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Although pain is regarded as a global public health priority, analgesic therapy remains a significant challenge. Pain is a
hypersensitivity state caused by peripheral and central sensitization, with the latter considered the culprit for chronic pain. This
study summarizes the pathogenesis of central sensitization from the perspective of neuroglial crosstalk and synaptic plasticity
and underlines the related analgesic mechanisms of acupuncture. Central sensitization is modulated by the neurotransmitters
and neuropeptides involved in the ascending excitatory pathway and the descending pain modulatory system. Acupuncture
analgesia is associated with downregulating glutamate in the ascending excitatory pathway and upregulating opioids,
?-aminobutyric acid, norepinephrine, and 5-hydroxytryptamine in the descending pain modulatory system. Furthermore, it is
increasingly appreciated that neurotransmitters, cytokines, and chemokines are implicated in neuroglial crosstalk and associated
plasticity, thus contributing to central sensitization. Acupuncture produces its analgesic action by inhibiting cytokines, such as
interleukin-1β, interleukin-6, and tumor necrosis factor-α, and upregulating interleukin-10, as well as modulating chemokines
and their receptors such as CX3CL1/CX3CR1, CXCL12/CXCR4, CCL2/CCR2, and CXCL1/CXCR2. These factors are regulated
by acupuncture through the activation of multiple signaling pathways, including mitogen-activated protein kinase signaling
(e.g., the p38, extracellular signal-regulated kinases, and c-Jun-N-terminal kinase pathways), which contribute to the activation
of nociceptive neurons. However, the responses of chemokines to acupuncture vary among the types of pain models,
acupuncture methods, and stimulation parameters. Thus, the exact mechanisms require future clarification. Taken together,
inhibition of central sensitization modulated by neuroglial plasticity is central in acupuncture analgesia, providing a novel
insight for the clinical application of acupuncture analgesia.

1. Introduction

Pain is mediated by nociceptive nerve fibers and is a physio-
logical alarm response to protect the body by reducing tissue
damage from injury [1]. Thirty to fifty percent of patients with
pathological pain suffer from anxiety and depression long after
wound healing. Both the pain and unpleasant emotions affect

their quality of life and cause serious social and economic con-
sequences [2, 3]. However, the solution for chronic pain
remains a major challenge throughout the world. Oral drugs
are often the first choice, and their usage has expanded expo-
nentially in recent years [4]. Unfortunately, the extensive
application of analgesic drugs may result in organ damage
and abuse, together with causing serious social problems [5].
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For example, long-term overuse of opioids, the most common
class of prescribed painkillers, can lead to side effects such as
addiction, tolerance, and drowsiness, as well as impaired
memory, attention, and judgment. Opioid abuse can also
potentially cause respiratory depression [6, 7]. Therefore, a
natural analgesic that can also regulate pain-related moods
and cognitive disorders is necessary.

Acupuncture therapy is a well-known treatment that
originated in China and has been applied in 183 countries
and regions all over the world [8, 9]. Long-term clinical prac-
tice has proved that acupuncture is an effective treatment to
relieve pain. The World Health Organization has recom-
mended acupuncture for more than 30 types of pain condi-
tions, including lumbago, headache, sciatica, and
postoperative pain [10]. Referring to the National Guideline
Clearinghouse (http://www.guidelines.gov/), there are 49
specific medical recommendations for acupuncture, of which
37 (75.51%) are pain-related diseases [11]. At present, many
clinical randomized controlled trials (RCTs) have demon-
strated the analgesic effect of acupuncture [12]. As shown
in a 16-week RCT, compared with sham acupuncture treat-
ment and awaiting-treatment groups, acupuncture treatment
could significantly reduce the incidence of migraine without
premonitory migraine, an effect that lasted at least 24 weeks
[13]. A meta-analysis by Vickers et al. analyzed the individual
data of patients in RCTs with nonspecific musculoskeletal
pain, osteoarthritis, shoulder pain, and chronic headache,
concluding that acupuncture is effective for the treatment
of chronic pain and has long-lasting therapeutic effects
[12]. These studies have indicated that acupuncture analgesia
is effective and safe and can improve the quality of life of
patients suffering from pain.

Pain is caused by tissue damage or similar pathophysiolog-
ical causes. Pain sensitization plays a key role in pain occur-
rence and maintenance. Pain sensitization starts from the
sensitization of peripheral nerves and involves a series of neu-
roplastic changes in the spinal cord and brain [14, 15], namely,
central sensitization. Neurotransmitters, neurotrophic factors,
lipids, and cytokines/chemokines play important roles in the
communication between neurons and glial cells in both
peripheral and central sensitization [16, 17]. Interestingly,
increasing evidence suggests that acupuncture can alleviate
central sensitization induced by glial cell-mediated inflamma-
tion to achieve analgesia [18, 19]. Therefore, we have summa-
rized the analgesic mechanisms of acupuncture in terms of
neuroglial crosstalk and neuroplasticity-mediated central sen-
sitization, highlighting the central neuroimmunological regu-
lating mechanisms and providing novel evidence and
insights for the clinical application of acupuncture.

2. Methods

2.1. Search Strategy. We searched the PubMed database for
published studies, from January 2010 to April 2020. The key-
words included [“acupuncture” or “electroacupuncture” or
“manual acupuncture”] and [“pain” or “analgesia” or “anal-
gesic”]. The language was limited to English. The filter pro-
cess was done firstly by the website’s search engine which
initially identified 2888 articles.

