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Abstract

Background: DNA damage accumulates over the course of cancer development. The often-substantial amount of
somatic mutations in cancer poses a challenge to traditional methods to characterize tumors based on driver
mutations. However, advances in machine learning technology can take advantage of this substantial amount of data.

Results: We developed a command line interface python package, pyCancerSig, to perform sample profiling by
integrating single nucleotide variation (SNV), structural variation (SV) and microsatellite instability (MSI) profiles into a
unified profile. It also provides a command to decipher underlying cancer processes, employing an unsupervised
learning technique, Non-negative Matrix Factorization, and a command to visualize the results. The package accepts
common standard file formats (vcf, bam). The program was evaluated using a cohort of breast- and colorectal cancer
from The Cancer Genome Atlas project (TCGA). The result showed that by integrating multiple mutations modes, the
tool can correctly identify cases with known clear mutational signatures and can strengthen signatures in cases with
unclear signal from an SNV-only profile. The software package is available at https://github.com/jessada/pyCancerSig.

Conclusions: pyCancerSig has demonstrated its capability in identifying known and unknown cancer processes, and at
the same time, illuminates the association within and between the mutation modes.
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Introduction
Cancer is a genomic disorder, involving different kinds of
DNA damage. DNA damage and imperfect repair occurs
frequently in human cells. Changes accumulate over time,
starting with our first cell, the fertilized egg, and progres-
sively over the course of cell division [1]. Cellular proteins
pertaining to replication, damage sensing and repair are

important in limiting the damage. Most induced DNA
variations will have no effect on the cell (so called passen-
ger variants). However, over time there is a risk that accu-
mulating DNA damage can result in tumorigenesis and
later, metastasis, regardless of whether the initial driver
mutation stems from inheritance, induced damage or im-
perfections in the replication of the hereditary material.
The continued accumulation of DNA changes is caused
by a combination of exposure to sources of DNA damage,
both endogenous and exogenous and a broken DNA dam-
age response mechanism. Each of these have their own
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respective profile with regard to the type of damage
inflicted and bias in the repair mechanisms including
double-strand DNA breaks [2], single-strand DNA breaks
[3], and microsatellite instability [4].
Conventional methods to characterize tumor behavior are

based on mutations in functional domains of cancer driver
genes. Identifying the driver mutation is difficult, since the
majority of the somatic events are passenger mutations [5].
An alternative is to classify tumors based on tumor behavior
directly, by observing the pattern of somatic mutations. With
an exploding amount of whole exome and whole genome se-
quencing data, together with advances in machine learning
technology, a computational approach to characterize tu-
mors based on their base-substitution profile was initiated,
capturing mutation signatures [6]. These pioneering results
were extended, showing e.g. how the mutational signatures
associated with the presence of particular somatic driver mu-
tations [7] and how a mutational signature enables classifica-
tion of germline missense mutation [8]. However, base
substitution is only one result from DNA damage. The
others include copy number variation, structural rearrange-
ment and microsatellite instability. Sensing both single nu-
cleotide and structural variation (SV) has been shown
efficient in predicting BRCA1/BRCA2 null mutation [9].
Tumor microsatellite instability (MSI) profiling has been
proven useful clinically to inform testing for mutation in mis-
match repair genes (MMR) [10] and more recently, to iden-
tify tumors eligible for immunotherapy [11, 12]. Tools to
classify MSI status from tumor genome short read sequen-
cing data [13] have been successfully developed.
Integrating several types of genetic aberrations from

different types of DNA damage may not only reveal pat-
terns and connections between these aberrations, but
may also reveal novel combinations of cancer processes
and possibly allow novel clinically actionable distinctions
between tumors and inform interpretation of larger clas-
ses of hereditary variants of uncertain significance.
Most tools available for mutational signatures are im-

plemented in R or as web interfaces, and require custom
file formats [14]. Tools otherwise used in large scale pro-
cessing of short read sequencing data in production en-
vironments are nearly exclusively command line based,
and operate on a limited set of standardized file formats.
In this article, we describe pyCancerSig: an open

source, command line interface python package for deci-
phering cancer signatures; integrating SNV, SV and MSI
profiles in signatures decomposed using non-negative
matrix factorization; and producing pdf reports.

Materials and methods
Workflow processes
The workflow consists of 4 steps, data pre-processing, pro-
filing, deciphering and visualizing (Figs. 1, 2). Example input
files and example output files, together with corresponding

command line examples, for each of the following steps are
available at https://github.com/jessada/pyCancerSig.

