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Abstract: Since the response to chemoradiotherapy in patients with locally advanced rectal cancer is
heterogeneous, valid biomarkers are needed to monitor tumor response. Circulating microRNAs
are promising candidates, however analyses of circulating microRNAs in rectal cancer are still rare.
111 patients with rectal cancer and 46 age-matched normal controls were enrolled. The expression
levels of 30 microRNAs were analyzed in 17 pre-treatment patients’ plasma samples. Differentially
regulated microRNAs were validated in 94 independent patients. For 52 of the 94 patients a paired
comparison between pre-treatment and post-treatment samples was performed. miR-17, miR-18b,
miR-20a, miR-31, and miR-193a_3p, were significantly downregulated in pre-treatment plasma
samples of patients with rectal cancer (p < 0.05). miR-29c, miR-30c, and miR-195 showed a trend
of differential regulation. After validation, miR-31 and miR-30c were significantly deregulated
by a decrease of expression. In 52 patients expression analyses of the 8 microRNAs in matched
pre-treatment and post-treatment samples showed a significant decrease for all microRNAs (p < 0.05)
after treatment. Expression levels of miR-31 and miR-30c could serve as valid biomarkers if
validated in a prospective study. Plasma microRNA expression levels do not necessarily represent
miRNA expression levels in tumor tissue. Also, expression levels of microRNAs change during
multimodal therapy.

Keywords: microRNA; rectal cancer; neoadjuvant chemoradiotherapy; plasma; tumor biopsy; liquid
biopsy; biomarkers; prognosis

1. Introduction

Treatment of locally advanced rectal cancer has changed in recent years by introducing
preoperative chemoradiotherapy (CRT) [1]. Extensive histopathological work-up of the tumor
specimen after surgery including tumor regression grading (TRG) [2] and lymph node status (ypN)
helped to visualize individual tumor sensitivity to CRT retrospectively. As this translates into patients’
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prognosis [3] many research groups focus on the identification of prognostic or predictive parameters
to enable an individualized risk-adopted therapy. A relevant number of studies aimed to identify
molecular markers retrieved from tumor tissue while the relevance of blood-based biomarkers is less
stringent assessed. Blood samples, however, offer several advantages: first, while taking biopsies is
an uncomfortable, invasive procedure for patients, which is not without clinical complications [4],
taking blood samples is less invasive, less expensive, easy to schedule, and nearly without any severe
complications. Second, sample preservation and intratumoral heterogeneity limit the informative value
of tumor biopsies for molecular analysis [5]. Especially in the case of rectal cancer, beyond intratumoral
heterogeneity, tumor biopsies are in general accompanied by normal, adenomatous or stromal tissue.
This contamination may affect results of molecular analyses [6,7]. Resorting to bloodstream bypasses
those problems: blood samples are a source of fresh DNA and RNA, without modifications due to
preservatives. Additionally, investigating blood from patients can account for molecular heterogeneity
and surrogate for tumor burden since tumor-derived fragments or biomarkers are collected from all
tumor cells in a patients’ body through circulation [8]. Therefore, they may offer both the possibility of
dynamic monitoring under treatment and the possibility to assess disease activity even after pathologic
complete response (pCR) or after resection of the tumor when no tissue is left for molecular analyses.
In summary, blood is a promising biomaterial that should be analyzed aiming to identify biomarkers
that could help to reveal tumor occurrence, identify molecular characteristics of the tumor and stratify
cancer treatment.

In clinical routines to date carcinoembryonic antigen (CEA) is established as a colorectal cancer
(CRC) related tumor marker but is not recommended as a screening test for colorectal cancer [9].
First, normal levels of CEA do not exclude the possibility of a colorectal cancer. Second, an elevated
CEA is not categorically associated with CRC, or in the period of follow-up with disease progression.
In rectal cancer there are several studies analyzing changing CEA levels in relation to preoperative CRT.
High CEA levels pre- as well as post-therapeutical were associated with a poorer prognosis [10–16].
However, the clinical use of CEA as a molecular biomarker to predict pathologic complete response
has its limitations and is controversially discussed [11,17].