2.2. Study Selection.Of these articles, we excluded 1264 articles
due to the absence of an abstract or unavailability of the full
text, leaving 1624 articles. Hand searching was performed by
screening the reference lists of articles that met our inclusion
criteria based on the titles and abstracts. Of these, we excluded
930 articles as not related to acupuncture and pain in the titles
and abstracts before full-text assessments resulting in 694 arti-
cles. These included 216 basic research articles, 319 clinical
research articles, and 159 review articles or meta-analyses.
The full texts of 216 basic research articles meeting the inclu-
sion criteria were obtained and read carefully. Of these, 155
articles were excluded from 216 basic researches due to not
be focused on central sensitivity mechanisms, resulting in 61
articles. A flowchart of the search process is shown in Figure 1.

2.3. Data Extraction. Of 61 basic researches on the central
mechanism, the information from 35 typical and recently
published studies are listed in Table 1 due to similarities in
some of the studies, to analyze the central sensitization-
related mechanisms of acupuncture analgesia. The study
design data were extracted and classified using a predefined
data extraction form that designated the pain model type,
the intervention (methods, acupoints, acupuncture parame-
ters), and the outcome measures (pain-related behavior,
mechanism indexes). The data were extracted mainly by
one author and were checked by the other authors.

3. Role of Neural-Immune Crosstalk in
Peripheral Sensitization

The basic process of pain generation occurs when nocicep-
tors located in the periphery of peptidergic and nonpeptider-
gic primary nociceptive neurons selectively respond to
thermal, mechanical nociception, and irritating chemicals.

PubMed database
2888 articles

1624 articles

Exclude 1264 articles
Not available to the full text

No abstract

Exclude 930 articles
Not related to acupuncture

and pain

694 articles

Exclude 478 articles
Clinical research: 319

Review/meta-analysis: 159

216 articles
Basic research

155 articles
Not be focused on central

sensitivity mechanisms

61 articles
Central sensitivity

Figure 1: Flow chart of the search processes.
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During this process, related neurons in the dorsal root ganglia
depolarize and generate receptor potentials, converting physical
or chemical information to electrical information. The electrical
information is transmitted along the sensory pathway to the
spinal cord and other primary centers. The integrated informa-
tion from the primary center can be transmitted to higher cen-
ters in the brain to form the pain sensation, or to the motor
neurons in the anterior horn to produce a reflex [20].

Pain sensitization is a remodeling mechanism of the
central and peripheral nociceptive receptors. Continuous
stimulation such as tissue and nerve injury remodels the
nociceptor to produce pain sensitization, specifically, periph-
eral sensitization, is indicative of primary hyperalgesia,
including peripheral nociceptive receptors and dorsal root
ganglion DRG [21]. Neuroimmune interactions are essential
for peripheral sensitization [22]. There are two types of
peripheral inflammation: tissue and neurogenic inflamma-
tion. Tissue damage can cause the local release of histamine,
vascular dilatation, increased blood flow, and vascular exuda-
tion, as well as the release of various cytokines/chemokines
and agglutination factors. The immune cells (including mac-
rophages, mast cells, neutrophils, and lymphocytes) release
inflammatory mediators to aggravate pain and, at the same
time, release endogenous opioid peptides to inhibit periph-
eral inflammatory pain [23]. In recent years, cytokines/che-
mokines have been found to be involved in regulating and
sensitizing the excitability of nociceptors. Inflammatory
cytokines (interleukin-1β (IL-1β), IL-6 and tumor necrosis
factor-α (TNF-α)) mediate allodynia (pain resulting from a
stimulus that would not normally provoke pain), hyperal-
gesia (increased response to noxious stimulation), and
increasing the expression levels of substance P (SP) and
prostaglandin E2 (PGE2) in neurons and glial cells in
the DRG. Structurally, chemokines are similar to cyto-
kines, and their receptors are expressed in the DRG. For
instance, monocyte chemoattractant protein-1 (CCL2)
and its receptor, C-C chemokine receptor type 2 (CCR2),
were both increased in the nerve injury model. Moreover,
CCL2 can promote the interaction between immune cells
and nociceptors, thus playing a key role in inflammatory
and neuropathic pain [20]. At the same time, the excitatory
effect of cytokines/chemokines on nociceptive neurons is
manifested by regulating the opening of ion channels; specif-
ically, the activation of chemokine receptors can regulate the
current in voltage-gated calcium channels (VGCCs) [20].

Neurogenic inflammation is caused by chemicals, such as
SP and calcitonin gene-related peptide (CGRP), that are
released from primary nociceptive neurons [24]. Upon
peripheral tissue injury, sustained nociceptive stimulation
or inflammation sensitizes the nociceptors. These discharges
activate ?-aminobutyric acid (GABA) neurons by acting on
N-methyl-D-aspartate (NMDA) or non-NMDA receptors in
the intermediate neurons of the spinal cord and cause depo-
larization by acting on adjacent primary afferent terminals.
The discharge also produces a dorsal root reflex by retrograde
conduction, leading to the resensitization of the injury
receptors mediated by neurogenic inflammation and finally
inducing paresthesia and allodynia [20]. In addition, the
sympathetic nervous system participates in strengthening

the neurogenic inflammatory process, and neuroimmune
crosstalk plays an important role in peripheral sensitivity.