Data pre-processing
The purpose of this step is to generate a list of variants.
This step has to be performed by third party software. For
SNVs, any somatic callers that produce variant calls in VCF
format can be used. The same is true for SV calls, but
even though the VCF standard has support for SVs,
callers may not always be fully interchangeable. Spe-
cifically, the “END” tag added by many callers and a
“CHR2” tag are parsed out from the INFO field.
Other information not evident from the VCF defin-
ition could be parsed by replacement or modification
of a custom parseVCFLine function, as was done for
FindSV. We have tested with, and recommend
FindSV [15]. This includes support for TIDDIT [16],
CNVnator [17] and Manta [18]. For MSI, the MSI
profiling in the stage currently has a dependency on
MSIsensor [13].

Profiling
The purpose of this step is to quantify information gen-
erated in the first step into matrix features usable by the
deciphering process. There are three types of profiles,
SNV, SV and MSI. The feature weights for SNV:SV:MSI
were selected as 7:2:1 for this study. The weights can be
adjusted in a feature selection file to the program pack-
age as needed.
SNV profiling scans the VCF file and quantifies six

types of base substitution C:G > A:T, C:G > G:C, C:G > T:
A, T:A > A:T, T:A > C:G, and T:A > G:C. Then, the
changes are further subclassified by the sequence con-
text, 5′ and 3′, of the mutation. In total, there are 96
mutation types (6 types of substitution × 4 types of 5′
base × 4 types of 3′ base). For example, if a sample has a
variant T > C at position 47,672,720 (hg19/GRCh37) on
chromosome 2, which has a neighbouring 5′ G and also
a 3′ G, this will be counted as one mutation for the mu-
tation type G [T > C] G in the feature output file.
SV profiling scans the VCF record for the INFO field

SVTYPE to classify the mutation into structural duplica-
tion, structural deletion, inversion, and translocation.
Then it checks another INFO field, END, to calculate
the length of the event, in order to subclassify the event
based on its approximated size in log10 scale (size be-
tween 100-1Kbps, 1 K–10 K, 10 K–100 K, 100 K-1M, 1
M–10M, 10M–100M, 100M–1000M, and whole
chromosome). In total, there were 32 mutation types (4
types of variation × 8 length groups). For example, if a
VCF record has an INFO field SVTYPE set to “DUP”
and a length of 15,000 bp, this would be counted as one
mutation for structural duplication of length between
10 K–100 K.
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MSI profiling quantifies all possible repeat patterns of a
repeat unit with size between 1 and 3 nucleotides (A, C,
AC, AG, AT, CG, AAC, AAG, AAT, ACC, ACG, ACT,
AGC, AGG, ATC, CCG). For repeat unit sizes of 4 and 5
base pairs, it performs quantification without checking re-
peat patterns. The profile merger merges all sample pro-
files into one ready to be used by the deciphering- and
visualization processes.

Deciphering
The purpose of this step is to use an unsupervised learn-
ing model to find mutational signature components in
the tumors. The process was developed based on a well-
established framework [6] and uses non-negative matrix
factorization (NMF) to decipher signature probabilities,
matrix P, from given input mutation profiles, matrix M,
where M ≈ P x E. Matrix M represents fraction of each
mutation type in each sample, each column for one

sample and each row for one mutation type. Matrix P
represents fraction of mutation type in each cancer
process, each column for one cancer signature process
and each row for one mutation type. Matrix E represents
exposure, fraction of cancer signature process in each
sample, each column for one sample and each row for
one cancer signature process.

Visualizing
The purpose of this step is to decompose the tumor muta-
tional signature components and visualize them together
with mutation profiles of the tumor. The visualized pro-
files are generated in pdf format files consisting of 4 pages
(Fig. 2), adapted from [19] but reimplemented in Python.
The first page shows a pie chart representing mutational
signature components in the profile. The second page dis-
plays the actual tumor profile. The third page displays the
profile reconstructed from the predicted mutational

