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Abstract
The label switching problem occurs as a result of the nonidentifiability of posterior distribu-

tion over various permutations of component labels when using Bayesian approach to esti-

mate parameters in mixture models. In the cases where the number of components is fixed

and known, we propose a relabelling algorithm, an allocation variable-based (denoted by

AVP) probabilistic relabelling approach, to deal with label switching problem. We establish

a model for the posterior distribution of allocation variables with label switching phenome-

non. The AVP algorithm stochastically relabel the posterior samples according to the poste-

rior probabilities of the established model. Some existing deterministic and other

probabilistic algorithms are compared with AVP algorithm in simulation studies, and the suc-

cess of the proposed approach is demonstrated in simulation studies and a real dataset.

Introduction
Finite mixture models provide a flexible way to model heterogeneous data, and have been applied
to a wide variety of data in social, medical and physical science. Overviews of applications of
finite mixture models can be found in Titterington et al. [1] and McLachlan and Peel [2].

The likelihood function of the finite mixture model is invariant when switching component
labels. In the last decades, the development of Markov chain Monte Carlo (MCMC) methods
[3] and progress of computer technology facilitate the popularity of performing Bayesian anal-
ysis for finite mixture models. In the Bayesian setting, if the prior information does not distin-
guish the components of the mixture model, the resulting posterior distributions will be
invariant to all permutations of component labels. Hence, the ergodic averages over the
MCMC samples from the posterior distributions are meaningless. This is termed as the label
switching problem [4, 5].

Many approaches have been proposed to deal with the label switching problem in Bayesian
analysis. The most commonly used approach is to impose some artificial ordering constraints
on model parameters (OC algorithm) [6, 7]. However, the poor choice for the constrained
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parameters may not provide a satisfactory solution [4, 7]. Celeux et al. [8] and Stephens [5]
proposed the decision theoretic approach that minimizes a selected Monte Carlo risk. Stephens
[5] (KL algorithm) suggested a particular choice of loss function based on the Kullback-Leibler
divergence to measure the similarity of posterior allocation probabilities. Grün and Leisch [9]
developed a more flexible risk-based algorithm to deal with more practical situations in real-
world applications. These algorithms designed to minimize Monte Carlo risk can be regarded
as imposing a sophisticated constraint through a loss function.

Other relabelling approaches require more sophisticated algorithms. Papastamoulis and
Iliopoulos [10] used equivalence classes representatives (ECR algorithm) to reduce symmetric
posterior distribution to nonsymmetric ones, which can be used to deal with the label switching
problem. Yao and Lindsay [11] (HPD algorithm) used each MCMC sample as the starting
point in an ascending algorithm, and labeled the sample based on the posterior mode to which
the algorithm converged. Sperrin et al. [12] who proposed the probabilistic relabelling methods
(SJW algorithm) considered a probabilistic learning mechanism to avoid “over-correct” rela-
bels. Rodriguez and Walker [13] proposed an iterative version of the ECR algorithm (the itera-
tive version 2 of the ECR algorithm: ECR2 algorithm), which did not require a good pivot
estimate from the start, but improved it via an iterative algorithm. In ECR2, the allocation
probabilities needed to be stored. They also develop a deterministic relabelling algorithm that
uses the relationship between the observed data and allocation variables to devise a K-means
type of loss function (DBS algorithm).

In this paper, an allocation variable based probabilistic relabelling approach (AVP algo-
rithm) is proposed to find the labelling functions. The proposed algorithm is developed under
the assumption that the posterior distributions of allocation variables are independent. The
AVP algorithm is compared with other six existing relabelling algorithms (KL, ECR, HPD,
SJW, ECR2 and DBS) in simulation studies. In real data analysis, schizophrenia syndrome
scale data fitted by latent class model is used to demonstrate that labels can be identified well
by using the proposed algorithm.

The Label Switching Phenomena

Bayesian Analysis of Finite Mixture Models
A finite mixture model composed of K components is of the form

pðyjθÞ ¼
XK
k¼1

Zkf ðyj�k;cÞ;

where y is the random variable (vector) of response, ϕk is the component specific parameter of

density f, ηk is the component weight with ηk> 0 and
PK

k¼1 Zk ¼ 1, ψ is the parameter common
to all components, and K is considered as fixed and known in this paper. Here we denote θk =
(ηk, ϕk), and θ = (θ1, . . ., θK, ψ). The likelihood for θ is

LðθjyÞ ¼
Yn
i¼1

fZ1f ðyij�1;cÞ þ . . .þ ZKf ðyij�K ;cÞg;

where y = (y1, . . ., yn) are independent observations from a mixture density p(�jθ).

Data Augmentation
In Bayesian analysis of finite mixture models, one can add missing data perspective into models
to interpret the data formulation [7]. This is done by augmenting the data with latent class
membership random variable (called allocation variable in this paper) Ci, i = 1, . . ., n, where Ci
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indicates the class membership of observation yi. If Ci = k, the observation yi is regarded as
drawn from the kth component density. Then, we can assume that data yi given both Ci and θ
has distribution

yijðCi ¼ k; θÞ � f ðyij�k;cÞ;

and p(Ci = kjθ) = ηk. The use of data augmentation technique simplifies the expression of likeli-
hood; therefore, facilitate the MCMC simulation for posterior distributions.

