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Cnidarian Pattern Recognition
Receptor Repertoires Reflect Both
Phylogeny and Life History Traits
Madison A. Emery, Bradford A. Dimos and Laura D. Mydlarz*

Department of Biology, University of Texas at Arlington, Arlington, TX, United States

Pattern recognition receptors (PRRs) are evolutionarily ancient and crucial components of
innate immunity, recognizing danger-associated molecular patterns (DAMPs) and
activating host defenses. Basal non-bilaterian animals such as cnidarians must rely solely
on innate immunity to defend themselves from pathogens. By investigating cnidarian PRR
repertoires we can gain insight into the evolution of innate immunity in these
basal animals. Here we utilize the increasing amount of available genomic resources
within Cnidaria to survey the PRR repertoires and downstream immune pathway
completeness within 15 cnidarian species spanning two major cnidarian clades,
Anthozoa and Medusozoa. Overall, we find that anthozoans possess prototypical PRRs,
while medusozoans appear to lack these immune proteins. Additionally, anthozoans
consistently had higher numbers of PRRs across all four classes relative to
medusozoans, a trend largely driven by expansions in NOD-like receptors and C-type
lectins. Symbiotic, sessile, and colonial cnidarians also have expanded PRR repertoires
relative to their non-symbiotic, mobile, and solitary counterparts. Interestingly, cnidarians
seem to lack key components of mammalian innate immune pathways,
though similar to PRR numbers, anthozoans possess more complete immune pathways
than medusozoans. Together, our data indicate that anthozoans have greater immune
specificity thanmedusozoans, which we hypothesize to be due to life history traits common
within Anthozoa. Overall, this investigation reveals important insights into the evolution of
innate immune proteins within these basal animals.

Keywords: innate immunity, non-bilaterian, pattern recognition receptors, Toll-like receptor, NOD-like receptor,
RIG-I like receptor, C-type lectin
INTRODUCTION

Animals sense and interact with microbes through their immune system (1). The majority of
knowledge about immune system function stems from studies in vertebrates, which interact with
microbes through both an innate and an adaptive immune system (2, 3). In contrast, invertebrates
rely on innate immunity to detect and respond to microbes. Pattern recognition receptors (PRRs)
are key components of innate immunity that detect both danger associated molecular patterns
(DAMPs) and microbe associated molecular patterns (MAMPs), activating downstream signaling
pathways following this recognition (4). PRRs are drivers of immune specificity in invertebrates, as
org June 2021 | Volume 12 | Article 6894631
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diverse repertoires of receptors are needed in order to generate a
microbe specific immune response (5).

The four best studied families of PRRs are Toll-like receptors
(TLRs), retinoic acid-inducible gene I-like receptors (RLRs),
nucleotide-binding oligomerization domain-like receptors
(NLRs), and C-type lectins (CTLs) (6, 7). While it was
originally thought that many of these PRR families first arose
in vertebrates, studies following the advent of next generation
sequencing revealed that TLRs, RLRs, NLRs, and CTLs are
present in basal metazoans and thus are evolutionarily ancient
(8–12). Studying PRRs in basal taxa informs our understanding
of PRR evolution and more broadly immune evolution.

Cnidaria is a basal phylum sister to Bilateria with over 10,000
species spanning three major clades: Anthozoa, Medusozoa, and
Endocnidozoa which span a diverse array of life history strategies
ranging from sedentary to planktonic to parasitic (13). Despite their
primitive morphology, cnidarian genomes are complex and contain
a repertoire of innate immune genes unexpectedly similar to
mammals (14, 15). Due to this, cnidarians are exceptional
candidates for investigations into innate immune evolution as
they are not only basal, but also have immune repertoires are not
reduced like the nematode model Caenorhabditis elegans or derived
in function like the arthropod model Drosophila melanogaster (15–
17). Additionally, common life history traits within Cnidaria have
been linked to immunity. Several cnidarian taxa in Anthozoa and
Medusozoa form intracellular nutritional symbiosis with algae in
the family Symbiodiniaceae, the maintenance of which has been
linked to several different PRRs as well as NFkB signaling (18).
Similarly, many cnidarians have colonial body plans, and likely have
a larger need for allorecognition and thus immune specificity (13,
19, 20). Therefore, the wide variety of life history traits found within
cnidaria has the potential to create a gradient of selective pressures
for immune specificity, which likely is reflected in their
PRR repertoires.

Toll-like receptors (TLRs) are transmembrane PRRs that are
capable of recognizing a wide variety of ligands including bacterial
cell wall components, viral RNA, and developmental cues (21–23).
Canonically, TLRs consist of extracellular leucine rich repeats
(LRRs) which bind to DAMPs and MAMPs and an intracellular
Toll/interleukin-1 receptor (TIR) domain that activates signal
transduction through protein-protein interactions with other TIR
domain-containing proteins (21, 22, 24). Several pathways can be
activated by TLRs following ligand engagement, including the
MAPK, IFN, and NFkB pathways (22, 24). Within Cnidaria,
prototypical TLRs have been identified in several anthozoan
species, and functional studies indicate that the Nematostella
vectensis TLR functions in pathogen recognition, activation of
NFkB signaling, and development (25, 26). Additionally, a
medusozoan species lacking prototypical TLRs, Hydra vulgaris, is
still capable of TLR-NFkB signaling through TLR-like proteins
containing a transmembrane domain and an intracellular TIR
domain that appear to interact with transmembrane proteins with
extracellular leucine rich repeats to perform the function of the
prototypical TLR (27).