Fig. 1 pyCancerSig workflow diagram. The workflow consists of 4 steps. 1. Data preprocessing - The purpose of this step is to generate a list of
variants. This step has to be performed by third party software. - Single nucleotide variant (SNV) - recommending MuTect2, otherwise Muse,
VarScan2, or SomaticSniper. - Structural variant (SV) - dependency on FindSV. - Microsatellite instability (MSI) - dependency on MSIsensor. 2.
Profiling (Feature extraction) - `cancersig profile` - The purpose of this step is to turn information generated in the first step into matrix features
usable by the model in the next step. The output of this stage has similar format as https://cancer.sanger.ac.uk/cancergenome/assets/signatures_
probabilities.txt, which consists of at least 3 columns. - Column 1, Variant type (Substitution Type in COSMIC). - Column 2, Variant subgroup
(Trinucleotide in COSMIC). - Column 3, Feature ID (Somatic Mutation Type in COSMIC). - From column 4 onward, each column represents one
sample. There are subcommand to be used for each type of genetic variation. - `cancersig feature snv` is for extraction single nucleotide variant
feature. - `cancersig feature sv` is for extraction structural variant feature. - `cancersig feature msi` is for extraction microsatellite instability feature.
- `cancersig feature merge` is for merging all feature profiles into one single profile ready to be used by the next step. 3. Deciphering mutational
signatures - `cancersig signature decipher` - The purpose of this step is to use unsupervised learning model to find mutational signature
components in the tumors. 4. Visualizing profiles - `cancersig signature visualize` - The purpose of this step is to visualize mutational signature
component for each tumor
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Fig. 2 Example of a visualized tumor profile
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signatures component in the first page. The last page dis-
plays the prediction error, which is the difference between
the actual profile and the reconstructed profile.

Evaluation
Benchmarking data
A cohort of 92 breast cancer cases, TCGA-BRCA, and
38 colorectal cancer cases, TCGA-COAD and TCGA-
READ, from The Cancer Genome Atlas project (TCGA)
was used to evaluate the tool. These 130 cases were all
of TCGA breast cancer and colorectal cancer cases
where we could obtain both whole genome and whole
exome sequencing data from dbGAP. The data consists
of tumor-normal pair whole genome sequence in BAM
format and SNV exome sequencing data called by
MuTect2 [20] in VCF format (See Additional file 1:
Benchmarking samples). The whole genome sequencing
data was used for benchmarking the SV- and the com-
bined profiles. The whole exome sequencing data was
used for replicating the previous result as well as bench-
marking the combined profiles. The purpose of the colo-
rectal cancer cases was for replicating signature SBS10
described in COSMIC. The cases were also used for
evaluating the deciphering part of the package in the
combined profile to see if the cases with signature
SBS10 would have a combined signature with the SNV
part similar to signature SBS10. The purpose of the
breast cancer cases was for evaluating the SV-only pro-
file and to see if there are any associations in patterns of
SNVs and SVs in the combined profile. SBS3 has been
associated with failure of DNA double-strand break-
repair by homologous recombination, and the latter has
been found in breast cancers.

Preprocessing of the benchmarking data
For SNVs, the downloaded somatic VCF files called by
MuTect2 were in a format ready to be used for SNV
profiling in the next stage. For SVs, a singularity con-
tainer implementation of FindSV was used with down-
loaded aligned bam files. Briefly, balanced structural
rearrangements were called by TIDDIT [16]. Copy num-
ber variations were called by TIDDIT [16] and CNVna-
tor [17]. Somatic aberrations were called by subtracting
normal tissue events from tumor tissue events using
SVDB [16]. For MSI, the instability loci were called by
msisensor [13] from aligned bam files.

Sample labeling
Clinical information on the cases was provided by
TCGA. Annotation of somatic SNVs in genes of interest
(See Additional file 1: Pathway and related genes) was
done using VEP [21]. ClinVar is a clinical database used
for variant interpretation [22].

Profile types and evaluation processes
We evaluated the tool using three profile types: SNV-
only profile, SNV + SV +MSI profile and SV-only profile.
The purpose of the SNV-only profile was to verify the
SNV profiling- and the visualization processes by com-
paring the results with [23], and to setup a baseline for
the other two comparisons. The combined, SNV + SV +
MSI, profile was used to evaluate the efficiency of the
profile when integrating several groups of mutations.
The SV-only profile was used to evaluate the use of
structural variation as the sole input compared to the
combined profile.

Signature probabilities and signature IDs
There are three groups of mutational signatures de-
scribed in this article, one for each profile type. The sig-
nature probabilities used in the evaluation of SNV-only
profile were downloaded from [24]. Signature IDs are
represented by COSMIC nomenclature,” signature
SBS1”, “signature SBS2”, “signature SBS3”, etc., the same
as the ones in the downloaded signature probabilities file
and the ones in [23]. For the combined profile, the sig-
nature probabilities were generated from the deciphering
process. The signature IDs are represented using italic
uppercase English alphabets, “signature A”, “signature
B”, “signature C”, etc. For the SV-only profile, the signa-
ture probabilities were also generated from the decipher-
ing process. The signature IDs are represented using
italic lower case English alphabets, “signature a”, “signa-
ture b”, “signature c”, etc.