As a potential alternative to CEA, microRNAs (miRNAs) are currently under investigation to serve
as blood-based biomarkers. miRNAs are small, noncoding RNAs that regulate gene expression by
post-transcriptional mRNA binding, which promotes the destabilization of target mRNAs. The target
specificity of miRNAs is largely predetermined by their so-called “seed-sequence” (containing
nucleotides at position 2–7 of the miRNA). They are highly conserved between species, stable and easy
detectable even in small concentrations. In the meantime a large panel of studies have indicated a role
as circulating biomarker. They have been widely analyzed in physiological and pathological processes.
Besides, miRNA expression is tissue specific [18]. Several sets of miRNAs are differentially up- or
downregulated in tumors of different origins, although on the other hand, the miRNA signature of
different cancer types can share individual miRNAs [19]. Considering the organ specificity of miRNAs
and the particular treatment modalities of rectal cancer, it is a need to analyze blood samples from
these patients. To date, no screening approach to identify relevant miRNAs as biomarkers in blood of
patients with rectal cancer was undertaken. Hypothesizing that cancer-specific circulating miRNAs
found in the blood of patients are associated to the individual tumor, we analyzed a subset that we
have previously identified as tumor specific by profiling locally advanced rectal cancer tumor tissue
and adjacent normal mucosa [20,21]. To investigate the role of circulating miRNAs as biomarkers
the study was divided into two phases: in a discovery/selection (phase I) up- and downregulated
miRNAs from the previous work were evaluated and in a validation phase (phase II) differentially
regulated miRNAs were validated.
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2. Results

2.1. Initial Selection of Differentially Regulated miRNAs in Rectal Cancer Patients Compared to
Controls—Phase I

Demographic and clinical information to this test-set, including 17 rectal cancer patients and
14 control samples, is presented in Supplementary Table S1. Among the 30 miRNAs that have been
analyzed, 6 were excluded due to insufficient detection rate (50% of the Ct values were above a Ct

value of 36; miR-135b, miR-184, miR-492, miR-552, miR-375 and miR-215). Interestingly, the expression
levels of the 15 miRNAs, which were upregulated in tumor tissue compared to normal mucosa tissue,
showed a decreased expression level in plasma of rectal cancer patients in comparison to the control
samples. Five of them were significantly downregulated (p < 0.05): miR-17, miR-18b, miR-20a, miR-31,
and miR-193a_3p (Figure 1). Of the 15 miRNAs that were downregulated in the tumor, none was
significantly differentially expressed compared to the control group (Figure 2), however miR-29c,
miR-30c and miR-195 at least showed a trend.
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Figure 1. Expression levels of the 15 miRNAs, which were upregulated in tumor tissue compared
to normal mucosa tissue, show a decreased expression level in plasma in comparison to the control
samples, phase I. Boxplot of the 5 significant deregulated plasma miRNAs highlighted in yellow (red:
patients with rectal cancer, green: healthy control group).

2.2. Validation of Differentially Expressed miRNAs—Phase I

To validate the identified miRNAs, an independent set of 94 rectal cancer patients and 32 control
samples was analyzed. The clinical data of this validation set is presented in Supplementary Table S2.
The five significantly downregulated miRNAs of the first set (miR-17, miR-18b, miR-20a, miR-31, and
miR-193a_3p) were selected for further validation. Since all of them belong to the group of upregulated
miRNAs in tumor tissue compared to mucosa, we included three additional miRNAs from the group of
initially downregulated miRNAs in tumor tissue, which also showed a trend of differential regulation
in blood of patients compared to normal controls: miR-29c, miR-30c and miR-195. Overall, eight
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miRNAs were selected for further investigation. Of these, miR-31 (p = 0.013) and miR-30c (p = 0.017)
were significantly deregulated by a decrease of expression in the plasma of rectal cancer patients
(Figure 3).Int. J. Mol. Sci. 2017, 18, 1140 4 of 13 

 

 

Figure 2. Expression levels of the 15 miRNAs, which were downregulated in tumor tissue compared 
to normal mucosa tissue, show no significant different expression level compared to the control group 
(red: rectal cancer patients, green: healthy control group). 