Retinoic acid-inducible gene I-like receptors (RLRs) are
cytosolic PRRs that detect intracellular viral RNA (28–30).
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Mammals have three RLRs: RIG-I, MDA5, and LGP2. All
RLRs have a central ATPase containing DExD/H box helicase
domain and a C-terminal regulatory domain (28, 30). RIG-I and
MDA5 also contain CARD domains which in mammals interact
with the CARD domain of signaling adaptor MAVS to initiate
downstream signaling, activating transcription factors IRF3 and
NFkB and ultimately resulting in an antiviral response (31, 32).
Additionally, RIG-I and LGP2 have a repressor domain (RD)
within the C-terminal regulatory domain (28, 30). As LGP2 lacks
CARD domains, it is unable to initiate antiviral signaling and
instead likely acts as a concentration dependent biphasic switch
in mammals, positively regulating MDA5 at low concentrations
and negatively regulating RIG-I and MDA5 at high
concentrations (33–35). Some RLRs with sequences most
similar to RIG-I have been identified in the N. vectensis
genome (9).

Nucleotide-binding oligomerization domain-like receptors
(NLRs) are intracellular PRRs capable of recognizing a wide
array of DAMPs and MAMPs including reactive oxygen species
(ROS) (36), organelle calcium efflux (37), Lipopolysaccharide
(38), peptidoglycan (39), and viral RNA (40). Prototypically
NLRs contain an N terminal effector domain, a central
NACHT/nucleotide binding domain, and C terminal leucine
rich repeats. NLRs can activate several innate immune pathways
following ligand engagement, including the NFkB, MAPK,
interferon and inflammasome assembly pathways (36, 39, 41).
H. vulgaris and two stony coral species have been shown to have
large NLR repertoires, containing unique domain combinations
that are not seen in mammalian NLRs (10, 42, 43).

C-type lectins (CTLs) are a very diverse protein family that
can act as either soluble or transmembrane PRRs (5, 44). They
are characterized by the C-type lectin domain (CTLD) which is
most well-known for calcium dependent carbohydrate binding
but is also capable of binding to proteins, lipids, and inorganic
compounds (44). CTLs can activate NFkB as well as the lectin
complement pathway (45, 46). A bioinformatic study of N.
vectensis CTLs also found a large repertoire that could not be
categorized by the mammalian CTL classification system (47).

Our study aims to build upon the current base of knowledge
on cnidarian PRRs by expanding to investigate four PRR types in
a phylogenetically diverse group of cnidarians. Previous studies
are heavily concentrated in two classes, the anthozoan class
Hexacorillia (stony corals and anemones), and two model
systems within the medusozoan class Hydrozoa: H. vulgaris
and Hydractinia symbiolongicarpus (8, 9, 15, 26, 27, 42, 47,
48). To date, PRRs have not been investigated in cnidarians with
a free-swimming adult medusae form, meaning that current
studies also lack diversity in terms of life history strategies.
Furthermore, only one anemone species, N. vectensis, has
studies of all four PRR types (9, 25, 43, 47). Thus, we lack
knowledge of the number and structure of PRRs in the remaining
classes of the phylum and the full PRR repertoires of even the
well-studied species.

Within the past couple of years, a wealth of cnidarian
genomic resources has become available, particularly in the
medusozoan clade, making it possible to investigate PRRs in a
June 2021 | Volume 12 | Article 689463
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far more diverse set of cnidarian species (nine anthozoans and
six medusozoans), with strong potential to provide a more
detailed picture of PRR and innate immune evolution (49–53).
Therefore, we surveyed the proteomes of 15 cnidarians, nine
anthozoans and six medusozoans, for putative TLRs, RLRs,
NLRs, and CTLs with the hypothesis that medusozoans would
have less diverse PRR repertoires. Next, because TLRs, RLRs,
NLRs, and CTLs are all capable of activating NFkB signaling in
mammals, we investigated the PRR to NFkB pathways in all 15
cnidarian species, as well as the lectin complement pathway to
determine if there is a disparity in downstream immune pathway
completeness between the anthozoan and medusozoan clades.
MATERIALS AND METHODS

PRR Survey
The proteomes of Acropora millepora (54), Actinia tenebrosa (53),
Aurelia sp. (50), Calavadosia cruxmelitensis (51), Cassiopea
xamachana (55), Clytia hemisphaerica (49), Dendronephyta
gigantea (56), Exaiptasia daiphana (previously Exaiptaisa pallida)
(57), Hydra vulgaris (14), Montipora capitata (58), Morbakka
virulenta (59), Nematostella vectensis (60), Orbicella faveolata (61),
Pocillopora damicornis (62), Xenia sp. (52), and sponge
Amphimedon queenslandica (63) were surveyed for TLRs, RLRs,
NLRs, and CTLs usingHMMR (64). A summary the clade, class, life
history traits, genome assembly size, and predicted proteins for each
species can be found in Supplementary Table 1. All proteomes
used were genome based with the exception ofN. vectensis. This was
due to a failure to find the complete prototypical TLR in the
genome-based proteome of N. vectensis, despite several previous
studies reporting its presence in the genome (25). The complete
prototypical TLR was also absent in smallest transcriptome shotgun
assembly available (NCBI GenBank: HADO000000000.1), so the
second smallest transcriptome shotgun assembly (NCBI GenBank :
HADN000000000.1) was filtered and used (60). Transdecoder was
used to extract the longest open reading frame of each contig and
translate it into a predicted peptide sequence (65). Then CD-HIT
was used to collapse sequences with a similarity level of 0.85 to limit
the number of splice isoforms in the assembly (66). This resulted in
a proteome with 42,379 contigs, 14,000 higher than the average
number of predicted proteins in the genome-based proteomes used
in this study (Supplementary Table 1) (67). However, PRR
numbers are similar across the genome based proteome of N.
vectensis, NCBI GenBank: HADO000000000.1, and GenBank :
HADN000000000.1 (Supplementary Table 2) so excess contigs
have minimal impact on results.