4. Central Sensitization in Pain Transmission
and Modulation Pathways Is a Crucial
Target for Acupuncture Analgesia

Central sensitization, namely secondary hyperalgesia, includ-
ing the disbalance of the ascending excitatory pathway and
descending pain modulatory system, plays a vital role in the
development and maintenance of chronic pain [25]. In the
ascending excitatory pathway, amplification of neural signal-
ing within the central nervous system (CNS) produces a state
of neuronal hyperactivity and hyperexcitability in the spinal
cord and brain, leading to hyperalgesia [26]. This occurs
mainly in the lamina I and lamina V neurons of the spinal
cord, as well as in medullary reticular formation, thalamus,
hypothalamus, cerebellum, amygdala, basal ganglia, hippo-
campus, cortexes S1 and S2, insula, anterior cingulate cortex
(ACC), prefrontal cortex, and some related cortical areas in
the parietal and temporal lobes [27–30]. The descending pain
modulatory system arises from a number of supraspinal sites,
including the midbrain periaqueductal gray (PAG) that pro-
jects indirectly to the spinal cord via the rostral ventromedial
medulla (RVM), lateral and caudal dorsal reticular nucleus
(DRN), and ventrolateral medulla, of which the PAG-RVM
system has been most studied [31].

As shown in Table 1, the neuropathic pain models,
including pain generated by chronic constriction injury,
chemotherapy-induced pain, spinal nerve ligation, and spinal
cord injury, have been widely used in the study of central
sensitization-mediated acupuncture analgesia. Inflammatory
pain induced by the administration of complete Freund’s
adjuvant also causes central sensitization, including the dual
mechanisms of peripheral and central sensitization. Many of
these studies have used electroacupuncture (EA) rather than
manual acupuncture, and the acupressure points ST36 and
SP6 have been most used. Both low frequencies at 2-15Hz
and, alternatively, higher frequencies between 2Hz and
100Hz were effective in EA analgesia, providing useful infor-
mation for maximizing the effects of acupuncture analgesia
in clinical settings.

4.1. Acupuncture Inhibits the Ascending Excitatory Pathway.
As described in Section 1, nociceptive receptors are com-
posed of types Aδ and C sensory fibers which transduce nox-
ious stimuli from damaged peripheral tissues to the spinal
cord. Neuroplasticity in the dorsal horn of the spinal cord
assists and enhances pain perception by the nociceptive
neurons. Central sensitization includes three processes: acti-
vation, sensitization, and modification of the CNS [32].
These are characterized by increases in the excitatory post-
synaptic current (EPSC), including windup, long-term
potentiation (LTP), and disinhibition. Among these, LTP
caused by both high- and low-frequency electrical stimula-
tion, nerve damage, or tissue damage is a process in which
a transient synaptic activity can produce a long-lasting
increase in synaptic strength. LTP relies on NMDA receptors
(NMDARs) and voltage-dependent calcium channels, and
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results in calcium influx, thereby activating protein kinase A,
protein kinase C, and calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) [33]. Protein synthesis is necessary
for late-phase LTP (L-LTP), and administration of brain-
derived neurotrophic factor (BDNF) in the spinal dorsal
horn and the hippocampus can induce L-LTP of C-fiber
potentials [34]. Disinhibition includes a reduction of
GABAergic and/or glycinergic inhibition and an enhance-
ment of Aβ and C fiber sensitivity. The loss of inhibitory
interneurons, impaired storage and/or release of inhibitory
neurotransmitters, and impaired postsynaptic receptor activ-
ity have been proposed as the mechanisms underlying disin-
hibition [35]. Finally, the integrated signals travel through
the spinal cord to the thalamus, where the location and inten-
sity of the pain is processed. The signal then travels to the
classic pain nerve circuit, the cerebral sensory cortex (S1,
S2), which distinguishes the location and duration of the pain
[36]. Apart from S1 and S2, neuronal activities in the ACC,
insular cortex, and amygdala also contribute to various
aspects of pain perception, including the experience of dis-
comfort [37].

In terms of the molecular mechanisms, primary nocicep-
tive neurons release glutamate, SP, CGRP, adenosine triphos-
phate (ATP), and neurokinin-1 (NK1) into the spinal cord.
These molecules interact with their receptors, including
NMDARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid receptors (AMPAR), metabotropic glutamate recep-
tors (mGluR), SP receptors (NK1R), calcitonin receptor-like
receptors (CRLR), and purinergic receptors (P2X, P2Y) of
the spinal nociceptive projection neurons. This induces an
influx of Ca2+ into the pain neurons of the spinal cord [38],
activating calcium-dependent intracellular cascades, inducing
NMDAR phosphorylation [39], ultimately resulting in the
generation of nociceptive information throughout the spi-
nothalamic pain pathway [40, 41]. Thus, these mediators
released by nociceptive neurons cause neural hyperexcitability
and nociceptive transmission.

Glutamate is the most important and widely distributed
excitatory neurotransmitter in the CNS and plays a critical
role in the ascending excitatory pathway. Glutamate recep-
tors are broadly divided into two groups, metabotropic gluta-
mate receptors (mGluRs), and cation-permeable ionotropic
glutamate receptors (iGluRs), which are, in turn, subdivided
into NMDAR, Kainate-type iGluR, and AMPAR. Excitatory
glutamatergic transmission plays a crucial role in the onset
of chronic pain and is characterized by an increase in gluta-
mate concentrations and receptor stimulation, leading to the
transmission of pain messages [77, 78]. Somers et al. investi-
gated the effects and potential mechanisms of transcutaneous
electrical nerve stimulation (TENS) on neuropathic pain
caused by chronic constriction injury (CCI). The mechanical
allodynia was relieved by decreased concentrations of excit-
atory glutamate in the dorsal horn with a combination of
low- and high-frequency TENS [79]. Recent evidence has
shown that 2Hz EA bilateral stimulation on the Zusanli
(ST36) and Sanyinjiao (SP6) acupressure points produced
analgesic effects through the downregulation of the N-
methyl-D-aspartate receptor type 2B (NR2B, NMDAR sub-
unit), inhibiting the transmission of pain messages in a CCI

