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Simple Summary: Recent estimates have shown that approx. 70% of individuals with BRCA1
mutations will develop breast cancer by the age of 70. To make matters worse, breast cancer patients
with BRCA1 mutations are more likely to have the more aggressive triple-negative breast cancer.
PARPs, belong to a family of nuclear enzymes, which are involved in many cellular processes,
including DNA repair. PARP inhibitors have been approved for the treatment of BRCA-mutated
breast cancer. The aim of the study was the determination of PARP-1 expression in the context of the
presence of BRCA1 mutations in circulating tumor cells of breast cancer patients. PARP-1 (nuclear)
expression and BRCA1 mutations were mainly detected in triple negative breast cancer patients, and
the latter were correlated with decreased survival. Our data suggest that PARP-1, in conjunction with
BRCA1, could potentially be used as (a) biomarker(s) for patients’ stratification.

Abstract: BRCA1 and PARP are involved in DNA damage repair pathways. BRCA1 mutations have
been linked to higher likelihood of triple negative breast cancer (TNBC). The aim of the study was to
determine PARP-1 expression and BRCA1 mutations in circulating tumor cells (CTCs) of BC patients.
Fifty patients were enrolled: 23 luminal and 27 TNBC. PARP expression in CTCs was identified by
immunofluorescence. Genotyping was performed by PCR-Sanger sequencing in the same samples.
PARP-1 expression was higher in luminal (61%) and early BC (54%), compared to TNBC (41%)
and metastatic (33%) patients. In addition, PARP-1 distribution was mostly cytoplasmic in luminal
patients (p = 0.024), whereas it was mostly nuclear in TNBC patients. In cytokeratin (CK)-positive
patients, those with the CK+PARP+ phenotype had longer overall survival (OS, log-rank p = 0.046).
Overall, nine mutations were detected; M1 and M2 were completely new and M4, M7 and M8 were
characterized as pathogenic. M7 and M8 were predominantly found in metastatic TNBC patients
(p = 0.014 and p = 0.002). Thus, PARP-1 expression and increased mutagenic burden in TNBC patients’
CTCs, could be used as an indicator to stratify patients regarding therapeutic approaches.

Keywords: PARP-1; BRCA1; circulating tumor cells; breast cancer; triple negative breast cancer; luminal

1. Introduction

Breast cancer (BC) is a multifactorial disease and accounts for 30% of cancers in
women [1]. A variety of factors have been associated with its incidence, several of which
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are genetic. Indeed, approximately 40% of inherited cancers are due to mutations in the
breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) [2]. Recent estimates have
shown that approximately 70% of patients with mutations in BRCA1 and 45% in BRCA2
will develop BC by the age of 70 [1,3].

Triple negative BC (TNBC) is the most aggressive BC subtype, devoid of hormone
receptors (estrogen and progesterone) or human epidermal growth factor receptor 2 (HER2).
TNBC is distinct and heterogeneous compared to the other subtypes [4]. Lack of targeted
therapies for TNBC patients has led to an unmet need for new biomarkers [5,6]. TNBC is
closely associated with BRCA mutations and especially germline mutations [7].

BRCA1 is located on chromosome 17q21 and encodes a tumor suppressor protein
of 1863 amino acid residues. BRCA1 has been reported to have a plethora of roles in
tumorigenesis from the start of a tumor, up to the regulation of epithelial-to-mesenchymal
transition, cell motility, adhesion, invasion and ultimately metastasis. DNA damage and
dysfunctions of repair are also features of cancer etiology [8]. BRCA1 is involved in the
DNA damage repair (DDR) processes, in particular the repair of double strand breaks
(DSBs), hence safeguarding genomic stability and integrity [9,10].

Poly(ADP-ribose) polymerase 1 (PARP-1) enzyme is the most abundant and best
characterized of the 17-member family in humans [11,12]. PARP-1 is a DNA damage
sensor, also involved in DDR, primarily the repair of single-strand breaks (SSBs), but also
DSBs [13,14]. Numerous studies have shown up-regulation of PARP-1 expression in cancer
cell lines and patients’ tissues [15]. PARP-1 is mainly localized in the nucleus, but its
cytosolic distribution has also been investigated [16–18].