Queries were made by using Clustal Omega to make an
alignment of all human TLRs, RLRs, NLRs, and CTLs
respectively (68, 69). All sequences that had an E-value less than
10-4.9 following the HMMR search were then run through Pfam to
predict protein domains using the batch search tool (70). Non-
repeat domains with an individual E-value of less than 10-4.9 were
counted and repeat domains were counted if they had an
individual E-value less than 10-3. TMHMM was used to predict
transmembrane domains in TLRs and CTLs (71).
Frontiers in Immunology | www.frontiersin.org 3
TLRs were classified as prototypical if the predicted protein had
both a TIR domain, LRR, and transmembrane domain that met
our inclusion threshold. Proteins with a TIR domain and a
transmembrane domain were classified as TLR-like proteins.
Proteins with a DExD/H box helicase, CARD, and C terminal
RIG regulatory domain were classified as RIG-I/MDA5-like
receptors. Proteins were classified as LGP2-like receptors if they
had a DExD/H box helicase, and RIG-I repressor domain
(Figure 1). In several proteins the DExD/H box helicase
domains had E-values meeting our inclusion threshold but were
not considered as a member of the Pfam domain clan following
post processing. However, given that Cnidaria is a phylogenetically
distant and basal phyla, these domains were counted given the
context of the surrounding domains which always included the
RIG-I repressor domain. NLRs were classified as prototypical if
the predicted protein contained at a minimum both the NACHT
domain and LRRs and as NLR-like if they contained at a
minimum the NACHT domain. CTLs were divided into 3
groups. Proteins with the CTLD and a transmembrane domain,
proteins with CLTD and a Pfam domain indicative of extracellular
localization, and proteins with the CTLD and no additional
domains indicative of where they may be localized (Figure 1).
Pfam domains considered to be indicative of extracellular
localization included cysteine rich secretory domain (72), CUB
(73), F5/8 (74), ShK (75), Von Willebrand factors (76),
thrombospondin (77), trefoil (78), Fibrinogen b/g terminal
globular domain (79), NIDO (80), PKD (81), coagulation factor
Xa inhibitory domain (82), U-PAR/Ly6 (83), complement Clr like
EGF (84), and Xlink (85).

The total number of TLRs, RLRs, NLRs and CTLs in each
species were then used as input for ancestral state reconstructions.
The phylogenetic tree used for this analysis was created using
Orthofinder (86). Ancestral state reconstructions based on
maximum likelihood (ML) were made using the fastAnc
function in the R package phytools. Phytools was also used to
visualize the ML ancestral state reconstructions (87).

Relationship to Clade and Life
History Traits
Principal component analysis was run in R and visualized with
the R package ggfortify (88). The input of the PCA analysis was
the total number of PRRs in each PRR type per species. To test
for associations between total PRR number and clade,
intracellular algal symbiosis, coloniality, and mobility,
generalized linear models were run in R. Because there is
considerable overlap between anthozoan species, symbiotic
species, colonial species, and sedentary species, five individual
models were tested (total PRRs~trait, family = quasipoisson)
(Supplementary Table 1).

Downstream Immune Pathway
Completeness
NFkB
BLASTp was used to identify NFkB and IKBA in all species
included in the study (89). Human sequences of p100, p105, and
IKBA were used as queries (69). The top 5 best hits to each query
June 2021 | Volume 12 | Article 689463
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were then run through Pfam to predict domains using the same
inclusion thresholds as the PRRs. Because the N. vectensis NFkB
is known to be truncated only the Rel DNA binding domain and
Rel dimerization domain were required for a cnidarian protein to
be considered NFkB (90). Multiple ankyrin repeats were
required for a cnidarian protein to be considered IKBA.

PRR to NFkB Pathway
Cnidarian proteomes were searched for members of the PRR to
NFkB KEGG pathways using BLASTp and a human query (69,
89, 91). The cnidarian protein with the highest E-value to each
query was then blasted against the human proteome
(GCA_000001405) (69). If the human query and best human
hit following reciprocal blast were the same protein, the protein
was counted as present in the cnidarian.