 
Figure 3. Boxplot showing the plasma expression levels of miRNAs in the control-group (Control) 
and in the patients with rectal cancer before neoadjuvant chemoradiotherapy (Patient before). miR-
31 (p = 0.013) and miR-30c (p = 0.017) were significantly deregulated by a decrease of expression in the 
plasma of patients with rectal cancer. 

Figure 2. Expression levels of the 15 miRNAs, which were downregulated in tumor tissue compared to
normal mucosa tissue, show no significant different expression level compared to the control group
(red: rectal cancer patients, green: healthy control group).

Int. J. Mol. Sci. 2017, 18, 1140 4 of 13 

 

 

Figure 2. Expression levels of the 15 miRNAs, which were downregulated in tumor tissue compared 
to normal mucosa tissue, show no significant different expression level compared to the control group 
(red: rectal cancer patients, green: healthy control group). 

 
Figure 3. Boxplot showing the plasma expression levels of miRNAs in the control-group (Control) 
and in the patients with rectal cancer before neoadjuvant chemoradiotherapy (Patient before). miR-
31 (p = 0.013) and miR-30c (p = 0.017) were significantly deregulated by a decrease of expression in the 
plasma of patients with rectal cancer. 

Figure 3. Boxplot showing the plasma expression levels of miRNAs in the control-group (Control)
and in the patients with rectal cancer before neoadjuvant chemoradiotherapy (Patient before). miR-31
(p = 0.013) and miR-30c (p = 0.017) were significantly deregulated by a decrease of expression in the
plasma of patients with rectal cancer.
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2.3. miRNA Expression-Level Changes during Multimodal Therapy

For 52 patients analyses of the 8 selected miRNAs were conducted comparing the expression-level
changes before neoadjuvant chemoradiotherapy and after completion of therapy, 6–12 months after
surgery. Interestingly, the expression in the plasma was significantly decreased for all eight miRNAs
(p < 0.05) (Figure 4).
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2.4. High Decrease of miRNA Expression Reveals A Trend for Better Prognosis

To examine the prognostic role of miRNAs in the blood of rectal cancer patients, expression levels
of the eight selected miRNAs from both time points were correlated to clinicopathological parameters
(ypN, TRG, Disease Free Survival (DFS)). None of the miRNAs was associated with these relevant
parameters. However, using the change of miRNAs-expression levels miR-17, miR-18b, miR-20a, and
miR-29c at least showed a trend for better DFS in patients with higher decrease (Figure 5).
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changes between two time points (pre-CRT and post-adjuvant-CT) of miR-17, miR-18b, miR-20a
(tumor-upregulated miRNAs) and miR-29c (tumor-downregulated miRNA).

3. Discussion

The application of miRNAs in the blood of patients as potential biomarker is not new. However,
in rectal cancer there are very little data [22] and due to the therapy differences and the anatomic
localization of the rectum a simple transfer of data from colon to rectum is inappropriate. Accordingly
we screened for the expression of miRNAs in the plasma of patients with locally advanced rectal
cancer who were treated by preoperative chemoradiotherapy. The main focus of this study was the
identification of miRNAs that are differentially expressed in cancer patients compared to healthy
controls. The selection of miRNAs was based on a previous tumor and normal mucosa screen—a
strategy that has been performed before [23]. Interestingly, all miRNAs that were retrieved from the
group of upregulated miRNAs in the tumor showed a trend towards a reduced expression in the
plasma of rectal cancer patients compared to the control samples. In contrast, expression levels of
miRNAs in the plasma that were selected based on a decreased expression in the tumor compared to
the mucosa were irregularly up- or downregulated miRNAs. Discrepant expression levels between
plasma and tissue have been shown before. Xu et al. [24] screened the expression of miRNAs in
colorectal cancer tissue and plasma compared to healthy controls. Of these, five miRNAs were
validated and opposing expression levels were reported as well. Interestingly, all five miRNAs that
were used for validation were downregulated in the tissue. Wulfken et al. [25] found a comparable
discrepancy of alteration between circulating miRNAs and tissue miRNAs. Analyzing renal cell
carcinoma 109 circulating miRNAs were at higher levels in the plasma but only 36 miRNAs were
upregulated in the corresponding tissue samples. The authors concluded that obviously only a subset
of circulating miRNAs have tumor-specific origins. The finding of reduced plasma concentration
appears anti-intuitive. Pigati et al. [26] identified this phenomenon for breast cancer and postulated
the reduction as retention of the miRNAs within the tumor cells. Although not proven the data were
interpreted as if cells have a mechanism in place to select specific miRNAs for cellular release or
retention. Yet the mechanisms of decreased miRNA expression levels in cancer plasma samples is
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still not investigated in detail and has to be elucidated in further experiments to reveal the complex
mechanisms. In addition, decreased miRNA expression levels in cancer plasma samples might be
rather a non-tumor-specific effect. Furthermore, normalization effects or sample quality could also
influence a change of miRNA expression. In this context, we have to emphasize that each plasma
sample was taken, stored and processed under stringent biobanking Standard Operating Procedures [7]
since translational research relies on high-quality biospecimens.