Under a Bayesian framework, we specify prior distribution p(θ) for parameters θ. The joint
posterior distribution of θ and C are proportional to L(θ, Cjy) × p(θ), where C = (C1, . . ., Cn)
and Lðθ;CjyÞ ¼Qn

i¼1fZCif ðyij�Ci
;cÞg. The drawing of one parameter is full conditional on

the other parameters. The procedures to draw the posterior samples of each element of θ and C
are listed as follows:

Step 1: Update the component weights ηk, for k = 1, . . ., K;

Step 2: Update the component specific parameter ϕk, for k = 1, . . ., K;

Step 3: Update the common parameter ψ;

Step 4: Update the allocation variable Ci, for i = 1, . . ., n.

Step 1 is usually completed by giving a Dirichlet prior distribution D(e1, . . ., eK) for (η1, . . .,
ηK), where ek’s are the hyperparameters. Given on the values of C, ϕ1, . . ., ϕK and ψ, the full
conditional distribution of (η1, . . ., ηK) is D(e1+n1, . . ., eK+nK), where nk ¼

Pn
i¼1 IfCi ¼ kg.

Given the values of C and η1, . . ., ηK, Step 2 and Step 3 are standard steps for MCMC simula-
tion and the way to simulate samples is model-dependent. Further blocking of θ is possible nec-
essary for convenient sampling in each block. Examples of simulating θ are illustrating in
Sections simulation studies and real data analysis. Given the values of θ, the implementation of
Step 4 is carried out by drawing Ci from a multinomial distribution with parameters πi1(θ), . . .,
πiK(θ), where

pikðθÞ ¼
Zkf ðyij�k;cÞPK
j¼1 Zjf ðyij�j;cÞ

: ð1Þ

Allocation variable Ci can be expressed as a set of binary random variables as well. Define a set
of binary random vector (Si1, . . ., SiK), and let Sim = 1 if Ci =m and Sik = 0 for all k 6¼m. The
allocation variable C forms an n × K allocation variable matrix S = [Sik]1 � i � n, 1 � k � K that
summaries the allocation informations of C.

The Label Switching Phenomenon
There are K! possible permutations of {1, . . ., K}. Let vq be the qth permutation among the K!
possible permutations. The permutation function vq transfers the original index {1, . . ., K} to
{vq(1), . . ., vq(K)}. Define the qth corresponding permutation of the parameter θ by

vqðθÞ ¼ ðyvqð1Þ; . . . ; yvqðKÞ;cÞ;

and of allocation variable matrix S by vq(S) = [Sivq(k)]1 � i � n, 1 � k � K. The label switching
problem arises when likelihood L(θjy) is permutation invariant, L(θjy) = L(vq(θ)jy) for all
q = 1, . . ., K!. If the prior distributions of θ are also permutation invariant, the posterior distri-
bution will also be invariant to any permutation function on parameters. Samples generated
fromMCMC are the simulation outputs of the permutation invariant likelihood and priors
with unknown value of q; therefore, when Markov chain is stationary, every sample in MCMC
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simulation is a sample from permutation invariant posterior distributions. Then the statistics,
such as credible interval and posterior mean, inferred from the marginal posterior distributions
become meaningless unless the inverse permutation function of every sample is discovered to
relabel the MCMC outputs of θ.

Although the label switching phenomenon causes difficulty in inferences of the posterior
distributions, the phenomenon can help generate a useful convergence diagnostics of MCMC
simulation jasra markov 2005. A Markov chain that fails to visit all permutation states with
approximately equal frequency can be viewed as a warning message of nonstationarity. Hence,
for ensuring a Markov chain to reach its stationary state, Frühwirth-Schnatter [15] proposed a
dynamic switching procedure, called permutation sampler, for Bayesian mixture models to
force the Markov chain quickly exploring all possible permutation states. This indicates that
label switching phenomenon is a desired property. Therefore, the posterior distribution of
parameters is a mixture of K!-component densities. Frühwirth-Schnatter [15] termed samples
that visited all permutation states with approximately equal frequency as unconstrained sam-
ples. A formal proof given by Papastamoulis and Iliopoulos [16] states that the permutation
sampler converges at least as fast as the unconstrained sampler. In the following, we adopt
Frühwirth-Schnatter’s procedure and inherit their terminologies.

Proposed Relabelling Method
The permutation function that has worked on θ and S is arbitrary and not observed. We treat
the unobservable index of the permutation function as a latent random variable τ taking one
value of {1, . . ., K!} and Pr t ¼ k½ � ¼ 1

K!
for k = 1, . . ., K! fruhwirth-schnatter markov 2001.

Another random variable σ is the index of the inverse permutation function of τ, where θ =
vτ(vσ(θ)) = vσ(vτ(θ)) and S = vτ(vσ(S)) = vσ(vτ(S)). If the value of τ is observed, the inverse per-
mutation function vσ is known and can transfer θ and S back to the one of the K! permuted
posterior densities of the unconstrained samples.

