlations between IQ, RT, Sex, Group and Game, as well as

to investigate a linear model of IQ depending on h(ei), RT, Group

and Game, and D(e) = Max(h(ei))2Min(h(ei)). StatiscaH was used

for all statistical analysis.
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