After validation miR-31 turned out to be significantly downregulated in the plasma–in contrast
to the tissue. Very recently Wang et al. [27] analyzed this and other miRNAs in the serum of a mixed
colorectal cancer cohort and also described a lower expression in the tumor group compared to healthy
controls. The expression pattern is not consistent over cancer of the gastrointestinal tract. While miR-31
was shown to be upregulated in colorectal cancer (CRC) a decreased expression was described in
gastric [28] or pancreatic cancer [29]. In-vivo, up-regulation of miR-31 in CRC cells leads to increased
cell proliferation, invasion, and metastasis [21,28]. In-vivo miR-31 directly represses SATB2 [30].
Sun et al. [31] demonstrated the activation of the RAS pathway by miR-31. Recently miR-31 has
been shown to play a role in modulating radioresistance in esophageal adenocarcinoma, potentially
enhanced via DNA repair and was tested as predictive marker for response of preoperative RCT [32].
Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage [30].

In the group of downregulated miRNAs from the tumor tissue screen, finally miR-30c turned out
to be significantly lower expressed in the plasma compared to healthy controls. As a member of the
miR-30 family, very recently several groups have shown its tumor suppressive function in CRC [32–35]
as well as other entities [36]. However, Wang et al. [37] showed opposing results in ovarian cancer.

Overall, miR-30c and -31 may have a potential relevance as biomarker in rectal cancer to
distinguish between cancer and non-cancer patients in the plasma. However, these data need a larger
validation as the biological explanation is still under debate. As mentioned above, the hypothesis
of miRNA retention is possible. However, considering the fact of discrepant attitude towards the
existence of a hormone-like function of miRNAs [38] and the absence of reliable data on an active
uptake of specific miRNAs into the tumor, there is currently only a validated correlation. To further
discuss this hypothesis of miRNA uptake by tumor cells we performed the analysis of plasma from
patients after the tumor has been resected and the adjuvant therapy was administered; in conclusion
a patient considered as tumor free. Certainly, there was the potency of potential dorming cells,
however, none of the patients developed recurrence within 3 months after the time point of tumor
free diagnosis. Accordingly, the absence of tumor should lead to an increase of circulating miRNAs,
however, our findings showed again a decrease of expression. In this constellation, all of the miRNAs
showed a significant change. To which extent these effects are tumor driven or present an effect of
non-tumor processes that regulate the miRNA appearance in the blood is unclear. To answer this
question, comparative studies using comparable treatment strategies are needed. Specifically, rectal
cancer patients without preoperative treatment as well as patients with e.g. prostate cancer receiving
radiotherapy need to be analyzed. A change of miRNA expression levels under radiotherapy has
already been shown [39,40]. Although these data are not retrieved from patients the relevance of
non-tumor specific effects need to be acknowledged. As it is well known, patients respond with
different type and grade of toxicity on radiotherapy. Therefore, these effects may have an input on
blood-based biomarkers.