The DDR process, where both BRCA1 and PARP-1 are crucial, consists of five pathways.
Repair of SSBs by PARP-1 is via the base excision repair pathway [11,12]. In the case of the
more deleterious DSBs, repair is mediated by two complementary systems, namely the
non-homologous end joining (NHEJ), which is more error-prone and can also depend on
PARP activity, and the homologous recombination (HR) repair system, mediated amongst
other DNA damage players by BRCA1 [11–13]. Interestingly, more and more evidence
suggests that PARP-1 is also essential in the HR process [19,20], supporting PARP’s complex
roles and the interplay of the repair pathways. Administration of PARP inhibitors will
result in the production of a SSB, which will be repaired by HR. In the HR-deficient (BRCA-
mutated) cells, however, it will result in a DSB, when this SSB reaches the replication fork.
Accumulation of DSBs will prove fatal for the cell as they will lead to cell apoptosis or
accumulation of mutations with higher likelihood for cancer development [5,21–24].

New treatments in BC target the DDR [25]. In a very recent meta-analysis, PARP
inhibitors have been shown to prolong progression free survival (PFS) and overall survival
(OS) in patients with BRCA-mutated advanced BC [26]. Two PARP inhibitors, namely
olaparib and talazoparib, have been approved as monotherapies for the management of
locally advanced/metastatic HER2-negative BC, in patients with BRCA1 or 2 germline mu-
tations [6,22,23,27]. These inhibitors were identified following the OlympiAD [28,29] and
EMBRACA [30,31] phase III trials, respectively. In the former study, approximately half of
the patients had TNBC. The main outcome of both studies was the statistically significant im-
provement of PFS of BC patients, who were treated with the inhibitors compared to the con-
trol groups (7.0 vs. 4.2 months, HR = 0.58 for olaparib and 8.6 vs. 5.6 months, HR = 0.54 for
talazoparib), without however a significant benefit on the OS (19.3 vs. 17.1 months for
olaparib and 19.3 vs. 19.5 months for talazoparib).

Circulating tumor cells (CTCs) play an important role in the metastatic activity. The
prognostic and predictive value of CTCs in BC is being constantly sought. In fact, CTCs’
detection and enumeration has been reported in early as well as metastatic BC and has
been associated with poor clinical outcome (decreased PFS and OS) [32,33]. The epithelial
marker, cytokeratin (CK) and particularly A45-B/B3 antibody (CK8, CK18, CK19) has been
widely used for the characterization of cells as CTCs. Attention has lately been focused on
the heterogeneity of CTCs and the identification of proteins/biomarkers and/or mutations
in driver genes with prognostic and/or predictive significance [34–36].
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The aim of the present study was to investigate PARP-1 expression and determine the
existence of BRCA1 mutations in BC patients’ CTCs, with the ultimate goal of identifying
biomarkers capable of guiding informed decisions regarding patients’ treatment, especially
those of the more aggressive subtypes.

2. Materials and Methods
2.1. Patients’ Samples and Cytospins’ Preparation

Fifty blood samples were obtained from BC patients, 23 of which were luminal and
27 were TNBC. Informed consent, which has been approved by the Ethics and Scientific
Committees of our institution, was obtained from all subjects involved in the study.

Peripheral blood (10 mL in EDTA) was drawn from the middle of the vein puncture
after discarding the first 5 mL in order to avoid contamination from skin epithelial cells
during sample collection. Peripheral blood mononuclear cells (PBMCs) were isolated with
Ficoll–Hypaque, after centrifugation at 1800 rpm for 30 min at 4 ◦C. PBMCs were washed
twice with PBS and centrifuged at 1500 rpm for 10 min. Aliquots of 500.000 cells were
centrifuged at 2000 rpm for 2 min on glass slides [37,38]. Cytospins were dried up and
stored at −80 ◦C. In this study we didn’t use any magnetic isolation with EpCAM beads
because the use of two different epithelial markers (EpCAM and CK) would decrease the
recovery rate of CTCs. In addition, it has been shown that EpCAM is downregulated in
many CTCs [39]. Instead, we followed the published methodology used in the past in
many publications of our team [37,40–42].