In subsequent sections, the Markov chain is assumed to be stationary and ergodic. For
MCMC samples {(θt, St):t = 1, . . .}, let τt be the latent random variable of the unobserved per-
mutation function at time t, and let σt be the index of its corresponding inverse permutation
function.

We propose an allocation variable based probabilistic (AVP) relabelling algorithm to deal
with label switching problem. The AVP algorithm can be regarded as being developed under
the assumption where the posterior distributions of the allocation random variables C1, . . ., Cn

are independent. The independence assumption in the posterior distribution (C1, . . ., Cn)jy
usually does not hold because of the variability from prior distribution p(θ). We have imposed
such an independence assumption to obtain a tractably practical solution to label switching
phenomenon in Bayesian mixture models. Similar simplifications were assumed to other
Bayesian techniques, such as variational Bayes approaches (see e.g., Corduneanu and Bishop,
2001 [17]; Bishop, 2006 [18]). In the rest of this section, we assume that the posterior distribu-
tions of C1, . . ., Cn are independent, and π0 = [π0, ik]1 � i � n, 1 � k � K denotes the parameters of
the posterior distribution of S.

Each posterior sample S is the consequence of label switching with an unknown permuta-
tion. The model of S can be constructed according to an unknown permutation random vari-
able τ (or the relabelling random variable σ) and the parameters π0. We use multinomial
distribution to model allocation variables (Si1, . . ., SiK) with Sik taking value on 0 or 1 for all k

and
PK

k¼1 Sik ¼ 1. Then the probability mass function of (Si1, . . ., SiK) is
QK

k¼1 p
Sik
0;ivqðkÞ. Since the

allocation variables are assumed to be independent, the posterior probability density at realized

AVP Algorithm to Deal with Label Switching Problem

PLOSONE | DOI:10.1371/journal.pone.0138899 October 12, 2015 4 / 23



sample point s given y and τ = q could be modeled by

Pr ½S ¼ sjy; t ¼ q� ¼
Yn
i¼1

YK
k¼1

psik
0;ivqðkÞ:

Let the probability Pr[τ = qjy] be denoted by wq. Then the posterior probability density of S at s
is

Pr ½S ¼ sjy� ¼
XK!
q¼1

wq Pr ½S ¼ sjy; t ¼ q� ¼
XK!
q¼1

wq

Yn
i¼1

YK
k¼1

psik
0;ivqðkÞ: ð2Þ

The value of wq is the proportion of the value q occurred in the random variable τ in the Mar-
kov chain. When the Markov chains is stationary, relative frequency of samples generated
from different sample points of τ will be eventually close, and hence the proportion of the dif-
ferent values of τ should be equal. This means if T is sufficiently large, the chains will achieve
w1 ¼ . . . ¼ wK! ¼ 1

K!
fruhwirth-schnatter markov 2001. In the label switching problem, relabel-

ling random variable σ is of our interest. We can rewrite Eq (2) through random variable σ as

Pr ½S ¼ sjy� ¼
XK!
m¼1

wm Pr ½S ¼ sjy; s ¼ m� ¼
XK!
m¼1

1

K!

Yn
i¼1

YK
k¼1

p
sivmðkÞ
0;ik ; ð3Þ

where vm is the inverse permutation function of vq such that vmðvqðSÞÞ ¼ S.

To estimate parameters π0 in model (3), let Lt
ij ¼

PK
k¼1 S

t
ikS

t
jk and

ftði; jÞ ¼ Lt
ij �

XK
k¼1

p0;ikp0;jk ð4Þ

with restriction p0;lK ¼ 1�PK�1

k¼1 p0;lk; l ¼ i; j. Let

gTði; jÞ ¼
PT

t¼1 ftði; jÞ
T

¼ �Lij �
XK
k¼1

p0;ikp0;jk: ð5Þ

where �Lij ¼
PT

t¼1
Ltij

T
. Notice that the expectation of Eq (5) is 0 when Ci and Cj are independent

for all i, j and i 6¼ j. Then E(∑i 6¼ j gT(i, j)) = 0 is a moment equation for π0. According to this
equation, an object function is defined as

Oðp0Þ ¼
Xn�1

i¼1

Xn

j¼iþ1
ðgTði; jÞÞ2

nðn� 1Þ=2 : ð6Þ

Notice that Eq (4) depending on {π0, i1, . . .,π0, jK} is invariant to different label permutations,
and so do Eqs (5) and (6). The minimizer with respect to π0 in Eq (6), p̂0, obtained through
Newton’s method is the Generalized Method of Moments (GMM) estimator. The GMM esti-
mator p̂0 has been found to have several large sample properties in Hansen [19], including that
p̂0 approximates π0 almost surely.
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To estimate the value of σ at different time point, let σt denote the random variable σ at time
t. The estimation of σt can be obtained through the following posterior probability:

xtm :¼ Pr ½st ¼ mjSt ¼ s;y�

¼ Pr ½St ¼ sjy; st ¼ m�Pr ½st ¼ mjy�PK!
l¼1 Pr ½St ¼ sjy; st ¼ l�Pr ½st ¼ ljy�

¼
Qn

i¼1

QK
k¼1 ½p0;ik�sivmðkÞPK!

l¼1

Qn
i¼1

QK
k¼1 ½p0;ik�sivl ðkÞ

:

ð7Þ

Based on these posterior probabilities, we adopt the following stochastic algorithm (termed
AVP algorithm) to estimate σt, for each t = 1, . . ., T.