Lectin Complement Pathway
Because complement consists 5 mosaic protein families that
likely did not expand until teleosts, we used pBLAST to search
for representatives of the C3, Factor B/C2, MASP, and C6
families (89, 92). Human sequences for all members of a given
family were used as queries (69). Each protein family has a
unique domain composition so the top 5 best hits to each query
were run through Pfam using the batch search option to predict
domains (70). Proteins were considered members of the C3
family if they contained multiple macroglobulin domains, CUB,
and C345c. Proteins were considered members of the Factor B/
C2 family if they contained sushi repeats, vonWillebrand factors,
and a serine protease. Proteins were considered members of the
MASP family if they contained 2 CUB domains, sushi repeats,
and serine protease. Proteins were considered members of the C6
family if they contained TSP, low density lipoprotein receptor
domain class A, MACPF, and sushi repeats (92).
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

PRR Survey
The number of prototypical TLRs and TLR-like proteins vary across
the species surveyed from 0 to 24. No prototypical TLRs were found
in any of the six medusozoan species and in two anthozoans, E.
daiphana and Xenia sp. (Figure 2). In contrast, two anthozoans have
expansions in prototypical TLRs, D. gigantea and A. millepora, with
four prototypical TLRs found in D. gigantea and ten in A. millepora.
TLR-like proteins with a TIR domain and a transmembrane domain
were found in all species except forC. hemisphaerica andM. virulenta
(Figure 2 and Supplementary Table 3). Based upon ancestral state
reconstruction, one TLR was present in the common ancestor shared
by medusozoans and anthozoans (Figure 3A). Relative to this
ancestral cnidarian and other anthozoans, stony corals (A.
millepora, M. capitata, P. damicornis, O. faveolata) have expansions
in TLRs, specifically TLR-like proteins (Figures 2, 3A).

RIG-I/MDA5-like receptors were found in the proteomes of
all nine anthozoan species (Figure 2). These proteins all
contained both the C terminal regulatory domain and the
RIG-I C terminal repressor domain (Supplementary Table 4).
Two species of anemone, A. tenebrosa and E. daiphana, have
expansions in RLRs relative to both other anthozoans and the
common ancestor shared by medusozoans and anthozoans
(Figure 3B). These expansions are largely due to the high
number of RIG-I/MDA5-like receptors in these species
(Figure 2). A. queenslandica, the sponge outgroup, Xenia sp.,
A. tenebrosa, A. millepora, andM. capitata all contained proteins
with domains characteristic of LGP2 (Figure 2). In A. millepora
and M. capitata, these proteins had an RNA dependent RNA
polymerase domain in addition to the canonical LGP2 domain
organization (Supplementary Table 4). No RLRs were found in
any of the six medusozoan species (Figure 2).
FIGURE 1 | Flow chart of methodology used to identify PRRs. Shown is the minimum domain requirements for a protein to be classified in the various categories
as well as homology requirements based upon E-value.
June 2021 | Volume 12 | Article 689463
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Diverse arrays of NACHT containing proteins were found in
the majority of cnidarian species surveyed. Prototypical NLRs
containing NACHT and LRR domains were present in the sponge
A. queenslandica and all nine anthozoan species but absent in all
medusozoan species (Figure 2). No NACHT containing proteins
Frontiers in Immunology | www.frontiersin.org 5
were found in two medusozoan species, the Staurozoan C.
cruxmelitensis and the Cubozoan M. virulenta (Figure 2). The
majority of anthozoan species were found to have expanded NLR
repertoires relative to medusozoans. However, only a smaller
subset of anthozoan NLR repertoires are expanded relative to
A B

DC

FIGURE 3 | Ancestral state reconstructions of the number of (A) prototypical TLRs and TLR-like proteins, (B) RIG-I/MDA5-like receptors and LGP2-like receptors
(C) prototypical NLRs and NLR-like proteins (D) CTLs.
FIGURE 2 | Number of PRRs of each type found in each species. Far left shows schematics of the minimum domain composition for each PRR type, from top to
bottom: prototypical TLR, TLR-like, RIG-I/MDA5-like, LGP2-like, prototypical NLR, NLR-like, transmembrane CTL, extracellular CTL, CTL with unknown localization.
To the right of the schematics is the corresponding number of each PRR type found in each species’ proteome. Species are grouped by phylogeny, with
anthozoans in red, medusozoans in blue, and the sponge outgroup in black. Aq, Amphimedon queenslandica; Ch, Clytia hemisphaerica; Hv, Hydra vulgaris; Cc,
Calavadosia cruxmelitensis; Mv, Morbakka virulenta; A, Aurelia sp.; Cx, Cassiopea xamachana; X, Xenia sp.; Dg, Dendonephthya gigantea; At, Actinia tenebrosa; Ep,
Exaiptasia daiphana; Nv, Nematostella vectensis; Am, Acropora millepora; Mc, Montipora capitata; Pd, Pocillopora damicornis.
June 2021 | Volume 12 | Article 689463
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the common ancestor shared by medusozoans and
anthozoans (Figure 3C).

Anthozoan NLR repertoires are not only generally larger
(Figure 3C), but also more diverse in terms of domain
composition (Supplementary Table 5). Excluding LRRs 35
different Pfam domains were found in combination with
NACHT across the 15 cnidarian species. Several of these
domains are associated with immunity, including Dzip3/
hRUL138-like HEPN nuclease (93), caspase recruitment
domain (CARD) (94), death domain (DD) (95), ZU5 (96),
glycosyl transferase (97), NB-ARC (98), WD-40 repeats (99),
and Toll/interleukin receptor (TIR) domain (100). Excluding
LRRs, the Dzip3/hRUL138- like HEPN domain was the most
common domain found in combination with NACHT in C.
hemisphaerica, Xenia sp., D. gigantea, A. tenebrosa, E. daiphana,
A. millepora, M. capitata, P. damicornis, and O. faveolata.
Anthozoans show large expansions of proteins with Dzip3/
hRUL138- like HEPN domain fused to NACHT, which ranged
from 17 proteins in O. faveolata to 83 in D. gigantea. TIR was the
most common domain found with NACHT in C. xamachana
and DD was most common domain found with NACHT in H.
vulgaris. Domains associated with transposable elements were
found with NACHT in two species, H. vulgaris and M. capitata.
A protein model with NACHT and the hAT family C terminal
dimerization domain was found inH. vulgaris whileM. capitata’s
proteome contains a protein with NACHT and an endonuclease
reverse transcriptase domain and a protein with NACHT and
integrase (Supplementary Table 5).