Sample-signature association
If a sample shows a decomposed fraction of more than
30% of a particular signature cancer process, it is defined
as having an association between the signature and the
sample.

Tumor mutation burden (TMB)
TMB was quantified as the total number of base substi-
tutions in the SNV profile of an exome divided by 30 to
give a roughly scaled estimate of SNVs per Mbps exonic
sequence.

Structural variation burden (SVB)
SVB was quantified as the total number of somatic
structural variations in the sample, as determined from
the SV profile.

Results
We used pyCancerSig to profile the benchmark data on
three profile types, SNV-only, SNV + SV +MSI (com-
bined), and SV-only. The SNV-only signatures used in
the package verification were from COSMIC Mutational
Signatures (v2 - March 2015) [25]. pyCancerSig was
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used to decipher the combined- and the SV-only profile,
resulting in nine (See Additional file 2: Figure 1) and
twelve signatures (See Additional file 2: Figure 2) re-
spectively. Tumor profiles were visualized for each pro-
file type, together with their mutational signature
components (Additional files 3, 4 and 5).

Verification using the SNV-only profile
POLE gene
Using SNV profiling by pyCancerSig, five cases were
found to have signature SBS10, which has altered activity
of the mutated POLE as proposed etiology. All of these
cases were found to have somatic mutation in POLE and
POLD1 (Additional file 6). Moreover, these cases were
found to have hypermutation with a median of 881
SNVs/Mbp (range 667–1686/Mbp), compared to the
median 36/Mbp in the total data set and 22/Mbp in the
tumors without POLE/D1 variants. (Fig. 3), another
property of tumors with bi-allelic loss-of-function vari-
ants in POLE [26].

DNA mismatch repair (MMR) genes
Signatures SBS6, SBS15, SBS20 and SBS26 were de-
scribed to be associated with defective DNA mismatch
repair. None of the cases in our cohort were associated
with signature SBS15, SBS20 or SBS26. Using SNV pro-
filing by pyCancerSig, two cases: TCGA-A6–6781 and
TCGA-AA-A01R, were found to be associated with sig-
nature SBS6. Both of them were identified to be MSI-
positive by MSIsensor. Both cases harbored pathogenic

germline (and in one case also somatic) truncating var-
iants in MSH2 or MSH6 (Additional file 6).

Double strand break pathway
Signature SBS3 was described to be associated with fail-
ure of DNA double-strand break (DSB) repair by hom-
ologous recombination. Using SNV profiling by
pyCancerSig, 78 breast cancer– and 10 colorectal cancer
cases were found to be associated with signature SBS3.
Among these, eleven breast cancer cases and one colo-
rectal case had pathogenic truncating variants in DSB-
pathway genes. Four cases have truncating variants in
BRCA1, p.Val1734Ter, p.Glu23ValfsTer17 (both germ-
line) and p.Glu720Ter, c.4739-1G > A (both somatic).
One case has a somatic truncating variant in BRCA2,
c.7805 + 1G > A. One breast cancer case had bi-allelic
truncating variants in BARD1. The rest had truncating
variants in BLM, ATM and ATRX. In addition, 30 other
cases (27 breast cancer and 3 CRC) had in-frame or mis-
sense variants in 22 DSB genes (Additional file 6).

Comparison with deconstructSigs
Visual comparison with a leading tool specialized on
profiling, deconstruction and visualisation (deconstruct-
Sigs) showed effectively identical results in the five cases
with signature SBS10.

Evaluation using the combined profile
The optimal number of mutational signatures for the
combined profile suggested by pyCancersig was nine

Fig. 3 Boxplot of tumor mutation burden of 4 sub-populations evaluated in this article. The y-axis represents tumor mutation burden (TMB),
which is quantified as the total number of base substitutions in the SNV profile divided by 30 to give an estimate of SNVs per Mbps sequence.
The box represents values from the lower to the upper quartile. The yellow line represents the median
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(See Additional file 2: Figure 1). Signatures E and I were
only associated with colorectal cancer cases, while signa-
tures C, D, G and H were only associated with breast
cancer cases and signatures. A, B and F were found to
be associated with both cancer types (Additional file 6).

POLE and POLD1 genes
Signature E exhibited a pattern of TCT > TAT, TCG >
TTG and TTT > TGT, similar to those of signature
SBS10, together with a pattern of structural deletion
with size between 1 K–10 K. Signature E was associated
with five cases and four of them were associated with
signature SBS10. Three of these had known mutations
in POLE and the fourth had a somatic truncating variant
in POLE and a high TMB of 1686/Mbps. The fifth case
with signature E had 26% signature SBS10, just below
the 30% threshold applied in this paper and had a
known mutation in POLE (p.Ser297Phe) as well as a
high TMB (881/Mbps).