2.2. Double Immunofluorescence

Double immunofluorescence staining experiments for CK/PARP were performed
in patients’ cytospins (2 per patient), accompanied by control experiments (Figure S1) in
cytospins with MCF-7 cells [37,38]. A PARP negative control was made by omitting the
corresponding primary antibody, while including its secondary IgG antibody. Cells were
initially fixed with 3% paraformaldehyde for 10 min and permeabilized with 0.5% Triton
X-100 for 10 min, followed by blocking with 5% FBS for 1 h. PARP (1:200; Novus Biologicals,
Littleton, CO, USA) was detected using anti-rabbit antibody labelled with Alexa Fluor
555 (ThermoFisher Scientific, Waltham, MA, USA). CK detection was achieved with the
primary A45-B/B3 antibody (1:100; Amgen, Thousand Oaks, CA, USA) and its secondary
anti-mouse antibody labelled with Alexa Fluor 488 (ThermoFisher Scientific, Waltham, MA,
USA). Finally, cells were mounted on slides with 4′,6-diamidino-2-phenylindole (DAPI)-
containing antifade reagent.

Cytospins were analyzed with the VyCAP system (VyCAP B.V., Enschede, The Nether-
lands) and a Leica TCS SP8 confocal microscope (Leica Microsystems, Wetzlar, Germany).

2.3. DNA Isolation from Cytospins

Cytospins with MCF-7 cells were used as positive controls to evaluate DNA isolation
efficacy. Cells were removed from glass slides by scraping with a scalpel [43], after the
staining procedure. The isolated cell pellet was centrifuged at 530× g for 10 min. Cells
were resuspended in 200 µL PBS and then used for DNA extraction. gDNA was isolated
with the High Pure PCR Template Preparation Kit (Roche, Mannheim, Germany) according
to the manufacturer’s instructions for isolation of nucleic acids from mammalian whole
blood or cultured cells. DNA purity and quantity were determined by absorbance readings
at 260/280 nm with Quawell Q5000 UV-Vis Spectrophotometer (Quawell Technology, Inc.,
San Jose, CA, USA) and integrity was controlled by electrophoresis on 1% agarose gel.

2.4. Amplification and Preparation of PCR Products

PCR was performed using the C1000 Touch Thermal Cycler (BIO-RAD, Hercules, CA,
USA). The following primers embracing BRCA1 exon 20 were used [44]:

Forward Primer: 5′ ATATGACGTGTCTGCTCCAC 3′.
Reverse primer: 5′ CTGCAAAGGGGAGTGGAATAC 3′.
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The amplification mixture of a total volume of 25 µL included the isolated gDNA as the
template and final concentrations of 1x PFU DNA polymerase, 1× supplied buffer, 1.5 mM
MgCl2 and 200 µM dNTPs. Final primer concentrations were 0.4 µM. The cycling protocol
consisted of pre-incubation at 94 ◦C for 5 min, followed by 35 cycles of denaturation at
94 ◦C for 30 s, annealing at 56 ◦C for 30 s, extension at 72 ◦C for 30 s, and a final extension
at 72 ◦C for 3 min. Confirmation of the desired PCR products (232 bp) was obtained by
electrophoresis on 1.5% agarose gel.

The NucleoSpin Gel and PCR clean-up kit (Macherey–Nagel, Düren, Germany) was
used to purify the PCR products following the manufacturer’s instructions. Purification
was confirmed by electrophoresis on 1.5% agarose gel.

2.5. Genotyping—Sanger Sequencing

The purified PCR products were sequenced at CEMIA SA (Larissa, Greece). The
sequence of the forward primer used for Sanger sequencing was 5′ ATATATGACGTGTCT-
GCTCCAC 3′. Display and analysis of the chromatograms (Figure S2) was done using the
FinchTV program. Alignment of the sequences from the chromatograms was done through
the ClustalW2 program using the corresponding sequence from NCBI (NG_005905.2:160741-
161041 Homo sapiens BRCA1 DNA repair associated (BRCA1), RefSeqGene (LRG_292) on
chromosome 17).

Exon 20 of BRCA1 was chosen as focus was on the detection of the mutations c.5366dupC,
R1751X and G1738R which are the most frequent in the Greek population with BC. The
intronic mutations were found, because the primers used in PCR included both at the 5′

and 3′ some part of intronic regions flanking exon 20.