Finally, it needs to be mentioned, that only a few members of the miR-17-92 cluster were found as
significantly regulated. In particular, miR-92 was identified to drive oncogenesis in colon cancer [41]
and was not among the deregulated miRNAs in plasma samples. This may indicate a general
upregulation of the miR-17-92 polycistron in cancer progression, while only parts of the primary
transcript are cell retained.

Although our results are promising, there are several limitations in this study. First, as the
collective size is still small and miRNA plasma level changes show just a trend for a better prognosis,
further validations in a larger cohort and in independent studies are necessary to confirm potential
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statistically significance. Second, the amount of some miRNAs (n = 6/30) in plasma are too low to
be accurately quantified by failing the linear range of the assay, therefore, some potential relevant
markers could not be considered for further analyses. Third, the investigated miRNAs are based on
a previous study where tumor tissue and matched mucosa were analyzed. To avoid limitations in
identifying relevant miRNA expression patterns for rectal cancer patients in plasma genome wide
miRNA screen should be considered in blood samples in future.

4. Materials and Methods

4.1. Patients, Patient Treatment and Control Group

Overall, 111 patients with locally advanced rectal cancers treated in the Department of General,
Visceral and Pediatric Surgery, University Medical Center Goettingen, Germany and 46 age-matched
normal controls were enrolled in this study. All patients were enrolled in the CAO/ARO/AIO-94 [1]
or the CAO/ARO/AIO-04 [42] trial (EudraCT-Number 2006-002385-20-NCT00349076) of the German
Rectal Cancer Study Group. Accordingly, pretherapeutical assessment of the tumor was performed
by endorectal ultrasound, computed tomography scan and magnetic resonance imaging. Staging
results were described as clinically assessed T-level (cT), lymph node status (cN), distant metastases
(cM), and UICC stage (cUICC). All patients received a preoperative chemoradiotherapy (CRT): Total
radiation dose was 50.4 Gray (Gy) in 28 fractions accompanied by either an intravenous (iv) application
of 5-FU (1000 mg/m2 on days 1–5 and 29–33) or a combination of an iv-infusion of oxaliplatin and
5-FU according to the study protocol. Six weeks after the completion of preoperative CRT, curative
total-mesorectal-excision-surgery (TME) was performed. Four to six weeks after surgery treatment
was completed with an adjuvant therapy with either 5-FU or 5-FU with folinic acid combined with
oxaliplatin. Blood was taken prior to preoperative CRT and after completion of adjuvant therapy.
At the second time point patients had no signs of disease progression and accordingly were considered
as cancer free. Blood samples for the control group (n = 32) were obtained from patients treated for
either groin hernia or asymptomatic cholecystolithiasis. Further inclusion criteria were age between 60
and 80, no malignant disease in the past, colonoscopy without pathological findings within the last
four years, no clinical signs of acute inflammation and unremarkable laboratory parameters (blood
count, coagulation, liver enzymes). Written informed consent was obtained from all patients. This
study conformed to the ethical principles of the Declaration of Helsinki (Seoul, Korea, 2008) and was
approved by the University of Goettingen Ethics Committee in Goettingen, Germany (application
number 20/9/95, 9/8/08).

4.2. Study-Design

The study was divided into two phases: a discovery/selection (phase I:) and a validation phase
(phase II) (Figure 6). In a previous work of our group a tissue-based comparison of paired tumor and
normal mucosa samples of patients with locally advanced rectal cancer identified 49 differentially
expressed miRNAs [20]. Of those 15 were upregulated while 34 were down-regulated in the tumor
tissue samples compared to the paired mucosa samples.

Phase I: Expecting a higher likelihood for upregulated miRNAs to be found in blood, all of the
15 upregulated miRNAs were selected, while only 15 of the 34 downregulated miRNAs were chosen
for the initial discovery phase. These analyses were performed using 17 pre-therapeutical plasma
probes of rectal cancer patients that were subsequently treated by CRT and 14 control samples.