rat model [42]. AMPAR consists of four subunits (GluR1-
R4). EA has been demonstrated to prevent phosphorylation
of AMPAR, especially the GluR2 subunit, in a Complete
Freund’s Adjuvant (CFA) model [43, 44]. In addition, the
antinociceptive effect of EA is proposed to be related to the
recovery of glutamate transporter (GT) expression, which
can remove excess glutamate from the synaptic clefts. Both
the spinal glutamate-aspartate transporter and GT1, which
are mainly distributed in glial cells, were increased after EA
treatment in CFA-injected rats as a result of proteasome
downregulation [45]. A similar response has also been
observed in a neuropathic pain model of spared nerve injury
treated with EA [46]. Glutamatergic synaptic transmission is
coupled with excess Ca2+ entry into projection neurons and
results in the activation of the Ca2+-dependent enzyme Ca2+/-
calmodulin-dependent protein kinase II (CamKII) and phos-
phorylation of the NR2B subunit of NMDAR at postsynaptic
sites in the ACC, thus modulating visceral pain in a viscerally
hypersensitive model [80]. It was reported that EA at ST36
and Kunlun (BL60) could reverse the actions of the calcium
voltage-gated channel subunit and calcium voltage-gated
channel auxiliary subunit γ, thus reducing chronic inflamma-
tory pain (CIP) in the CFA rats [47].

4.2. Acupuncture Regulates the Descending Pain Modulatory
System. It is now clear that the descending pain modulatory
pathway can be both facilitatory and inhibitory, with a
dynamic balance between the two functions. When acute
pain turns to chronic pain, the descending facilitation func-
tion is dominant, leading to enhanced pain sensitization
and even “mirror pain,” in which the rostral RVM plays a
key role. Descending projections from the RVM, identified
as ON and OFF cells, facilitate and inhibit spinal nociceptive
transmission, respectively. For example, RVM lesions or
functional silencing can prevent pain sensitization induced
by nerve injury. Excitatory amino acids, AMPAR, NMDAR,
and the BDNF/TrkB signaling pathway are also involved
in the process of descending facilitation. Several neuro-
transmitters (e.g., opioid, GABA, norepinephrine, and 5-
hydroxytryptamine (5-HT)) are involved in these descend-
ing pathways [20]. It has been demonstrated that acupunc-
ture functions mainly through facilitating the descending
inhibitory system to ease pain, while the regulation of acu-
puncture on the descending facilitation system is poorly
understood. Limited results have suggested that EA relieves
inflammatory pain via inhibiting the activation of p38
mitogen-activated protein kinases (MAPK) in the central
descending facilitation system [48]. In addition, EA poten-
tiates the descending inhibitory control of 5-HT in the
medulla via cannabinoid receptors on GABAergic but not
glutamatergic neurons, thus inhibiting knee osteoarthritis
pain [49].

4.2.1. Regulation of Opioids and Their Receptors by
Acupuncture. Opioids and their receptors help reduce the
excitatory transmitter release in the midbrain descending
pathway, especially in the PAG-RVM system [81]. Kissiwaa
et al. found that opioid receptors, mainly the μ opioid recep-
tors (MORs), could inhibit glutamate release at synapses in
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the amygdala [82]. In addition, the analgesic capacity of
MORs in the PAG was negatively regulated by glutamate-
binding NMDAR NR1 subunits [83]. Until now, the activa-
tion of endogenous opioids (e.g., enkephalin, β-endorphin,
and dynorphin)/opioid receptor (e.g., μ and δ opioid recep-
tors) is the best-understood mechanism of acupuncture
analgesia [50, 84–87]. Although different frequencies of EA
can be reversed by the opioid antagonist naloxone, the types
of opioids that mediate EA effects vary according to the EA
frequency. For example, a single administration of 2Hz EA
at ST36 for 20 minutes can alleviate hyperalgesia during
ethanol withdrawal through the mediation of MORs in the
lateral habenula (LHb), an epithalamic structure rich in
MORs. Activation of MORs may inhibit the release of gluta-
mate in the LHb, which can block the descending nociceptive
signal from the LHb to the PAG, thus reducing pain [50].
Besides MORs, 10Hz EA at Huantiao (GB30) can signifi-
cantly relieve paclitaxel-induced mechanical allodynia and
hyperalgesia via the δ or κ opioid receptors [51].