AVP Algorithm.

Step A:Numerically solve the GMM estimator p̂0 from Eq (6).

Step B: For t = 1, . . ., T, estimate xtm by substituting GMM parameter estimates, p̂0;ik ’s, into Eq

(7) to obtain x̂tm,m = 1, . . ., K!.

Step C: Randomly assign the relabelling permutation index at time t, ŝt , to a value of {1, . . .,

K!}, with probability x̂t1; . . . ; x̂
t
K!

n o
.

The AVP algorithm offers an approach that estimates the index of inverse permutation func-

tion. Then apply the estimate of permutation function vŝ
t
to θt for relabelling parameters. For

the examples in simulation studies and real data application, the AVP algorithm is able to have
satisfactory relabelled results.

Simulation Studies
In this section, we compare the proposed AVP algorithm with various relabelling algorithms.
First, we compare AVP with algorithms KL, ECR, SJW and HPD in poisson mixture models
with fixed and known component weights and K = 2. With known component weights, we can
then analytically show how these methods transform posterior distributions. Second, we com-
pare AVP with more recent solutions ECR2 and DBS under normal mixture models with both
known and unknown component weights. The comparison of AVP and ECR2 are studied
under univariate normal mixture models with K = 3, and the comparison of AVP and DBS are
studied under multivariate normal mixture models with K = 4. Except for the HPD and AVP
algorithms, all the comparative algorithms are available to the label.switching package
[20] of R software. Finally, the computation time of various relabelling algorithms for these
simulation studies are summarized at the end of this section.

Poisson Mixture Models with Known Component Weights
Poisson mixture models are studies in this section, and five relabelling methods are compared,
including KL, ECR, HPD, SJW and AVP.

This simulation study generates data from a two-component poisson mixture model whose
probability density function is

f ðyijη; ϕÞ ¼ Z1f ðyij�1Þ þ Z2f ðyij�2Þ; ð8Þ
where η = (η1, η2), ϕ = (ϕ1, ϕ2), and f(yijϕk) is a poisson distribution with the parameter ϕk for
the response yi. Simulate y = (y1, . . .,yn) under four scenarios: (1) η1 = η2 = 0.5, ϕ1 = 5, ϕ2 = 7 and
n = 10; (2) η1 = η2 = 0.5, ϕ1 = 5, ϕ2 = 7 and n = 100; (3) η1 = 0.3, η2 = 0.7, ϕ1 = 5, ϕ2 = 5.5 and
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n = 10; and (4) η1 = 0.3, η2 = 0.7, ϕ1 = 5, ϕ2 = 5.5 and n = 100. In the following simulations, the
component weights (i.e., η1 and η2) are treated as fixed and known values, and only the parame-
ters in the component densities (i.e., ϕ1 and ϕ2) are of our interest and are estimated via MCMC
simulation. Assume that priors for ϕ1 and ϕ2 are i.i.d. from the gamma distribution Γ(1.2, 0.2)
with mean 6, and use the poisson-gammamodel to obtain the posterior samples of ϕ. While gen-
erating the posterior samples of ϕ, set the values of η to be the true values under each scenario.

The Gibbs sampling scheme is adopted here to produce posterior samples {(ϕ1, S1), . . .,(ϕT,
ST)}, where the allocation variable matrix St is an n × 2 matrix of which the element Stik is a 0/1
variable. Stik ¼ 1 if the ith subject is attributed to the kth component in the tth MCMC iteration,
and Stik ¼ 0 otherwise. This sampling scheme starts with an initial value S0, and runs for t = 1,
. . ., T as follows:

Step 1. Generate �t
k from Gð1:2þPn

i¼1 yiS
t�1
ik ; 0:2þPn

i¼1 S
t�1
ik Þ for k = 1, 2;

Step 2. Generate St with its the element Sti1 from the Bernoulli distribution with probability
Z1ð�t

1Þyi exp f�t
1gP2

k¼1
Zk ð�t

k Þyi exp f�t
kg
and set Sti2 ¼ 1� Sti1 for i = 1, . . ., n, where η1 and η2 are fixed values

and are therefore independent of t;

Step 3. Select the permutation sampler (1, 2) or (2, 1) with equal probability 0.5. If (1, 2) is cho-
sen, the labels of components of (θt, St) remain unchanged; else, alter the labels 1 and 2 of
the components in (θt, St), where θt ¼ ðyt1; yt2Þ, ytk ¼ ðZk ; �t

kÞ, k = 1, 2.