MMR genes
Signature I was the only signature with a pattern of MSI
identified by msisensor [13]. It exhibited specific domin-
ant characteristics in all mutation modes. SNVs were
dominated by C > T substitutions, particularly on CG >
TG backgrounds. The majority of SV events were struc-
tural deletion of 1 K–10 K. Signature I was associated
with four colorectal cancer cases, two of which were the
two cases associated with signature SBS6.
However, there were 2 other cases, TCGA-AD-6964

and TCGA-AZ-6601 with signature I. TCGA-AZ-6601
had both a germline truncating variant in MSH6
(p.Lys537Ilefs*33) and a somatic in frame change in
MSH6 suggesting a mismatch repair defect, while no
pathogenic variants were found in TCGA-AD-6964.
(Additional file 6).

Double strand break pathway
From the aforementioned eleven breast cancer cases and
one colorectal cancer case with signature SBS3 and
pathogenic or likely-pathogenic variants in the DSB
pathway, eleven were associated with seven different
combined signatures (A, B, C, D, F, G and H) and one
was not associated with any signatures. The median SV
burden in these eleven cases (1004 events) did not differ
significantly from the median of the entire cohort
(Additional file 6).

Structural variation burden
The 10 cancer cases with highest SVB have a median of
10,016 events compared to the median 885 events in the
total cohort. All ten were breast cancer samples and were
divided between four signatures (A, C, D and F).
(Additional file 6). To compare with the SNV-only profile,

all of these cases, except TCGA-B6-A0IJ, were associated
with signature SBS3. TCGA-B6-A0IJ was not associated
with any signature using the SNV-only profile.

Evaluation using the SV-only profile
The optimal number of mutational signatures for the
SV-only profile suggested by pyCancerSig were 12 (See
Additional file 2: Figure 2). Signatures c, e, f, g and l were
associated with only breast cancer, while signatures a, b
and d were associated with both cancer types.

POLE, POLD1 and MMR genes
Signature a exhibited a very unique pattern. 96% of the
mutation in this signature was structural deletion with
size between 1 K–10 K. This pattern was found in signa-
ture E and I. Eleven breast cancer- and fifteen colorectal
cancer cases were identified to have this signature.
Among them, five cases were the ones with combined
signature E and four cases were the ones with combined
signature I.

Double strand break
Out of the aforementioned eleven breast cancer cases and
one colorectal cancer case with signature SBS3 and patho-
genic or likely-pathogenic variants in the DSB pathway,
four were associated with SV-only signatures: c, d and e.
The colorectal cancer case with an ATM mutation was as-
sociated with signature a. One thing in common between
these four signatures was that they each represented one
specific structural event (more than 95%), signature a for
structural deletion 1 K–10 K, signature c for structural in-
version of size 1 K–10 K, signature d for structural dele-
tion of size 10 K–100 K and signature e for structural
duplication of size 10 K–100 K. The rest were not associ-
ated with any signatures (Additional file 6).

Structural variation burden (SVB)
The 10 cancer cases with the highest SVB were all breast
cancers and were mainly associated with two SV-only
signatures: c and d. Both of these had one main SV event
at high frequency. (Additional file 6).

Runtime estimation
The amount of time needed for processing variants may
depend on the size of data and configuration of the ma-
chine. The following performance was based on execu-
tion on the Uppsala Multidisciplinary Center for
Advanced Computational Science computational cluster
“bianca”, on a single Intel Xeon E5–2630 v3 core with 8
Gb RAM allocated. SNV profiler can process 7046 vari-
ants in 2 s (3523 variants/second). SV profiler can
process 1755 variants in 0.1 s (17,550 variants/second).
MSI profiler can process 65,535 loci in 0.3 s (218,450
loci/second). Deciphering a combined profile for 130
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samples took 33 min. Visualizer took 9 s to generate the
pdf file for one sample.

Discussion
In the present study, a command line tool was developed
and tested on two different cancer types. We report a
working tool, and study the use of a combined SV, SNV
and MSI profile, contrasting to SNV or SV only profiles.