All of the cnidarians in this study have expanded repertoires
of CTLs relative to the sponge outgroup (Figures 2, 3D). Two
medusozoan species that are planktonic as adults, M. virulenta
and Aurelia sp., had the fewest CTLs of the cnidarian species
(Figures 2, 3D). Additionally, anthozoans have expanded CTL
repertoires relative to both medusozoans and the common
ancestor shared by medusozoans and anthozoans (Figure 3D).
The species with the most predicted CTLs were A. tenebrosa and
E. daiphana, two closely related sea anemones (Figures 2, 3D).

Across all 15 cnidarians, 70 different protein domains were
found in combination with CTLD. The two clades differed in the
domains most commonly found with CTLD. In six out of the
nine anthozoan species the epidermal growth factor domain
(EGF) was the most common domain found in conjunction with
CTLD. The concanavalin A-like lectin domain was most
commonly found with CTLD in four of the six medusozoans
and two of the nine anthozoans. In the remaining medusozoans,
C. hemisphaerica and M. virulenta, Von Willebrand factors and
cysteine rich secretory domains respectively were most
commonly found in conjunction with CTLD. Other common
domains fused to CTLD were immunoglobulin, fibronectin,
MAM, CUB, cysteine rich scavenger receptor, Kazal-type
serine protease inhibitor, and PAN. Proteins with the domain
organization of mannose binding lectin (MBL) (CTLD, collagen)
were found in C. xamachana and C. hemisphaerica. As with the
NLRs, the CTL search yielded surprising domain combinations.
Reverse transcriptase domains were found in combination with
CTLD in four species, M. virulenta, H. vulgaris, E. daiphana and
M. capitata, and integrase and CTLD were found inM. capitata.
Frontiers in Immunology | www.frontiersin.org 6
Additionally, M. capitata and P. damicornis had predicted
proteins with the MAC/Perforin domain in addition to CTLD
(Supplementary Table 6).

Relationship to Clade and Life
History Traits
Our results indicate the presence of a divide between the two
cnidarian clades in PRR number across all four PRR types.
Principle component analysis resulted in the medusozoans and a
single anthozoan, N. vectensis, grouping tightly across both PC1
and PC2. The anthozoans excluding N. vectensis group relatively
tightly across PC1, driven largely by CTLs and NLRs, but show
more variance across PC2. The separation of the anthozoans across
PC2 is most likely due to the expansions in prototypical TLRs and
TLR-like proteins found in stony corals and the expansion of RIG-
I/MDA5-like proteins in A. tenebrosa and E. daiphana
(Figure 4A). A generalized linear model found significant
associations between the total PRR number and clade (p =
0.0001). Total PRR number was also associated with ability to
host intracellular algal symbionts (p=0.038), colonial animals (p =
0.033), and sedentary animals (p=0.014) (Figures 4B–E).

Downstream Immune
Pathway Completeness
Given the differences in PRR numbers across the two cnidarian
clades, we then investigated the completeness of the pathways
downstream of TLRs, RLRs, NLRs, and CTLs that lead to master
immune regulator NFkB (Figure 5). All species’ proteomes
contained at least one homolog of NFkB. Stony corals and
sponge outgroup A. queenslandica contain NFkB homologs
most similar in domain composition to the mammalian NFkB
queries (p100, p105), containing the Rel binding domain, Rel
dimerization domain, ankyrin repeats, and the death domain
(Figure 5C). Anthozoans E. daiphana and A. tenebrosa, have
seemingly lost the death domain in their NFkB, which contains
the Rel binding domain, Rel dimerization domain, and ankyrin
repeats (Figure 5C). Notably, anthozoans N. vectensis, D.
gigantea, Xenia sp., and all of the medusozoan species have
NFkB homologs that have lost ankyrin repeats and the death
domain (Figure 5C).

In addition to lacking RIG1/MDA5, prototypical NLRs and
prototypical TLRs, medusozoans have slightly less complete PRR
to NFkB pathways when compared to anthozoans (Figures 5A, B).
Notably, IKKg (NEMO) is absent in the majority of species,
although the majority of species. contained at least one IKK
(Supplementary Table 7). IRAK1/4, TRIF, RIP1, RIP2, MAVs,
and CASP10 were missing in all cnidarian species (Figures 5A, B).
In the case of CASP8, CASP10, and CARD9 the best reciprocal
best blast hit was a slightly different caspase or caspase recruitment
protein (Supplementary Table 7).