The permutation sampler applied in Step 3 has different functions for different scenarios. In Sce-
narios (1) and (2) where η values are fixed at η1 = η2 = 0.5, the Markov chain can produce label
switching, and the permutation sampler is applied here to enhance quick convergence of
MCMC and to obtain the unconstrained samples fruhwirth-schnatter markov 2001. In Scenarios
(3) and (4) where η values are fixed at η1 = 0.3 and η2 = 0.7, the likelihood Eq (8) is not symmet-
ric, and the usual Gibbs sampling without adopting Step 3 does not produce label switching. The
permutation sampler used here can make the unconstrained posterior samples from likelihood

0:3f ðyij�1Þ þ 0:7f ðyij�2Þ or 0:7f ðyij�1Þ þ 0:3f ðyij�2Þ; ð9Þ

which creates a “pseudo” label switching phenomenon. Then, we can apply various relabelling
methods to the unconstrained samples of (ϕ1, ϕ2). The correctly labelled posterior samples of ϕ
can be obtained by imposing an ordering constraint on η. Hence, we can compare the relabelled
results of algorithms with the correctly labelled posterior samples.

The Gibbs sampling scheme was run for 110,000 samples for each scenario. The first 10,000
samples were treated as the burn-in period, and the subsequent 100,000 samples were used for
relabelling. Algorithms KL, ECR, HPD, SJW and AVP were applied to the unconstrained sam-
ples of each scenario.

Fig 1 shows the relabelled results under Scenario (1). Fig 1a shows a scatter plot of the
unconstrained samples of ϕ, which is symmetry along the 45 degree line. This means that the
samples were explored well because of the use of permutation sampler. The Fig 1b–1f show the
scatter plots of the relabelled results after adopting the five relabelling algorithms. Fig 1b and
1d show that KL and HPD assigned posterior samples of ϕ’s lying below the 45 degree line to
the other side. The results in these figures are almost the same as the ordinary constraint rela-
belling with the restriction ϕ2 � ϕ1. Fig 1e shows that the results from the SJW algorithm are
almost the same as those in Fig 1a, which does not seem to relabel the unconstrained samples
well. The performance of the ECR algorithm shown in Fig 1c is almost the same as that of our
AVP algorithm in Fig 1f.
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To understand the effects of large samples, the sample size of Scenario (1) was increased from
n = 10 to n = 100 (Scenario (2)). Fig 2 shows that the posterior samples are apparently more con-
centrated than those from n = 10. Conclusions from comparisons of KL, HPD and SWJ are con-
sistent with those from n = 10. ECR (Fig 2c) and AVP (Fig 2f) have similar results, but it seems
that ECR has posterior samples spreading more widely below the 45 degree line than AVP.

Fig 3 shows the results under Scenario (3). This scenario decreases the distance between ϕ1
and ϕ2, and allows the values of η to be unequal (η1 = 0.3 and η2 = 0.7). These settings place
emphasis on the effect of the unequal weights and the reduced distance of ϕ. Notice that, in
Scenarios (3) and (4), η values are set to the fixed true values of η1 = 0.3 and η2 = 0.7. Therefore,
the correctly labelled posterior distribution of ϕ can be obtained by restricting η1 < η2. Fig 3a
presents a scatter plot of the correctly labelled posterior samples of ϕ. The relabelled samples
from HPD (Fig 3d) is the same to those of imposing an ordinary constraint ϕ2 � ϕ1. The KL
algorithm (Fig 3b) seems to move the relabelled sample points in the middle-left region to the
opposite side symmetric to the 45 degree line. This phenomenon cannot be improved even if
we use the correctly labelled posterior samples as initial points for the KL algorithm. Compared
with the scatter plot of correctly relabelled posterior samples, AVP (Fig 3f) seems to generate
the most similar results than ECR (Fig 3c) and SJW (Fig 3e) do.

Fig 1. Plots (a)–(f) are scatter plots of posterior samples of (ϕ1, ϕ2) for Scenario (1) (n = 10, ϕ1 = 5, ϕ2 = 7, η1 = η2 = 0.5). Plot (a) is the unconstrained
samples. Plots (b)–(f) are the relabelled samples under various relabelling algorithms.

doi:10.1371/journal.pone.0138899.g001
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Because the correctly labelled posterior samples are known in this scenario, the marginal
distributions of ϕ of the relabelled samples from all relabelling methods can be compared with
the true marginal densities, which are shown in Fig 4. Fig 4a and 4b show the density plots of
ϕ1 and ϕ2 for Scenario (3), respectively. The density plot of the AVP algorithm nearly coincides
with that of the correctly labelled posterior samples.

Fig 5 shows the results under Scenario (4), which increases the sample size of Scenario (3) to
n = 100. In Scenario (4), the results from HPD (Fig 5d) are similar to those from the ordering
constrainted samples. The performance of KL, SJW and AVP (Fig 5b, 5(e) and 5(f), respec-
tively), is similar to that of the correctly labelled posterior samples (Fig 5a). ECR (Fig 5c) seems
to gathers more sample points on the right side of the region. Fig 4c and 4(d) show the mar-
ginal density plots for Scenario (4). Except for HPD and ECR, other algorithms have density
plots to coincide with that of correctly labelled posterior samples.

To produce a more reliable conclusion, simulated datasets are generated with 100 replica-
tions under Scenarios (1)–(4). Note that η are set to be fixed in these sencearios. The averages
and standard deviations of posterior means over 100 replications are shown in Table 1.