Comparison between signatures generated by the SNV-
only profile and signatures generated by the combined
profile
This study has shown that combining SNV, SV and MSI
into one single profile can correctly identify mutational
signature processes caused by altered activity of the
DNA polymerases POLE and POLD1: signature E, and
loss-of-function in MMR genes: signature I. Moreover,
beside backward compatibility to SNV-only signature
SBS6, signature I generated by the combined profile has
identified two additional cases, TCGA-AD-6964 and
TCGA-AZ-6601, with limited association to signature
SBS6 (23 and 18%) which were also MSI positive accord-
ing to msisensor. In principle, it could be possible to re-
duce the required level of association to signature SBS6
in order to increase the sensitivity of the SNV-only pro-
file. However, this also reduces the specificity. In total,
10 colorectal cancer and 20 breast cancer cases displayed
a contribution from signature SBS6, ranging from weight
6 to 42% of the total mutational profile. Four of them
had weights in the range 20–30%, including one MSI
and three MSS cases. Integrating SNV, SV and MSI into
one single profile significantly increased the strength of
the signal (signature I) due to a specific SV pattern
(structural deletion with size between 1 K–10 K) and
MSI.
COSMIC signature SBS3 is generally described as as-

sociated with deficiency in homologous recombination
repair of double stranded breaks [27]. SNV-only profiles
categorized 78 of 92 (85%) breast cancer cases as having
contributions from signature SBS3. Thus, this signature
very likely appears in cancers with heterogeneous etiolo-
gies. The eleven breast cancer samples with signature
SBS3 and a defect DSB pathway due to truncating muta-
tions in DSB genes did not cluster together in any spe-
cific combined or SV-only signature, thus adding SV
information did not identify a DSB-specific pattern. In
fact, the four BRCA1/2-mutated samples displayed a
nonspecific SV pattern and did not contain a high num-
ber of SV events. This is in contrast to previous work
where BRCA1/2 deficient structural variation-only pro-
files were detected as clustered events [9, 28, 29]. The
present tool does not differentiate between clustered and
non-clustered variants and indeed the SV callers used

are not designed to detect such clusters, being essentially
overlapping structural events.

Comparing SV-only signatures to combined signatures
Whether to use a combined or SV-only signature de-
pends on the problem at hand. Combining an inform-
ative profile with a non-informative one may weaken the
signal, depending on the amount of training data avail-
able. On the other hand, combining two informative
profiles of two different mutation modes will increase
accuracy, as in the cases with MMR gene mutation.
When analyzing SVB, a clear difference between cases

with high SVB and low SVB (See Additional file 7:
Figure 1) can be seen. The high-SVB cases each have at
least one dominant structural variant type, accounting
for more than 30% (Additional file 7: Figure 2), which is
never present in any of the low SVB cases. The ten high
SVB samples clustered in two different SV-only profiles,
each showing one single dominant structural variant
type. However, when SNV data was added, the SV signal
was weakened with two samples clustering in signatures
that lacked SV specific patterns. In this scenario, inter-
pretation is simplified by the SV-only model.
On the contrary, it would be disadvantageous to use

our SV-only profile alone to identify tumors with
a POLD1/E-defect or a loss of function in MMR genes.
The analyzed colorectal cancer cases with pathogenic
mutation in POLE, POLD1 and MSI were all identified
to have signature a, which was characterized by struc-
tural deletion with size between 1 K–10 K. However, sig-
nature a was not specific to only these cases. There were
eleven breast cancer and six colorectal cancer cases with
signature a which did not have any coding POLD1/E or
MMR variants. This suggested a possible advantage of
combining two informative mutational modes in increas-
ing accuracy.

Signatures representing unknown biological mechanisms
Mathematically, NMF results represent sets of variables
that capture most of the variation in the data. Hence,
the signatures represent the underlying biological pro-
cesses of cancer only when the captured variations are
the result of the oncogenic mechanism in the analyzed
tumor. The types of variation seen in dysfunction of one
mechanism do not necessarily aid explanation of a dys-
function in another mechanism. Increasing sample num-
bers and number of cancer types under study does aid
discovering more underlying signatures. As the study
progressed to include also CRC samples, additional sig-
natures were indeed discovered. Application to a larger
and more diverse data set was, however, outside the
scope of the current study.
It is worth noting that at least half of the COSMIC sig-

natures have yet to be ascribed an underlying process.
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Adding sensors to detect variations caused by different
cancer mechanisms will make it possible for the signa-
tures to closer represent the underlying biological pro-
cesses. Many different sensors of DNA change could be
incorporated, and have indeed been used in different
studies: multi nucleotide variants, small indels, clus-
tered/non-clustered SVs, breakpoint characterization
sensors, including microhomology and mutations clus-
tered around the breakpoints. Many different structural
variant callers have been developed, and our results only
reflect only one possible, though proven, combination of
such. As an example, previous work has advised that
TMB be used for tumor classification, genetic testing,
and clinical trial design [30]. Including TMB as part of a
molecular profile may strengthen accuracy. While we
use TMB to characterise benchmark samples, different
bioinformatic workflows can result in different TMB
values [31]. Second, TMB analysis compares the number
of mutations in one tumor to the others. But signature
analysis compares relative incidences of mutation types
within a tumor, resulting in a proportion of mutation
types. Research on how TMB can be included in a form of
a proportion is needed to ensure that TMB of hypermu-
tated tumors does not overpower other mutation types.
Having more quantitative information of omics data