4.2.2. Regulation of Nonopioid
Neurotransmitters by Acupuncture

(1) GABAergic Inhibitory Interneuron Network. GABA is an
important inhibitory neurotransmitter that is involved in
the reduction of pain sensation through presynaptic inhi-
bition [88]. The imbalance between excitatory glutamater-
gic and inhibitory GABAergic transmission, particularly
decreased inhibition of GABAergic synaptic transmission
in the spinal pain circuit, has been considered to underlie
the development of central sensitization [23, 27, 52, 89, 90].
It was also found that RVM GABAergic neurons could facil-
itate mechanical pain by inhibiting dorsal horn enkephali-
nergic/GABAergic interneurons [91]. EA may initiate
analgesia by increasing GABA expression on the descending
pain modulatory pathways in the PAG [52]. Furthermore,
the GABA receptor, a ligand-gated ionotropic receptor, is
located mainly in postsynaptic neurons and contributes to
the initiation of fast synaptic inhibition, thus being the major
target for producing sedation [92]. EA at the bilateral L4 and
L6 of Hua Tuo Jia Ji points (EX-B2) [53] or ST36 and Yan-
glingquan (GB34) points can significantly reduce neuro-
pathic pain by increasing the GABA receptors in the spinal
cord [54]. Moreover, EA can support the GABAergic system
by reducing the rate of GABA reuptake. GABA transporter-1
(GAT1), the dominant neuronal GABA transporter, controls
GABA concentrations, and EA was found to reduce GAT1
activity via activating the δ-opioid receptor in the PAG
[93]. Taken together, acupuncture can modulate the
GABAergic system by increasing GABA expression, activat-
ing the GABA receptor, and inhibiting GABA reuptake.

(2) Norepinephrine. Norepinephrine is released from
descending projection into the dorsal horn and helps to
evoke an antinociceptive effect. The depletion of spinal nor-
epinephrine caused mechanical hypersensitivity in a dose-
dependent manner in a chronic pain rat model [94]. Studies
have clearly shown that norepinephrine is involved in acu-
puncture analgesia. A previous report by Choi et al. demon-

strated that EA stimulation (2mA, 2Hz, 30min, once every
two days) at bilateral ST36 could significantly diminish
paclitaxel-induced neuropathic pain. Further studies have
shown that the antinociceptive effect of EA was mediated
by spinal descending adrenergic pathways through the
activation of the α2- and β-spinal adrenoceptors in mice
[55, 56]. Consistent with these results, studies have shown
that EA-induced analgesia in a rat model of an ankle sprain
is mediated mainly by suppressing dorsal horn neuron activ-
ity through α-adrenoceptors [57]. In addition, studies have
shown that the analgesic effect of 10-Hz-EA was regulated
by the spinal α2a-adrenoceptor, compared to the α2b-adre-
noceptor in a CFA-induced inflammatory pain model [58].
It has also been found that intrathecal injection of desipra-
mine, a selective noradrenaline uptake inhibitor, increased
the availability of spinal noradrenaline and prolonged the
antinociception effect of EA [59].

(3) 5-Hydroxytryptamine. 5-HT (also called serotonin) arises
largely from the RVM to the spinal cord and exerts biphasic
modulation in the descending facilitation and inhibitory
pathways. The facilitatory and inhibitory influence on the
spinal processing of nociceptive information were mediated
through recruitment of RVM ON or OFF cells, respectively,
and depended on acute or chronic pain states and the type
of receptor acted upon [60, 95]. A low dose of 5-HT produces
facilitation of fast EPSCs in the spinal cord, while a high dose
of 5-HT induces inhibition of AMPA/kainite-receptor-medi-
ated EPSCs [88, 96]. Numerous studies have shown the
involvement of the 5-HT and 5-HT receptors in acupuncture
analgesia effects [60, 97–99]. EA at 100Hz, but not 2, 50, or
2/100Hz, was effective in alleviating the pain-depression
dyad and upregulating 5-HT in the DRN of reserpine-
injected rats [60]. In a CFA-inflammatory pain model,
10Hz EA inhibited thermal hyperalgesia through the activa-
tion of spinal 5-hydroxytryptamine 1A receptors (5-HT1AR)
but not 5-HT2BR, 5-HT2CR, or 5-HT3R [58, 61]. Consistent
with these results, EA activated spinal 5-HT1AR to alleviate
both allodynia and hyperalgesia in CIP rats [62]. In an oste-
oarthritis model, the effectiveness and mechanisms of EA
were focused on the involvement of spinal 5-HT2A/2C
receptors [63]. Taken together, these data suggest that spinal
5-HT and its receptors are involved in acupuncture analgesia
but the effects differ according to both animal models and EA
frequencies.

4.3. Role of the Tripartite Synapse in Acupuncture Analgesia

4.3.1. Neuroglial Crosstalk Regulates the Neural Plasticity.
Vladimir Parpura first proposed the concept of the “tripartite
synapse” in 1994 [100]. This concept added glial cells
(astrocytes and microglia) to the original classic pre- and
postsynaptic neuronal cells, thus emphasizing the impor-
tant roles of glial cells in synaptic transmission and regula-
tion. It is noteworthy that recent studies have shown that
central sensitization driven by neuroinflammation in the
CNS is accompanied by glial activation, including the acti-
vation of astrocytes, microglia, and oligodendrocytes in the
spinal cord and brain [101]. Lau and coworkers found that
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L5 spinal nerve ligation (SNL) caused the upregulation of
cyclooxygenase-1 (COX-1) and COX-2 in spinal microglial
and neuronal cells; these enzymes are involved in the produc-
tion of prostaglandins (PGs) via arachidonic acid pathways
and, in turn, lead to the development of neuropathic pain
[102]. Functional imaging also showed elevated cerebral
levels of the translocator protein, a marker of glial activation,
in patients with chronic low back pain [103]. Therefore,
chronic pain may also be the result of “gliopathy” [104].