2.6. Statistical Analysis

Spearman analysis, Mann–Whitney test, Kruskal–Wallis and χ2 was used to compare
the detected mutation with the expression of PARP-1, as well as available clinical data.
Kaplan–Meier survival tests for OS were performed. All analyses were performed on IBM
SPSS statistics version 26 software (IBM, Armonk, NY, USA). A value of p ≤ 0.05 was used
to identify significant results.

3. Results
3.1. PARP-1 Expression in the CTCs of BC Patients

From the 50 samples which were analysed from BC patients, 23 were luminal and 27
were TNBC. Among BC subtypes, the phenotype of CK+PARP+ was present in 14 out of 23
(61%) luminal and 11 out of 27 (41%) TNBC patients (Figure 1A). Regarding disease status,
CK+PARP+ CTCs were detected in 19 out of 35 (54%) early BC patients compared to 5 out
of 15 (33%) metastatic patients (Figure 1B and Table S1).

Regarding BC subtype, incidence of the CK+PARP+ phenotype among patients’ CTCs
was 91% in luminal versus 84% in TNBC patients (Figure 1C). In terms of disease status,
incidence of the CK+PARP+ phenotype was 91% in early BC versus 90% in metastatic
(Figure 1D and Table S1). Hence PARP-1 expression was found higher in luminal and early
BC patients.

Concentrating on the status of the disease, the CK+PARP+ phenotype was present in
44% of early (8 out of 18) and 33% of metastatic (3 out of 9) TNBC patients, while it was
present in 58% (11 out of 19) of early and 50% (2 out of 4) of metastatic luminal patients
(Figure S3A). The CK+PARP− phenotype was present in 11% of both early and metastatic
TNBC patients (2 out of 18 and 1 out of 9, respectively), as well as in 16% of early luminal
patients (3 out of 19), but not in the metastatic luminal patients (Figure S3A and Table S1).

Incidence of the CK+PARP+ phenotype was 83% among both early and metastatic
TNBC patients’ CTCs. In terms of the luminal patients, 89% of the CTCs of early patients
and all CTCs of metastatic patients corresponded to the CK+PARP+ phenotype (Figure
S3B and Table S1). Based on the status of the disease, PARP-1 expression was again higher
(although not statistically significant) in luminal and early BC patients.
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Figure 1. PARP-1 expression in BC patients’ CTCs. (A) Percentage of luminal and TNBC patients with
CK+PARP+ or CK+PARP− phenotypes; (B) Percentage of early and metastatic BC patients with the
corresponding CTC phenotypes; (C) Percentage of CTCs with CK+PARP+ or CK+PARP− phenotypes
in luminal and TNBC patients; (D) Percentage of CTCs with CK+PARP+ or CK+PARP− phenotypes
in early and metastatic BC patients.

Two different patterns of PARP expression were observed based on its subcellular
localization: nuclear and cytoplasmic (Figure 2).
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Figure 2. Subcellular localization of PARP-1 in BC patients’ CTCs. The first column represents nuclei
stained with DAPI, the second column represents cells expressing CK, the third cells expressing
PARP-1 and the fourth represents the overlay (DAPI/CK/PARP-1). Representative panels of cells
with (A) Cytoplasmic expression of PARP-1; (B) Nuclear expression of PARP-1 and (C) No expression
of PARP-1 are shown. Scale bars = 10 µm.
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Nuclear expression of PARP-1 was observed in 30% of both the TNBC and luminal
patients (8 out of 27 and 7 out of 23, respectively), while cytoplasmic expression was seen
in 15% (4 out of 27) of TNBC and 43% (10 out of 23) of the luminal patients; the latter
observation was statistically significant (p = 0.024, Figure 3A and Table S1).
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Incidence of the nuclear subcellular localization among patients’ CTCs was 61% in
TNBC compared to 32% in luminal and accordingly that of the cytoplasmic was 39% and
68%, respectively (Figure 3B and Table S1). PARP-1 was therefore predominantly found in
the cytoplasm of luminal patients’ CTCs, whereas it was mostly found in the nucleus of
TNBC patients.