Phase II: In the next step miRNAs that turned out to be differentially regulated between rectal
cancer patients and the control group were validated. This phase comprised 94 independent patients
and 32 control samples. Of importance, for 52 of the 94 patients a paired comparison between
pretreatment (pre-CRT) and post-treatment (after surgery and adjuvant chemotherapy) samples,
respectively, was possible.
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work we analyzed in blood samples the expression levels of the 15 tumor-upregulated miRNAs and
also 15 of the 34 tumor-downregulated miRNAs. In conclusion, expression levels of 30 miRNAs in
blood samples of 17 rectal cancer patients were compared to the blood samples of normal controls
(n = 14). Phase II: Subsequently, the differentially expressed miRNAs from the first set were analyzed
in an independent validation set. Also, the expression levels of the 8 miRNAs were compared in the
blood of patients with rectal cancer in matched pre-treatment and post-treatment samples.

4.3. Plasma Preparation and Total RNA Isolation

Plasma was used for miRNA quantification. Therefore, peripheral blood was drawn into a
standard 7.5 mL EDTA tubes (EN 14280) (Sarstedt, Nuembrecht, Germany). Tubes were subjected to
centrifuge at 2200 g at 4 ◦C for 10 min. Subsequently, 2 mL aliquots of the plasma were transferred
into tubes and stored at −80◦C. Prior to the analysis, the plasma samples were thawed and 250 µL was
transferred to a 1.5 mL tube and centrifuged at 1000 g for 5 min to remove any visible cellular debris.
Then, the supernatant was transferred into fresh tubes for further analyses.

The total RNA was extracted by using the miRNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol with the following modifications: The probes were lysed
using 5× volumes Qiazol (Qiagen, Hilden, Germany). After 20 min incubation at room temperature,
3 synthetic mimics of Caenorhabditis elegans (cel-miR-39, cel-miR-54 and cel-miR-238) of each 12.5 fmol
were added to the solution for the normalization process [43]. Further steps were done according to
the manufacturer instructions and the total RNA was eluted in 40 µL purified water.

4.4. Semi-Quantitative Real-Time PCR Analysis

Semi-quantitative real-time PCR analyses were performed using miScript Qiagen Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. After reverse transcription using RT
II Kit (Qiagen, Hilden, Germany), cDNA with universal tags were put in together with the specific
miRNA Primer (see Table S3) and Master mix for the quantitative PCR reactions using Biorad CFX384
Real Time System (Bio-Rad Laboratories, Hercules, CA, USA). All assays were performed in triplicates.



Int. J. Mol. Sci. 2017, 18, 1140 10 of 13

miRNA expression was presented as normalized Ct values, where Ct = threshold cycle, normalized Ct

of sample X = (Ct target microRNA of sample X − average cel-miR-39, cel-miR-54 and cel-miR-238 of
sample X + average cel-miR-39, cel-miR-54 and cel-miR-238 of all samples).

4.5. Data Analysis

In order to identify miRNAs that were differentially expressed, we applied the empirical Bayes,
moderated t-statistics implemented using the R software package “limma” [44]. For disease-free (DFS)
and overall survival (OS) analysis, Kaplan–Meier plots and the Cox proportional hazards model were
applied using the R package “survival” [45]. DFS was defined as time from resection of the tumor
(patients considered as tumor free) until the development of distant or local recurrence, and OS as
time until tumor-related death. p-Values smaller 0.05 (p < 0.05) were considered significant. In order to
not exceed a false discovery rate (q-value, Q) of 5%, p-values were adjusted for multiple testing using
the Benjamini-Hochberg method [46]. All analyses were performed using the free statistical software
R (version 2.14.1, the R Foundation for Statistical Computing, Vienna, Austria).

5. Conclusions

In conclusion, we could identify two differentially expressed miRNAs in plasma probes of rectal
cancer patients based on a previous study comparing tumor tissue and matched mucosa samples.
Hereby, plasma miRNA expression does not necessarily represent miRNA expression levels in tumor
tissue. miRNA expression plasma changes between two time points, before and after multimodal
therapy, could predict prognosis. Future efforts are still needed to identify circulating microRNA
expression patterns that can accurately detect rectal cancer at an early stage and could serve as
predictive and prognostic biomarkers.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1140/s1.
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