It is increasingly clear that neural plasticity is regulated by
neuroglial crosstalk. After peripheral tissue or nerve damage,
neurotransmitters such as glutamate, SP, and CGRP released
from nociceptive primary afferent fibers in the dorsal horn
not only cause intense high-frequency activation of the neu-
ral postsynaptic receptors and amplification of the postsyn-
aptic current but also interact with their corresponding
receptors on microglia and astrocytes [105–107], activating
the voltage-dependent calcium channel and inducing calcium
entry into the neuron. Glia-derived substances are termed
gliotransmitters and include cytokines (IL-1, IL-6, and TNF-
α), chemokines (CCL2 [108] and CXCL1 [109]), and inflam-
matory mediators (e.g., bradykinin, PGs, and nitric oxide).
These chemicals promote an inflammatory environment
[101] and act as chemical mediators to amplify neuroglial
reactivity in a paracrine manner, favoring the elevation of
these mediators in the dorsal horn of the spinal cord [110].
As an example, TNF-α acting at the TNF-α receptor 1
(TNFR1) functions in the development of pain by facilitating
excitatory synaptic signaling in the acute phases after nerve
injury in CCI mice compared with sham control mice [111].
TNF-α contributes to neural plasticity through mechanisms
involving the downregulation of GTs, upregulation of the
glutamate concentration in the synapse, and phosphoryla-
tion of NMDAR. TNF-α subsequently promotes the facilita-
tion of excitatory synaptic transmission and downregulates
the expression of GABA receptors, thus reducing the inhibi-
tion of excitatory transmission [112]. Chemokines can also
regulate the interactions of neurons and glial cells, e.g.,
CCL2 derived from astrocytes can “talk to” neurons by
regulating neuronal activity via c-Jun-N-terminal kinase
(JNK) MAPK [108]. These mediators produced by active
glial cells contribute to neural plasticity. During the process,
the activated glia can release prostaglandin, BDNF, nitric
oxide, and other neuroactive substances; reduce the inhibi-
tory effects of GABA; and upregulate the expression of
NMDARs, thereby increasing nerve excitability and main-
taining neuropathic pain [22, 113]. Moreover, modification
of glial cell numbers in the brain is likely correlated with the
emotional experience of pain, as well as mood disorders
such as depression and anxiety [114]. Once activated, the
glial cells in the spinal cord release cytokines that provide
positive feedback, further enhancing excitatory synaptic
transmission.

4.3.2. Inhibition of Glial Activity by Acupuncture. It has been
shown that in the neuropathic pain model induced by SNL,
the inhibition of spinal microglia and astrocytes mediates
the immediate and long-term EA analgesia, respectively
[64]. It has also been reported that the analgesic efficacy of

EA might be related to the modulation of microglial and
astrocyte activation [115–117]. Acupuncture has been
reported to suppress signal transduction pathways and key
molecules, including p38 MAPK, extracellular regulated
kinases (ERK), and JNK, in microglial and astrocyte activa-
tion in pain processing [65, 66, 118–120]. Previous results
observed that the acupuncture analgesic effect is related to
spinal cytokines and neurotrophic factors released by glial
cells [67, 121, 122]. Repeated EA treatment at the bilateral
ST36 and GB34 points once a day can relieve chronic pain
and suppress the elevated mRNA expression of TNFα and
IL-1β in the spinal cord of CCI rats [67]. EA (2/100Hz,
2mA) for five consecutive days can significantly increase
the mechanical threshold and thermal latency after CFA
injection. This could be partially associated with the suppres-
sion of proinflammatory cytokines (e.g., TNF-α and IL-1β)
and the stimulation of IL-10 in the spinal cord. IL-10, pro-
duced by the spinal cord, is the key anti-inflammatory cyto-
kine for relieving both inflammatory pain [68, 69] and
neuropathic pain [70]. Paclitaxel significantly activates both
microglia and astrocytes and increases the expression of
inflammatory cytokines (IL-1β and TNF-α) in the lumbar
spinal cord. EA treatment (10Hz, 1mA) at the bilateral
ST36 point in rats suppressed the expression of inflammatory
cytokines through the downregulation of the TLR4/NF-κB
pathway as well as suppressing activated microglia and astro-
cytes [71]. Besides TLR4, increased expression of TLR2 in the
spinal cord and thalamus was also reportedly suppressed by
EA in a CFA model [72]. Therefore, the downregulation of
gliotransmitters by acupuncture can prevent the activation
of neuroglial crosstalk, thus contributing to the easing of
chronic pain. However, the evidence on how acupuncture
modulates glial cells to inhibit excitatory synaptic transmis-
sion is still incomplete.

4.4. Role of Chemokines and Their Receptors in
Acupuncture Analgesia

4.4.1. Introduction to the Chemokine System. Chemokines, 8-
12 kDa secreted proteins, constitute the largest family of
cytokines. According to the number and spacing of cysteines,
chemokines consist of two major families, CC (CC1-28) and
CXC (CXC1-16) chemokines, as well as two minor families,
XC (XC1-2) and CX3C (CX3CL1) chemokines [123]. All
chemokines bind to the members of a family of seven
transmembrane-spanning heterotrimeric G protein-coupled
receptors (GPCRs). Chemokines are regarded as important
mediators of inflammation and help to control the position-
ing andmigratory patterns of immune cells. Immune cell res-
idence in primary (T cells, B cells), secondary (lymph nodes,
spleen, Peyer’s patches), and tertiary lymphoid organs are
under the fine control of this complex system of approxi-
mately 50 endogenous chemokines [123]. The development
of T cells in the thymus depends on the interaction of
epithelial-derived CCL21, CCL25, and CXCL12 with CCR7,
CCR9, and CXCR4, respectively, expressed on T cell progen-
itors [124]. In contrast to the thymus, the homeostasis and
development of immune cells in the bone marrow seems to
be governed by the opposing forces of interactions between
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CXCL12/CXCR4 and CCL2/CCR2 [123]. Chemokines, con-
sidered as regulators of peripheral immune cell transport, are
capable of inducing the migration of T, NK cells, dendritic
cells, and/or macrophages [125]. There has been growing
recognition that the chemokine system orchestrates immune
cell migration (e.g., macrophages [126] and lymphocytes
[127]) into the DRG and CNS. This plays a critical role in
the central sensitization in the early initiation of pain percep-
tion [128]. Besides, chemokines and their receptors expressed
by neurons and glial cells in the CNS have been shown to
mediate neuroglial communication and nociceptive signal
transmission at different anatomical locations, including
nerves, the DRG, spinal cord, and brain [129, 130].