may also strengthen the power of the model. Other
omics data that can be included in the model include
methylation data, RNA expression data and protein data.
Depending on the amount of correlation between differ-
ent sensor variables, signatures may be useful bio-
markers even if the variant type repertoire is far from
complete.

Implementation
While it is being increasingly recognized that mutational
signatures are useful for the analysis of tumors, they are
not yet in use in many sequencing centers. We believe this
is partly due to the lack of a modern, command line im-
plementation of any such tools. Most available tools oper-
ate in the R environment, well suited for prototyping of
mathematical methods, or by web interface. While conver-
sion programs or wrappers can be written to supply such
tools with data from standard files, this is perhaps not
given priority. Many tools expect data in domain custom
or rare formats. Sequencing facilities prefer to operate
with command line interface tools that can be readily in-
cluded into pipelines, and a small number of standardized
file formats. One notable exception is EMu [32] which
also presents a command line interface. The EMu tool ac-
cepts copy number variation data, but relies on custom file
formats for data input. It does not handle balanced struc-
tural variation or MSI. We opted for an implementation
in python, with a command line interface accepting stand-
ard genomics file formats (vcf, bam) to be suitable for

integration into standard pipelines. pyCancerSig also pro-
duces pdf reports. pyCancerSig requires whole genome se-
quencing input of both tumor and germline DNA in bam
and VCF format. pyCancerSig optionally accepts COS-
MIC/WTSI format signatures. No particular constraint is
made on SNV or SV VCF input, but SNV calls compatible
with data used for Alexandrov et al. [6] are accommo-
dated, and the structural variant calling pipeline (FindSV)
used in the present study is also documented for ease of
use and reproduction.

Choice of feature extraction model
Developing a feature extraction method that would rea-
sonably represent the global mutation profile was chal-
lenging. The mathematical model, NMF, used in this
study took a matrix M as an input and returned matrix
P, where M ≈ P x E. The model treated every number in
the matrix equally, regardless of the type of variation
represented.
Relative differences in the number of mutation events in

each mutation group played an important role in choosing
the extraction method. It is known that mutation burden
varies between different cancer types [33]. The number of
somatic indels are significantly different between MSI and
non-MSI cases [13]. In this study, we decided to limit the
total percentage of features from each mutation group.
For instance, the total fraction of base-substitution will al-
ways be 70% regardless of the relative difference between
the number of base substitution events compared to copy
number variation events. This prevented a very large
number of mutations from one mutation group, like
hypermutation due to defect MMR or the enormous
amount of structural inversion events found in cases with
signature D to overpower the others.
The numerical encoding of each type of structural

event sensor variable also had an impact on the design.
On the surface, the events might look equivalent. In de-
tail, the quantitative values encode different molecular
events. In structural deletion or structural duplication,
the size of an event was the total number of nucleotides
lost or gained. But for translocation events, the size of
an event was a distance between the original position
and the new position. If a piece of 100 bp DNA is trans-
located from a coordinate at 20Mb to a coordinate at
25Mb, in the same chromosome, the size of this event
will be 5Mb, instead of 100 bp. If the event is to a differ-
ent chromosome, the size will be set to infinite. More-
over, there were also differences behind the quantitative
value within each mutation type. For example, larger
structural deletion events are not as numerous as their
smaller counterparts. It is common to see 100 events of
structural deletion with size between 100 and 1000 bp
but it is impossible to see the same number of events for
whole chromosome deletions. In fact, having only 1 or 2
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whole chromosome deletion events is a pathogenic
event. At first, we attempted a logarithmic scale for the
quantitative values of structural events. However, in
order to make SVs comparable with the base substitu-
tion profile and in order to keep the profile representa-
tion as a percentage (in line with previous publications
[6], the present study does not use logarithmic values.
This resulted in a risk that certain mutation types can
overpower the others within the group, like in cases with
signature D. Moreover, events that are rare but patho-
logic, such as the loss of entire chromosomes or
chromosome arms, were also underpowered by this
choice.