Homologs of MASP, C2, and C3 were found in the majority of
species in this study (Figure 6). Two medusozoans, C.
cruxmelitensis and H. vulgaris lacked MASP homologs. Notably,
all anthozoans had proteins with the domain structure characteristic
of the C2/Bf family and C3 family while C. hemisphaerica and H.
vulgaris lacked C2/Bf proteins and Aurelia sp. and C. xamachana
lacked proteins in the C3 family. However, both the Aurelia sp. and
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A B

D E

C

FIGURE 4 | (A) Principal component analysis of total number of PRRs in each category, red points indicate anthozoan species, blue points indicate medusozoan
species, triangular points indicate symbiotic species, and circular points represent non-symbiotic species. Aq, Amphimedon queenslandica; Ch, Clytia hemisphaerica;
Hv, Hydra vulgaris; Cc, Calavadosi cruxmelitensis; Mv, Morbakka virulenta; A, Aurelia sp.; Cx, Cassiopea xamachana; X, Xenia sp.; Dg, Dendonephthya gigantea; At,
Actinia tenebrosa; Ep, Exaiptasia daiphana; Nv, Nematostella vectensis; Am, Acropora millepora; Mc, Montipora capitata; Pd, Pocillopora damicornis. (B–E) Boxplots of
total PRR number separated by (B) Clade, (C) Symbiotic status, (D) Colonial status, and (E) motility. *** indicates a p-value less < 0.001 and * indicates a p-value <
0.05 resulting from a generalized linear model. Points represent individual species’ total PRR numbers binned into groups of 10.
A

B

C

FIGURE 5 | (A, B) PRR-NFkB pathways modified from Kegg pathway. Opacity of the boxes represents the percentage of (A) Anthozoans or (B) Medusozoans with
that pathway component. (C) schematic of the domains found in NFkB in each species, grouped by phylogeny. Medusozoan species are indicated by the blue
phylogenetic tree branches. Anthozoan species indicated by the red phylogenetic tree branches.
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C. xamachana proteomes contained proteins with all of the
characteristic C3 family domains except for the C34c domain
(Supplementary Table 8). No proteins matching the C6-9
protein family’s domain structure were found in any of the
species (Figure 6).
DISCUSSION

PRR Survey
Our study builds upon previous studies of cnidarian PRRs to give
a higher resolution picture of PRR evolution within the phylum.
We show a clear split in PRR number between two major
cnidarian clades, Anthozoa and Medusozoa. Most notably
medusozoans lack prototypical TLRs, all RLRs, and prototypical
NLRs, while anthozoans possess prototypical PRRs. Further, we
show that within Anthozoa extensive expansions of NLRs and
CTLs are present in soft corals as well as what has been previously
described in stony corals and anemones. In some cases, our
results vary slightly from previous studies in the exact number
of PRRs identified, due to differences in methodology including
queries and search algorithms used, inclusion thresholds,
genomic resources, and treatment of splice isoforms (10, 26, 43,
47, 101). These slight differences do not impact the overall
findings of this study, including expanded PRR repertoires in
the majority of anthozoans relative to medusozoans and a lack of
prototypical PRRs in medusozoans not previously reported
outside of Hydrozoa (27).

The presence of prototypical TLRs in two anthozoan classes,
Octocorallia and Hexacorallia, and the absence of prototypical
TLRs in medusozoans, sponges (102, 103), ctenophores (104),
and placozoans (105) suggests that within Metazoa prototypical
TLRs first appear in the ancestral anthozoan and have been
secondarily lost in Xenia sp. and E. daiphana (57). Anthozoan
prototypical TLRs likely are similar in function to the N. vectensis
TLR which has been shown to play a role in pathogen recognition,
NFkB signal transduction, and development (25). Despite their
lack of prototypical TLRs, it is likely that Xenia sp., E. daiphana,
and medusozoans are capable of TLR-NFkB signaling through
TLR-like proteins, as studies in H. vulgaris have indicated (27).

The full mechanism by which transmembrane LRR proteins
interact with TLR-like proteins is unknown; however, if multiple
transmembrane LRRs are capable of interacting with a single TLR-
like protein this pathogen recognition system could provide a
Frontiers in Immunology | www.frontiersin.org 8
versatile source of immune specificity in cnidarians. This study
provides further support to previous findings of a lineage specific
expansion inTLR-like proteins in stony coral species. This expansion
is hypothesized to be involved in distinguishing mutualistic or
commensal microorganisms from parasitic microorganisms within
the coral holobiont and mounting an appropriate immune response
(8, 26, 106). This potential function of TLR-like proteins is
particularly vital to understand in corals as microbiome
composition is thought to influence resistance to both disease and
thermal stress, two existential threats to coral reefs (107, 108)

The presence of the C terminal RIG-I repressor domain
indicates that the RIG-I/MDA5-like receptors in anthozoans
are more similar to RIG-I than MDA5. This supports previous
findings that N. vectensis RIG-I/MDA5-like receptors group
more closely with vertebrate RIG-I than MDA5 (9). The
presence of LGP2-like proteins in A. queenslandica, Xenia sp.,
A. tenebrosa, A. millepora, and M. capitata contradicts the
hypothesis that RIG-I is the most evolutionarily ancient RLR
and supports the hypothesis that LGP2 is the first RLR to emerge
(9, 109). The fact that LGP2 is not consistently present in
anthozoans indicates either that it is commonly secondarily
lost due to low selective pressure or that it has evolved
independently several times. Additionally, It is unclear what
function LGP2 has in the absence of RIG-I and MDA5;
however, the presence of an RNA dependent RNA polymerase
domain in the A. millepora and M. capitata LGP2-like receptors
indicates that their LGP2-like receptors most possibly amplify
dsRNA targets for RNA interference and do not function like
vertebrate LGP2 (34, 35, 110).