For Scenarios (3) and (4) where η1 = 0.3 and η2 = 0.7, the correct labels of each replication
can be obtained by applying the OC on the posterior samples of η. Averaged posterior means

Fig 2. Plots (a)–(f) are scatter plots of posterior samples of (ϕ1, ϕ2) for Scenario (2) (n = 100, ϕ1 = 5, ϕ2 = 7, η1 = η2 = 0.5). Plot (a) is the unconstrained
samples. Plots (b)–(f) are the relabelled samples under various relabelling algorithms.

doi:10.1371/journal.pone.0138899.g002
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of correctly labelled samples are slightly closer to those of the proposed AVP algorithm than to
those of the other algorithms. For Scenario (3), the standard deviations of posterior means of
AVP is larger than those of OC; whereas, under Scenario (4), AVP seems to relabel almost all
samples back their correct labels.

For Scenarios (1) and (2) where the simulating parameter of η are set to be equal (η1 = η2 =
0.5), the correct labels are unknown. Instead of comparing with the unknown true posterior
means, we could compare the similarity between the relabelling algorithms. Among the com-
pared algorithms, ECR and AVP have similar results. The performances of OC on θ, KL and
HPD are highly similar to one another, especially in Scenario (4)

Normal Mixture Models with Known and Unknown Component Weights
In this section, we apply AVP to the unconstrained posterior samples generated from both uni-
variate and multivariate normal mixture models with the number of components to be known
and with known and unknown weights. We compare AVP with ECR2 in univariate cases and
with DBS in the multivariate cases.

Fig 3. Plots (a)–(f) are scatter plots of posterior samples of (ϕ1, ϕ2) for Scenario (3) (n = 10, ϕ1 = 5, ϕ2 = 5.5, η1 = 0.3 and η2 = 0.7). Plot (a) is the
posterior samples with correct labels. Plots (b)–(f) are the relabelled samples under various relabelling algorithms.

doi:10.1371/journal.pone.0138899.g003
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Fig 4. The density plots of relabelling samples from various relabelling methods in Scenarios (3) and (4). The black dashed line represents the
density plot of the true posterior distributions. The grey, blue, purple, blue and red lines represent the density plots of KL, ECR, HPD, SJW and AVP,
respectively. Plots (a) and (b) are the density plots of ϕ1 and ϕ2 for Scenario (3), respectively. Plots (c) and (d) are the density plots of ϕ1 and ϕ2 for Scenario
(4), respectively.

doi:10.1371/journal.pone.0138899.g004
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Univariate cases For the univariate case, we simulate observation xi from the normal mix-
ture model, that is,

xi �
XK
k¼1

ZkNðmk;VkÞ ð10Þ

for i = 1, . . ., n, where μk and Vk are the mean and the variance of the kth component density,
respectively. We investigate the simulated model (4.1) studied in [10] with K = 3 and n = 160.
Two scenarios are studied under this model. Scenario (5): η is known and fixed, and Scenario
(6): η is unknown. The posterior samples of the parameters are generated via the Gibbs sam-
pling scheme suggested by [11], where they assume that the prior distributions are

ðZ1; . . . ; ZKÞ � Dð1; . . . ; 1Þ; mk � Nð�y;R2Þ; and ;Vk � Gð2;R2=200Þ; k ¼ 1; . . . ;K;

where D(�) is the Dirichlet distribution; Γ(�) is the gamma distribution; �y and R are the mean
and the range of the data, respectively. Permutation sampler is used in the Gibbs sampling
scheme to obtain the 100,000 unconstrained samples (after the burn-in period) of the parame-
ters. Two scenarios are repeated for 100 times. The averages and the standard deviations of
posterior means over replications are reported in Table 2. In Scenario (5), η is assumed to be

Fig 5. Plots (a)–(f) are scatter plots of posterior samples of (ϕ1, ϕ2) for Scenario (1) (n = 100, ϕ1 = 5, ϕ2 = 5.5, η1 = 0.3 and η2 = 0.7). Plot (a) is the
posterior samples with correct labels. Plots (b)–(f) are the relabelled samples under various relabelling algorithms.

doi:10.1371/journal.pone.0138899.g005
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fixed at true values during the Gibb sampling; hence, the correct labels can be obtained by
applying an ordering constraint on η. The differences in averaged posterior means between
AVP and ECR2 are small, which are no more than 0.11; however, averaged posterior means of
correctly labelling samples are slightly closer to those of AVP than to those of ECR2 (upper
part of Table 2). The standard deviations of the posterior means in Table 2 (upper part) show
that AVP has better consistence (smaller standard deviations) and is closer to those of correctly
labelled samples than ECR2 does.

For Scenario (6) where η is unknown, correct labels are unable to be obtained, leading to the
true posterior means are unknown. The results in Table 2 (lower part) show that the simulating
parameter values are slightly closer to averaged posterior means of ECR2 than to those of AVP.
However, it is noteworthy that true posterior means may not necessarily be close to simulating
parameter values because the former could be affected by the setting of prior distributions. The

Table 1. The Performance of AVP, ECR, SJW, HPD and KL in Poisson Mixture Models with Fixed Component Weights under Scenarios (1)–(4).