4.4.2. Acupuncture Analgesia via Regulation Chemokine and
Their Receptors. Concomitant with the increasing use of acu-
puncture to alleviate pain, attention has been paid in recent
years to the mechanism of acupuncture analgesia from the
perspective of chemokines.

(1) CX3CL1/CX3CR1. CX3CL1 is specifically expressed in
neurons and binds to the CX3CR1 receptor on the microglial
cell membrane [125], activating the MAPK pathway. MAPKs
play important roles in information transmission between
neurons and glial cells as well as the genesis of pain hypersen-
sitivity induced by CX3CL1/CX3CR1 [131, 132]. Gao et al.
reported that peripheral injury to the primary afferent noci-
ceptive neurons caused the release of CX3CL1 into the spinal
cord, which activated the production of TNFα in a p38
MAPK-dependent mechanism in microglia. In turn, the acti-
vation of TNF-α regulates CCL2 expression in astrocytes in a
JNK MAPK-dependent manner. CCL2 subsequently acti-
vates central neurons through CCR2, eventually leading to
neuropathic pain [133]. Neutralizing antibodies to CX3CL1
or CX3CR1 could attenuate mechanical hyperalgesia in neu-
ropathic pain models [134, 135]. It has been demonstrated
that neuron-microglia interactions are mediated by puriner-
gic receptors, and, subsequently, by CX3CL1/CX3CR1. The
purinergic P2X7R/CX3CL1/CX3CR1 pathway, following
intracellular phosphorylation of microglial p38 MAPK
[136] which subsequently stimulates the release of IL-6 and
IL-1β [137], plays a key role in nociceptive signal transmis-
sion [138].

In a rat neck-incision pain model, Gao et al. found that
two sessions of EA at Futu (LI18), Hegu (LI4), Neiguan
(PC6), or ST36, GB34 could significantly relieve thermal
pain, followed by the downregulation of ATP/P2X7R/
CX3CL1/CX3CR1 signaling and suppression of its down-
stream p38 MAPK pathway in the upper cervical spinal cord
after three sessions. Thereby, EA suppressed ATP/P2X7R/
CX3CL1/CX3CR1/p38 MAPK-induced neuroglial crosstalk
in pain processing [73]. The results are consistent with the
reports by Li that 2Hz EA at ST36 for 30mins reduced the
overexpression of CX3CL1 other than CX3CR1 in the spinal
cord of the CFA model rats. EA inhibited the activation of
neuronal and microglial cells and decreased p38 MAPK
signaling and the downstream proinflammatory cytokines
IL-1, IL-6, and TNF-α. They also found that EA did not

inhibit the expression of p38 MAPK but inhibited its phos-
phorylation [74]. Slightly different from their results, the
report by Li et al. [75] demonstrated that mechanical allody-
nia and thermal pain induced hyperalgesia by paw incision
was significantly suppressed by acupuncture-combined anes-
thesia (ACA). However, the analgesic effect of ACA was not
apparent in CX3CR1 knockout mice and was also blocked
when a neutralizing antibody to CX3CR1 was intrathecally
injected 1 h before ACA in C57BL/6J mice, suggesting that
CX3CR1 in microglia is not only involved in postincision
pain, but also in ACA-induced analgesia.

(2) CXCL12/CXCR4. CXCL12 and CXCR4 are, respectively,
expressed in neurons and glial cells in the central nervous
system [139], and the CXCL12/CXCR4 activation leads to
increased pain sensitivity in the spinal cord. A study by Luo
et al. demonstrated that CXCL12 and CXCR4 are upregu-
lated in the spinal cord dorsal horn in chronic postischemic
pain (CPIP) mice. Intrathecal blocking of CXCR4 improved
mechanical allodynia, suggesting an important role of spinal
CXCL12/CXCR4 signaling in ameliorating the pain response
[140]. Hu et al. found that EA exerted an analgesic effect on
the same rat model of CPIP by suppressing the overexpres-
sion of CXCL12/CXCR4 in the spinal cord dorsal horn. Fur-
thermore, they found that EA can effectively inhibit excessive
activation of glial cells in the spinal cord and markedly
reduce downstream ERK pathway activation, thus reducing
the central sensitization and exerting an analgesic effect [76].