The presence of prototypical NLRs in A. queenslandica and all
nine anthozoan species indicates that prototypical NLRs have
been secondarily lost in Medusozoa. However, LRRs appear to
not be necessary for DAMP recognition in medusozoan NLRs, as
an NLR in H. vulgaris was shown to be upregulated in response
to both lipopolysaccharide and flagellin (10). Thus, NLR-like
proteins may still be a source of immune specificity in cnidarians.
As in previous studies, we found expansions of NLRs within
anthozoan species, indicating that NLRs are a substantial source
of immune specificity within the clade (42, 43). Gene expression
studies indicate that NLRs are upregulated in response to
immune stressors and modulate apoptosis and immunity (42,
111, 112). Our data support the link between cnidarian NLRs
and apoptosis as many of the effector domains found in
cnidarian NLRs including CARD (94), ZU5 (96), DD (95),
A

B

FIGURE 6 | (A, B) Lectin-complement pathway modified from Kegg pathway. Opacity of the boxes represents the percentage of (A) Anthozoans or
(B) Medusozoans with that pathway component.
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NBARC (98), and WD-40 repeats (99) are associated with
apoptotic signal transduction.

Because NLRs are involved not only in pathogen recognition
but also in self/altered-self/non-self-recognition, traits such as
coloniality and ability to form nutritional algal symbiosis may be
linked to expansions in NLRs (18, 113). A recent study indicates
that in E. daiphana, a symbiotic anemone, microalgae are taken
into the cell largely indiscriminately and the decision to retain
these microalgae as symbionts or expel them likely occurs
intracellularly (114). As intracellular PRRs, NLRs are great
candidates for modulating interactions between the algal
symbionts and the immune system of their cnidarian hosts
during the establishment of symbiosis, a hypothesis with some
support from transcriptomic studies (115).

Currently, knowledge of cnidarian NLRs stems from both
bioinformatic and gene expression studies (10, 42, 43, 111, 112)
as this family of PRRs has yet to be functionally studied within
the phylum. Functional studies of cnidarian NLRs are needed, as
our results and previous studies indicate that anthozoans have
invested in large and diverse NLR repertoires (42, 43).

The expansion of CTLs across all 15 cnidarian species relative to
the sponge outgroup aligns with previous findings of diverse and
large CTLD containing protein repertoires in invertebrate species (5,
47). Despite this diversity and the potential for cnidarian CTLs to
greatly contribute to immune specificity, functional studies have
only been conducted on homologs of mannose binding lectin
(MBL), the activator of the lectin complement pathway (11, 116).
These studies indicate that MBL homologs in two corals, P.
damicornis (116) and A millepora (11) are capable of binding to
both bacteria and Symbiodiniaceae leading to the hypothesis that
lectin/glycan interactions are a mechanism of recognition during
symbiont infection. This hypothesis has found some support from
transcriptomic studies (117, 118). The ability of cnidarian lectins to
interact with MASP and activate the lectin-complement pathway
has yet to be investigated. Both of the cnidarian lectins for which we
have functional studies and the majority of cnidarian species in this
study lack CTLs with the collagen helix domain characteristic of
MBL (11, 116). However, it is possible that cnidarians are capable of
lectin-complement activation despite lacking collagen domains as
studies have shown that CTLs lacking collagen domains are still able
to interact with MASP (119, 120).

CTLs in cnidarians are potentially a large source of immune
specificity which to date has been understudied. Based on their
large and diverse CTL repertoires, cnidarians are likely utilizing
CTLD containing proteins for a variety of functions.
Transcriptomic and proteomic studies indicate that CTLs are
involved in coral wound healing (121) and disease response (122,
123) in addition to their hypothesized role in mediating
symbiosis with Symbiodiniaceae (11, 116–118). Thus, further
functional studies of cnidarian CTLs are warranted and should
focus both on highly conserved CTLs and on novel cnidarian
CTLs with the potential to shed light on disease processes.

Relationship to Clade and Life
History Traits
There is a divide in number of PRRs and downstream immune
pathway completeness between Medusozoa and Anthozoa. There
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are several life history traits common in the anthozoan clade that
could explain a greater need for immune specificity and thus this
division (13). Three of these life history traits, intracellular algal
symbiosis, coloniality, and sedentary lifestyle, we found to have a
significant association with total number of PRRs.While intracellular
algal symbiosis occurs in both Medusozoa and Anthozoa, there are
far more symbiotic anthozoan genera (18, 124). The establishment
and maintenance of intracellular algal symbionts is a complex
process, with many cnidarian species hosting several species of
algae, and thus it likely requires immune specificity (18). Similar to
intracellular algal symbiosis, there are colonial organisms in both
Medusozoa and Anthozoa, but they are far more common in
Anthozoa. Colonial invertebrates require allorecognition systems to
distinguish self-tissues from conspecific tissues, which may
necessitate a more diverse repertoire of PRRs (19, 20). Animals
that spend themajority of their lifespanmotile are far more common
in the medusozoan clade. In contrast, anthozoan species are largely
sedentary, often residing in microbe rich environments like estuaries
and coral reefs (13). As sedentary animals are unable to avoid
antigen accumulation through movement, they likely also have a
greater need for immune specificity (125).