Data were analyzed based on the disease status (Figure S4). Nuclear expression of
PARP-1 was observed in 33% (6 out of 18) of the early and 22% (2 out of 9) of the metastatic
TNBC patients, while it was in 10% and 25% (2 out of 19 and 1 out of 4, respectively) of the
early and metastatic luminal patients, respectively (Figure S4A). Cytoplasmic expression of
PARP-1 was observed in 17% and 11% of early and metastatic TNBC patients (3 out of 18
and 1 out of 9, respectively), while it was 47% and 25% (p = 0.035) in early and metastatic
luminal patients (9 out of 19 and 1 out of 4, respectively; Figure S4A and Table S1).

Incidence of the nuclear subcellular localization among patients’ CTCs was 73% and
67% in early and metastatic TNBC patients, respectively, whereas it was 43% and 50%
in early and metastatic luminal patients, respectively (Figure S4B). The incidence of the
cytoplasmic subcellular localization among patients’ CTCs was 27% and 33% in early
and metastatic TNBC patients, respectively, whereas it was 57% and 50% in early and
metastatic luminal patients, respectively (Figure S4B and Table S1). Results further con-
firmed that PARP-1 in luminal patients was mostly cytoplasmic, while in TNBC patients
was mostly nuclear.
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3.2. BRCA1 Mutations Identified in CTCs of BC Patients

Nine mutations of BRCA1 were detected from the sequencing process in the same
patients’ samples (Table 1). Two, namely c.5277 + 65C > T and c.5277 + 67T > C were new,
not previously identified mutations, whereas seven (M3-M9) had been previously identified
and characterized (NCBI; https://www.ncbi.nlm.nih.gov/snp/, accessed on 13 September
2021) [45,46]. All of the detected mutations were found in the heterozygous state.

Table 1. Mutations detected in BRCA1 and their biological significance.

Number Mutation rs Code Number of
Patients Exon/Intron Biological Effect

M1 G > A c.5277 + 65C > T 10 Intron Unknown 1

M2 A > G c.5277 + 67T > C 2 Intron Unknown 1

M3 A > T rs2051507989 5 Exon Synonymous
M4 A > T rs80358069 7 Intron Pathogenic
M5 G > C rs1567764460 6 Exon Missense Variant
M6 T > C rs1057524456 2 Intron No Information
M7 G > T rs80358173 5 Intron Pathogenic
M8 G > C rs377595653 6 Exon Pathogenic
M9 A > C rs80357270 5 Exon No functional impact

1 OPEN CRAVAT website didn’t report any biological effect regarding these variants.

Of the nine identified mutations, one (M1) was higher in luminal patients, four (M2,
M4, M6, M9) were found in both luminal and TNBC patients at comparable levels and
four (M3, M5, M7, M8) were mostly found in TNBC patients (Figure 4A). Two of the three
pathogenic mutations, namely M7 and M8, were mostly detected in TNBC patients. More
specifically, M7 was exclusively found in TNBC patients (19%; 5 out of 27), a result which
was statistically significant (p = 0.03, Figure 4A). M8 was found in 15% of TNBC (4 out of
27) compared to 9% of luminal (2 out of 23) patients (Figure 4A and Table S2). Interestingly,
the majority of mutations were present in TNBC patients even when CK-positive TNBC
patients were compared to CK-positive luminal patients.

Between early and metastatic BC patients, results showed higher prevalence of the
mutations in TNBC patients as reported above, with the percentages for the detected
mutations being presented in Figure 4B and Table S2. More precisely, M7 and M8 were
mostly detected in metastatic TNBC patients in a statistically significant manner (p = 0.014
and p = 0.002, respectively).

When analysis was performed only in CK-positive patients, as was the case earlier,
the majority of mutations were present in CK-positive TNBC patients, as compared to
CK-positive luminal patients, and more specifically in metastatic TNBC patients. Indeed,
only TNBC patients had the M3, M5, M6, M7 and M8 mutations in their CTCs or mainly
the TNBC patients had the M4 and M1 mutations.

3.3. BRCA1 Mutations in CTCs of BC Patients and Clinical Outcome

Clinical data regarding follow up (OS and PFS) were available for 24 patients (7 out
of 23 luminal and 17 out of 27 TNBC). After a median follow-up period of 25 months for
luminal and 50 months for TNBC patients, 1 and 9 deaths, respectively, were registered as
a consequence of disease progression.