(3) CCL2/CCR2. CCL2 is expressed in spinal astrocytes and
induces neuronal activation via CCR2 to increase excitatory
synaptic transmission (astrocyte-to-neuron signaling), con-
tributing to central sensitization and neuropathic pain
development. It has been shown that CCL2/CCR2 was
upregulated in the spinal cord via the JNK pathway after
SNL [108]. CCL2 can also rapidly increase NMDA-induced
current and spontaneous EPSCs [108] or inhibit GABA-
induced currents [141] in dorsal horn neurons, all of which
are critically involved in the maintenance of pain. Further-
more, spinal administration of CCL2 induced thermal hyper-
algesia via activating the spinal transient receptor potentia1
vanilloid 1 (TRPV1) receptors [142]. Lee et al. demonstrated
acupuncture at Shuigou (GV26) and GB34 significantly alle-
viated both mechanical allodynia and thermal hyperalgesia
after spinal cord injury at L4-L5. It is noteworthy that acu-
puncture inhibited the astrocyte expression of CCL2, which
is known to be mediated through the JNK pathway and con-
tributes to excitatory synaptic transmission. Apart from the
findings on CCL2, Lee also showed that JNK-dependent
CCL4 and CCL20 expression was significantly decreased by
acupuncture treatment [66].

(4) CXCL1/CXCR2. CXCL1 and CXCR2 are expressed in
astrocytes and neurons, respectively, in the spinal cord, and
CXCL1/CXCR2 in the lumbar spinal cord has been demon-
strated to play key roles in pain processing. The application
of CXCL1 in the spinal cord acted on CXCR2, inducing the
expression of phosphorylated ERK and cAMP-response
element-binding protein, c-fos, and COX-2 in the spinal cord
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neurons and leading to the subsequent maintenance of
neuropathic pain [109]. Similarly, Cao and coworkers
showed that astrocytes were activated after inflammation
and released CXCL1 in the spinal cord, which could then
act on CXCR2 to induce ERK activation, synaptic transmis-
sion, and COX-2 expression in dorsal horn neurons, ulti-
mately contributing to the pathogenesis of CFA-induced
inflammatory pain [143]. In addition, Xu et al. found that
astrocyte-secreted CXCL1 activated spinal cord dorsal horn
neurons to express CXCR2 in cancer pain models [144].
Taken together, CXCL1/CXCR2 is involved in the develop-
ment of neuropathic, inflammatory, and cancer pain.

However, it has also been demonstrated that
CXCL1/CXCR2 is involved in pain relief. Previously, a study
by Cao et al. demonstrated intrathecal administration of
recombinant CXCL1 in wild-type mice significantly reduced

spinal nerve L5 transection- (L5Tx-) induced mechanical
hypersensitivity. Due to CXCL1’s chemotaxis, it is capable
of associating with the increased number of opioid peptides
produced by infiltrating neutrophils in the lumbar spinal
cord [145]. Similarly, Guo and his colleagues showed that
bone marrow stromal cell-induced monocytes secrete
CXCL1 which could cross the blood-brain barrier and con-
tribute to pain relief. The CXCL1/CXCR2 signaling triggers
opioid release by activation of central μ-opioid receptors in
the RVM [146]. Furthermore, we have observed a novel func-
tion of acupuncture-derived CXCL1 in the CFA rat model. In
our unpublished data, it was found that acupuncture at ST36
could induce high CXCL1 levels in CFA rat serum. CXCL1
neutralizing antibodies reduced the acupuncture analgesic
effect by 20%. Our results demonstrated that acupuncture-
derived CXCL1 can induce spinal cord CXCR2 desensitiza-
tion, blocking COX2 production in the spinal cord. These
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phenomena showed that the same chemokines involved in
pain sensitization may also be neuroprotective and promote
pain relief under certain conditions.

5. Conclusion

To conclude (as shown in Figure 2), it is well established that
pain is a hypersensitivity state caused by peripheral and
central sensitization. Central sensitization is modulated by
the ascending excitatory pathway and the descending pain
modulatory system. With the emergence of the “tripartite
synapse” concept, neuroglial cells are considered as active
partners of neurons at the synapse and can contribute to
central sensitization. It is increasingly appreciated that neu-
rotransmitters (e.g., glutamate, opioid, GABA, norepineph-
rine, and 5-HT), inflammatory cytokines, and chemokines
are implicated in this crosstalk. Acupuncture analgesia
involves the ascending excitatory pathway and the descend-
ing pain modulatory system through the downregulation of
glutamate and upregulation of opioids, GABA, norepineph-
rine, and 5-HT. Evidence indicates that the occurrence and
maintenance of pain are closely related to immune responses,
and the role of cytokines/chemokines in mediating neuroglial
communication has attracted much attention in recent years.
Acupuncture analgesia has also been demonstrated to
inhibit cytokines such as IL-1β, IL-6, and TNF-α and upreg-
ulate IL-10, as well as modulating chemokines and their
receptors such as CX3CL1/CX3CR1, CXCL12/CXCR4,
CCL2/CCR2, and CXCL1/CXCR2. Furthermore, acupunc-
ture has been found to regulate downstream neural MAPK
signaling (e.g., p38, ERK, and JNK pathways), which con-
tribute to the activation of nociceptive neurons. However,
the responses of chemokines to acupuncture differ between
pain model types, acupuncture methods, and parameters,
requiring future clarification of the exact mechanisms.
Taken together, the inhibition of neuroglial plasticity-
mediated central sensitization is one of the critical mecha-
nisms in acupuncture analgesia, contributing to the wider
application of acupuncture, alone or in combination with
pain medication, in the enhancement of treatment effective-
ness and the lowering of pain medication dosages and
decreasing the risk of debilitating adverse effects. The acu-
puncture parameters described in these studies, particularly
those of EA stimulation, also provide significant information
for maximizing the effect of acupuncture in the clinical
setting.
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