Scenario (1) Scenario (3)

θ1 θ2 η1 η2 θ1 θ2

OC avg 5.885 6.665 0.300 0.700 4.761 5.856

sd 0.803 1.123 0.000 0.000 0.782 1.006

AVP avg 5.060 7.490 0.347 0.653 4.687 5.929

sd 0.978 1.496 0.029 0.029 1.005 1.128

ECR avg 5.068 7.483 0.364 0.636 4.985 5.632

sd 0.905 1.447 0.051 0.051 0.999 1.158

SJW avg 5.859 6.691 0.478 0.522 5.275 5.342

sd 0.962 1.301 0.045 0.045 0.787 0.827

OC on θ avg 4.716 7.834 0.429 0.571 3.915 6.702

sd 0.828 1.340 0.035 0.035 0.747 0.951

HPD avg 4.719 7.831 0.429 0.571 3.916 6.700

sd 0.830 1.341 0.035 0.035 0.746 0.951

KL avg 4.722 7.828 0.320 0.680 4.572 6.045

sd 0.831 1.341 0.036 0.036 0.969 1.116

Scenario (2) Scenario (4)

θ1 θ2 η1 η2 θ1 θ2

OC avg 6.052 6.289 0.300 0.700 5.290 5.453

sd 0.282 0.351 0.000 0.000 0.423 0.342

AVP avg 5.248 7.094 0.300 0.700 5.290 5.453

sd 0.366 0.543 0.000 0.000 0.425 0.343

ECR avg 5.259 7.082 0.309 0.691 5.333 5.426

sd 0.372 0.549 0.019 0.019 0.457 0.351

SJW avg 5.562 6.780 0.410 0.590 5.360 5.414

sd 0.453 0.594 0.085 0.085 0.404 0.316

OC on θ avg 5.225 7.116 0.463 0.537 4.853 5.709

sd 0.353 0.529 0.028 0.028 0.603 0.681

HPD avg 5.225 7.116 0.463 0.537 4.855 5.921

sd 0.353 0.529 0.028 0.028 0.602 0.471

KL avg 5.225 7.116 0.304 0.696 5.288 5.439

sd 0.353 0.529 0.025 0.025 0.476 0.382

This table summaries averages (avg) and standard deviations (sd) of posterior means over 100 replications for OC, AVP, ECR, SJW, OC on θ, HPD and

KL, where OC stands for ordering constraints on η, and OC on θ represents ordering constraints on θ.

doi:10.1371/journal.pone.0138899.t001
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standard deviations of the posterior means show that AVP generally can obtain more consis-
tent estimates in posterior means than ECR2. Putting an ordering constraint on η (OC) under
this scenario could obtain unsatisfactory results, which is informed by its nonsensible estimates
for posterior means of μ1 and μ2.

Multivariate cases To examine the performance and comparison of AVP and DBS in multi-
variate settings, we simulated data from multivariate normal mixture models. The posterior
samples are generated according to [21]. Permutation sampler is adopted in the Gibbs sam-
pling scheme to obtain 100,000 unconstrained samples (after the burn-in period) of the param-
eters. We study a bivariate normal mixture model with K = 4 and n = 200, where

xi ¼ ðxi1; xi2Þ �
PK

k¼1 ZkNðμk;ΣkÞ. The prior assumptions are

ðZ1; . . . ; ZKÞ � Dð1; . . . ; 1Þ; μkjΣk � Nðζk;ΣkÞ; and ;Σk � W�1ð3;XÞ; k ¼ 1; . . . ;K;

where ζk = (zk1,zk2) and zkj = min1 � i � n{xij}+kRj/3 with Rj being the range of (x1j, . . ., xnj),
j = 1, 2;W−1(�) is an inverse Wishart distribution and the scale matrix X = diag(δ1, δ2) with the
prior distribution for δ1 and δ2 being Γ(2, 36

−1).
Two scenarios are considered. Scenario (7): η is known and fixed, and Scenario (8): η is

unknown. Two scenarios are repeated for 100 times and the results are averaged over these rep-
lications. Parameter values used to simulate data from Scenario (7) are shown in the first col-
umn of Table 3. Notice that this is a challenging case since the true parameter values for one
component are extremely close to another. The averaged posterior means in these scenarios are
shown in Table 3. As compared with the results from correct labelling (OC), we see that AVP
has better performance in the first two component and DBS is better in the fourth component.
The standard deviations of posterior means over 100 replications are shown in S1 Table.

For Scenario (8) where component weights are unknown, we adopt the bivariate normal
mixture model given in [10] for simulating data. In this setting, the averaged posterior means
from AVP and DBS are equally close to the true simulating parameter values (lower part of

Table 2. The Performances of Algorithms AVP and ECR2 for Univariate Normal Mixture Model under Scenarios (5) and (6).