Among the CK-positive early BC patients, the CK+PARP+ phenotype was associated
with a longer OS (log-rank p = 0.046, HR = 1.37; Figure S5A).

Interestingly, these results are supported by data provided by KMplot, an online
tool [47], whereby basal-like BC patients with higher expression of PARP-1 have been
indicated to have a longer disease-free interval (DFI; log-rank p = 0.022, HR = 0.67; Figure
S5B) and OS (log-rank p = 0.015, HR = 0.59; Figure S5C).

Focusing on the pathogenic mutations, M4, M7 and M8 exhibited correlation with
TNBC patients’ OS (log-rank p = 0.008, HR = 15.07 for M4, p = 0.019, HR = 6.4 for M7 and
p = 0.019, HR = 6.4 for M8; Figure 5).
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4. Discussion

In the present study we investigated the expression and subcellular localization of
PARP-1 in CTCs of luminal and TNBC patients. In addition, we detected BRCA1 mutations
in these CTCs and assessed their relationship with severity of disease and clinical outcome.

Based on BC subtype, expression of PARP-1 was identified in 61% of luminal and
41% of TNBC patients. Based on the disease status, 54% and 33% of patients with early
and metastatic BC, respectively, expressed PARP-1. Notably, we have found that PARP-
1 expression is higher in patients with less severe disease status, i.e., early stage and
luminal patients. The percentage of PARP-1 expression in tissue microarrays so far is
approximately 24–33% [17,48]. In addition, after immunohistochemistry of biopsies/tissue
microarrays, high (cytoplasmic) PARP expression was detected in 36% of TNBC tumors [17].
Furthermore, PARP-1 mRNA as well as protein expression has been found to be decreased
in luminal compared to HER2-enriched and basal BC tumors [49]. The role of PARP-1
expression in tumor grade is ambiguous; high tumor grade has been reported to correlate
with low (p = 0.003) [16] or high [17,48] PARP-1 expression in BC. Furthermore, high PARP-1
expression has been associated with a more advanced clinical stage [16]. To the best of our
knowledge this is the first study that evaluates PARP-1 expression in patients’ CTCs.

Examination of PARP-1 localization in BC patients showed that PARP-1 was dis-
tributed either in the nucleus or in the cytoplasm of CTCs. It has been shown that PARP-1
has a nuclear localization signal in its N-terminal DNA-binding domain [50]. In fact, the
presence of PARP-1 in the nucleus is essential for the maintenance of genomic integrity
and cell survival. Hence the importance of the nuclear localization for PARP functions
is well established, whereas the cytoplasmic localization has equally gained interest [18].
Therefore, it was noteworthy that in our study the nuclear localization was more promi-
nent in TNBC patients’ CTCs (61%), whereas cytoplasmic localization was mostly seen in
luminal patients (43%, p = 0.024), showcasing a higher percentage of CTCs with cytosolic
PARP-1. These results imply that PARP-1 was potentially more active in TNBC patients.
In line to this observation, our data based on disease status, confirmed nuclear expression
of PARP-1 in early and metastatic TNBC patients’ CTCs. Similar to our observations,
distribution of PARP-1 in the two subcellular compartments has been previously shown in
tissues of different subsets of BC patients [16,17]. PARP-1 expression has been previously
determined in the majority (82%) of BRCA1-dependent BC cases, with a predominantly
nuclear subcellular localization [51].

Although this is a pilot study, and the cohort of patients is rather small it was in-
teresting that the CK-positive early BC patients with the CK+PARP+ phenotype had
longer OS compared to the negative patients (log-rank p = 0.046). KMplot database
(https://kmplot.com/analysis/, accessed on 27 September 2021), further supported our
data, by demonstrating that high PARP-1 expression was correlated with longer DFI
(log-rank p = 0.022, HR = 0.67) and OS (log-rank p = 0.015, HR = 0.59) in basal-like BC
patients [47]; TNBC is classified as a subtype of basal-like BC. However, a meta-analysis has
shown that high PARP expression was associated with poor OS in BC patients (HR = 1.38,
95% CI = 1.28–1.49, p < 0.001) [52].