There are several other life history traits that may be associated
with immune specificity in cnidarians thatwewere unable to test due
to either a lack of data or low sample size. Number ofmutualistic and
commensal bacterial symbioses is almost certainly factor in the
amount of immune specificity a given cnidarian has, however this
information isnotavailable formanyof the species in this study(126).
It is also possible that anthozoans and medusozoans have a similar
need for immune specificity and simply employ differentmethods to
meet this demand. Medusozoans could rely more heavily on other
pattern recognition receptor types, such scavenger receptors, rather
than TLRs, RLRs, NLRs, and CTLs to provide their immune
specificity (127). Other possible sources of immune specificity not
reflected inPRRnumber include increasedsubstitutionratesandpost
translational modifications (128, 129). With future studies and
increased resolution of genomic and proteomic resources we hope
that this study can be used as a basis for linking life history to
mechanisms of immune specificity.

Downstream Immune Pathway
Completeness
Our study indicates a complex history ofNFkBwithinCnidaria, as
ankyrin repeats appear to have been secondarily lost at least three
times within the phylum. This C-terminal inhibitory domain
prevents NFkB from trafficking to the nucleus and must be
removed via proteolysis in order for NFkB to bind to DNA.
This regulatory function may not be under strong selective
pressure within Cnidaria. There are several functional studies on
cnidarian NFkB proteins, includingN. vectensisNv-NFkB, which
is truncated and does not include ankyrin repeats (90, 130). These
studies show that E. daiphana’s NFkB binding specificity is more
similar to both human NFkB p50 and Nv-NFkB than c-Rel and
RelA, despite the Nv-NFkB having a similar domain organization
to c-Rel and RelA (130). Because ankyrin repeats appear to have
been independently lost, it is unclear if soft coral andmedusozoan
NFkB share similar binding specificity to Ep-NFkB, Nv-NFkB,
and human NFkB p50. However, several studies in both
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medusozoans and anthozoans show that NFkB is responsive to
pathogen exposure (27, 111, 112, 130).

Consistent with previous studies, we found that while cnidarians
have the majority of proteins in PRR to NFkB pathways they are
missing some components found in mammalian PRR to NFkB
pathways (15, 130). However, the absence of these components
does not mean that cnidarians are incapable of PRR to NFkB
signaling (27, 130). Cnidarians can compensate for missing
pathway components either by proteins upstream of the missing
component interacting directly with proteins further downstream or
through proteins that are not homologous to mammalian pathway
members but are able to functionally replace them (10, 131).

While cnidarians likely retain PRR to NFkB signaling through
these mechanisms, these missing proteins still indicate potential
fundamental differences between cnidarian and mammalian
innate immune pathways. Functional replacements may not be
regulated or regulate immune pathways in the same manner as
their mammalian counterparts. For example, although it appears
as though cnidarians have a functional replacement for RIPs, this
functional replacement likely is not regulated in the same
manner as RIPs because the adaptor proteins RIPs interact
with in the decision to promote pro-life NFkB signaling or cell
death signaling are also absent (10, 132). The lack of RIPs in
cnidarians could result in a greater propensity for cell death
signaling over pro-life NFkB signaling, a hypothesis that could
explain disease phenotypes in white syndrome coral diseases
(133). The absence of MAVs from the RLR-NFkB pathway is
notable, as it is unclear how RLR antiviral signaling occurs in the
absence of this key adaptor protein, however interactions with
other CARD domain containing proteins may mediate RLR
signaling in cnidarians (31, 32).

No proteins in the C6 family were found in any of the 15
cnidarian species in this study, consistent with previous findings in
N. vectensis, E. daiphana and reef building corals (57, 92, 118). This
indicates that cnidarians are unable to form the membrane attack
complex and instead use complement for opsonization through C3
(92). While opsonization of microbes by C3 has not been directly
shown in cnidarians, transcriptomic studies in anthozoans show
that complement signaling is responsive to bacterial pathogens (112,
118). Scyphozoans C. xamachana and Aurelia sp. lack the complete
domain structure of C3. However, because the domain they are
missing, C345c mainly functions in interacting with C6 family
proteins, this protein may still be able to opsonize (134).
CONCLUSIONS

Asawhole, our data indicate that anthozoanshave greater immune
specificity than medusozoans, with expansions of NLRs and CTLs
providing the majority of this specificity. We hypothesize that a
greater immune specificity in anthozoans is needed due to life
history traits common within the clade, such as being sedentary,
having a colonial bodyplan, andhosting a complexmicrobiota that
includes intracellular algal symbionts. More broadly, our data
indicate that studying cnidarian PRRs can give insight not only
into where within Metazoa prototypical PRRs arose but also how
basal prototypical PRRs function and the systems by which
Frontiers in Immunology | www.frontiersin.org 10
DAMPS and MAMPs were recognized prior to the emergence of
these prototypical PRRs. Further investigations into medusozoan
immunity would likely provide a greater understanding of non-
prototypical pattern recognition systems. The ecological threat
coral diseases pose has led to a wealth of knowledge on anthozoan
immune responses (135). Placing these studies in an evolutionary
context could give further information as to howbasal prototypical
PRRs function and more broadly how innate immunity evolved.
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