Usage of tumor profile
Cancer signatures can be applied in both supervised-
and/or unsupervised learning models. Using cancer sig-
natures in a supervised learning model can result in a
high accuracy classifier, which is very efficient in answer-
ing questions with a limited set of answers. One such
classifier is HRDetect [9], which can identify BRCA1/
BRCA2-deficient tumors with 98.7% sensitivity.
However, the implementation in this study was in an

unsupervised fashion. This means that the cases have
not been labelled, including cancer type, cancer-related
pathway, cancer-related genes or tumor heterogeneity
prior to incorporation in the model. As a result, the
model has brought out the patterns of profile that were
commonly found in the cases, regardless of whether
there were one or more cancer processes in the tumors,
whether the processes are in known or unknown path-
ways, whether the processes are in known or unknown
genes, or whether the damage was caused by one or
more sources of DNA damage.
The unsupervised method aids interpretation by re-

ducing the dimensionality of the data and presenting
it in a way that humans can recognize. Therefore, this
model can be used to support molecular classification
of tumors; for instance, to compare a tumor to previ-
ously analyzed ones in order to delineate possible
cancer processes. Given that the model has been
trained with enough data, they can be used as sup-
portive evidence in a clinic by associating a new un-
solved case with signatures from solved cases, and
perhaps in the future aid medical decisions regarding
personalized therapy. We envision the use of an un-
supervised model with multiple sensor types of par-
ticular use in the exploration of disease where no
supervised model is yet available, or when investiga-
tion of the relation between signatures of multiple
modes of mutation types is desired. One way to make
use of visualization of this clustering method is how-
ever to use it as an intermediate result to infer the
mechanism behind the tumor development and to

suggest potential targets for therapy based on the
suggested profile. For example, in MSI cases, if we
profile a tumor and its profile is similar to sample
TCGA-A6–6781 or TCGA-AA-A01R, the profile can
be a supporting evidence suggesting a similar causa-
tive mechanism, in this case defect MMR genes. Also,
since the profiles of the MSI cases suggest similar
molecular mechanisms caused by the mutation, this
might be used as evidence that similar treatment on
cases with similar profiles is likely to have similar ef-
fect. Thus using combined mutation profiles may
identify groups of cancers that may profit from spe-
cific therapies as has been previously suggested [34].

Profile interpretation
This software package includes a visualization tool, “can-
cersig signature visualize”, that can help in clinical inter-
pretation. The visualization output files are in both
graphical and numerical representation.
As graphical format in a pdf file (Fig. 2), the pie chart

suggests mutational signature components found in the
tumor together with their percentage. For suggesting
similarity between two samples, the tumor profile, the
second figure in the pdf file, and the pie chart of the two
samples can be inspected. If the two look similar, it may
suggest similar mechanisms of causation and potentially
inform diagnosis and treatment. The last figure in the
pdf file can help determine error and uncertainty. The
higher the error, the more likely there are unidentified
mutational signature components in the tumor.
As numerical representation, the tool generates an

output file called “normalized_weights.txt”. This file con-
tains the percentage of mutational signature components
from all of the samples from one run (the same percent-
age numbers of those in the pie charts). It is useful for
systematic interpretation for multiple tumors and can be
worked on with basic data processing operations, like
“sort”, “not zero”, “more than”, etc.

Workflow flexibility
The aim of this python package was to have a complete
integrated set of tools written in Python to work with
and answer questions related to mutational signatures of
multiple variant types. Even though the package was
benchmarked with the recommended variant callers,
other bioinformaticians may use different variant callers
which may produce output in different formats, which
may not be compatible with our tools. So, we have de-
signed our workflow (Fig. 1) to be flexible and allow the
bioinformaticians to not have to change their callers in
order to use our tools. Most tools in the package were
designed to be replaceable, particularly the profiling. For
example, if a user uses another SV caller with entirely
different format, the user can replace the SV profiler
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with the parser written by the user. We have also pro-
vided examples input/output for each tool in the pack-
age. As long as the parser can generate the output in the
same format as the example, the parser should work
perfectly.

Conclusions
This pattern-based study has shown that applying an un-
supervised learning method on joint information from
multiple variant types can identify the cases suggested
by the SNV-only profile and demonstrated that integrat-
ing SV and MSI into the profile can strengthen previ-
ously unclear signals. This illuminated the association
within and between the mutation modes. The tool pre-
sented, pyCancerSig, accepts common file formats, and
is easily incorporated into a genome center pipeline.

Availability and requirements
Project name: pyCancerSig
Project home page: https://github.com/jessada/pyCancerSig
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.0 or higher
License: GNU v.3.0.
Any restrictions to use by non-academics: None.
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