One of the main objectives of this study was also to detect BRCA1 mutations in CTCs
and not in plasma, to directly compare mutations in cancer cells and PARP expression.
Furthermore, the origin of these mutations in plasma is not defined (normal or tumor
cells). This approach is giving a better profile of CTCs regarding the DNA repair system. In
addition, it is well known that some mutations do not exist in the primary tumor and can
be detected in CTCs at a distinct time point during cancer evolution [53]. Furthermore, it is
possible that if the primary tumor is removed and the number of CTCs is very low, the “de
novo” mutations could not be detected in the plasma. In addition, our approach is an easy
assay with one isolation step of CTCs (Ficoll density gradient).

Nine BRCA1 mutations were detected in BC patients’ CTCs. The majority of mutations
was observed in the CTCs of TNBC patients compared to luminal patients, suggesting that
mutational burden tends to be higher in TNBC patients. This coincides with the results of
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a meta-analysis suggesting that patients with BRCA1 mutations will more probably have
more TNBC and higher tumor burden [54].

Of the identified pathogenic mutations, M7 was exclusively detected in TNBC patients
(19%, p = 0.03), while M8 was mostly found in TNBC patients (double the percentage
of that seen in luminal patients). M7 is a splice acceptor mutation (NCBI; https://www.
ncbi.nlm.nih.gov/snp/rs80358173, accessed on 13 September 2021) and is identified as a
pathogenic mutation with Combined Annotation-Dependent Depletion (CADD) > A:34,
G:34, C:34, belonging to 0.1% of the most harmful SNPs. M8 is a missense variant with
CADD > G:26.8, which means that it belongs to the 1% of the most harmful SNPs. Among
the TNBC patients, M7 and M8 were detected in more metastatic patients (44% for both,
p = 0.014 and p = 0.002, respectively) compared to early patients. M4 (A > T mutation)
(https://www.ncbi.nlm.nih.gov/snp/rs80358069, accessed on 13 September 2021) is a
splice acceptor variant. In Chevalier et al., the reported A > G mutation (c.5194-2A > G)
caused a change in the splice acceptor region which affects alternative splicing and is thus
identified as pathogenic [46]. TNBC patients bearing the M4 (p = 0.008), M7 (p = 0.019) and
M8 (p = 0.019) mutations were also correlated with decreased OS. These observations tend
to agree with the characterization of the mutations as pathogenic and suggest that they can
indeed be of particular interest. However, our cohort is small, and these results are only
indicative of the severity of these mutations.

Recently olaparib has been approved by the FDA for adjuvant treatment of BRCA-
mutated HER2-negative high-risk early-stage BC patients (phase III OlympiAD trial). Our
approach can give a real time observation of BRCA1 and PARP expression in cancer cells,
providing an interesting tool for stratifying patients that could benefit from this target
therapy. Furthermore, our analysis revealed that among the BC patients the majority of
BRCA1 mutations were observed in TNBC patients, who also expressed nuclear PARP-1.
This is rather interesting as it would imply that patients with high mutation burden and
PARP-1 nuclear expression would be more likely to benefit from current regimens with
PARP inhibitors.

5. Conclusions

TNBC is associated with limited treatment options. Use of liquid biopsy and of CTCs
can offer the advantage of profiling patients in real time and identifying subpopulations
which can benefit from a specific therapy.

To the best of our knowledge, this is the first study addressing PARP-1 expression in
CTCs. Results of this study indicate that (high) nuclear PARP-1 expression and detection of
BRCA1 mutations are characteristics of TNBC patients’ CTCs, providing useful biomarkers
that are also potentially relevant to patients’ outcome.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14071731/s1. Figure S1: Representative confocal laser scanning micrographs of the
positive and negative controls of CK/PARP staining; Figure S2: Representative chromatographs of
the detected pathogenic mutations; Figure S3: PARP-1 expression in TNBC and luminal BC patients’
CTCs; Figure S4: PARP-1 subcellular distribution in TNBC and luminal BC patients’ CTCs; Figure S5:
PARP-1 expression and clinical outcome; Table S1: Statistical analysis and p values for the different
PARP-1 phenotypes and localizations identified in the corresponding graphs; Table S2: Statistical
analysis and p values for the identified mutations in the corresponding graphs.
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