Scenario (5): η are known and fixed

η1 η2 η3 μ1 μ2 μ3 V1 V2 V3

OC avg 0.100 0.250 0.650 -20.009 19.718 20.494 2.004 3.264 2.014

sd 0.000 0.000 0.000 0.247 0.390 0.172 0.316 0.699 0.294

AVP avg 0.100 0.255 0.645 -20.009 19.728 20.484 2.004 3.250 2.028

sd 0.000 0.018 0.018 0.247 0.384 0.171 0.316 0.687 0.294

ECR2 avg 0.100 0.365 0.535 -20.009 19.644 20.568 2.004 3.220 2.058

sd 0.000 0.059 0.059 0.247 0.465 0.258 0.316 0.703 0.394

Scenario (6): η are unknown

η1 η2 η3 μ1 μ2 μ3 V1 V2 V3

OC avg 0.060 0.174 0.766 -0.024 -2.186 20.392 5.421 3.509 2.330

sd 0.018 0.032 0.049 6.396 6.935 0.151 1.498 0.578 0.300

AVP avg 0.104 0.139 0.757 -19.961 17.714 20.428 2.906 6.036 2.318

sd 0.000 0.084 0.084 0.248 0.765 0.196 0.747 1.233 0.564

ECR2 avg 0.104 0.171 0.725 -19.954 17.739 20.396 2.797 6.067 2.396

sd 0.000 0.103 0.103 0.248 0.827 0.268 0.734 1.379 0.609

The simulating parameter values under these two scenarios are (η1, η2, η3) = (0.1, 0.25, 0.65), (μ1, μ2, μ3) = (−20, 21, 20) and (V1, V2, V3) = (1, 0.5, 3).

This table summaries averages (avg) and standard deviations (sd) of posterior means over 100 replications for algorithms OC, AVP and ECR2, where OC

stands for ordering constraints on η.

doi:10.1371/journal.pone.0138899.t002
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Table 3). The standard deviations of posterior means from AVP seem slightly larger than those
from DBS (lower part of S1 Table).

For each relabelling algorithm, we summary its computing time for a relabelling procedure
(averaging over 100 replications). Table 4 reports their computation times under scenarios with
the same number of components (K) and sample size (n). Algorithms are run in R 3.1.3 using a
personal desktop computer with Inter Core 2 Quad CPU 2.33 GHz. Notice that except the HPD
and AVP algorithms, all the algorithms are performed by using label.switching package.
Results show that the proposed AVP algorithm can have a long running time when K is large.
This is because our probabilistic based algorithms requires the computation of K! quantities to
determine the relabelling permutation per MCMC draw.

Table 3. The Performances of Algorithms AVP and DBS for Multivariate Normal Mixture Model under Scenarios (7) and (8).

Scenario (7): η are known and fixed

simulating parameter values OC AVP DBS

η (0.1, 0.2, 0.3, 0.4) (0.1, 0.2, 0.3, 0.4) (0.102, 0.200, 0.300, 0.398) (0.121, 0.181, 0.300, 0.399)

μ (-3, -3) (-2.335, -2.605) (-2.326, -2.601) (-2.447, -2.696)

(-3, -3) (-2.227, -2.651) (-2.252, -2.665) (-2.144, -2.577)

(1, -1) (0.786, -1.152) (0.788, -1.151) (0.790, -1.150)

(1.1, -0.9) (1.611, -0.455) (1.624, -0.447) (1.636, -0.440)

V 1 0:5

0:5 1

 !
4:352 1:103

1:103 3:433

 !
4:340 1:102

1:102 3:418

 !
3:882 1:009

1:009 3:084

 !

1 0

0 1

 !
3:060 0:945

0:945 1:856

 !
3:071 0:946

0:946 1:866

 !
3:534 1:040

1:040 2:205

 !

1 0:5

0:5 1

 !
1:231 0:284

0:284 1:302

 !
1:229 0:283

0:283 1:301

 !
1:229 0:282

0:282 1:302

 !

1 0:5

0:5 1

 !
1:263 0:234

0:234 1:280

 !
1:267 0:235

0:235 1:285

 !
1:261 0:234

0:234 1:280

 !

Scenario (8): η are unknown

simulating parameter values AVP DBS

η (0.25, 0.25, 0.25, 0.25) (0.250, 0.277, 0.226, 0.247) (0.250, 0.278, 0.225, 0.247)

μ (-3, 4) (-2.850, 3.856) (-2.934, 3.914)

(4.5, -2.5) (4.606, -2.484) (4.579, -2.509)

(7, -3) (6.908, -2.598) (6.947, -2.781)

(6.5, 7) (6.487, 6.892) (6.560, 7.042)

V 0:5 �0:25

�0:25 0:5

 !
0:966 �0:219

�0:205 0:955

 !
0:933 �0:233

�0:233 0:911

 !

0:5 �0:25

�0:25 0:5

 !
1:434 �0:223

�0:223 1:620

 !
1:379 �0:257

�0:257 1:485

 !

4 2:5

2:5 9

 !
4:984 2:721

2:721 10:572

 !
5:044 2:750

2:750 10:800

 !

4 2:5

2:5 4

 !
4:532 2:440

2:440 4:354

 !
4:561 2:459

2:459 4:306

 !

This table summaries stimulating parameter values and averages of posterior means over 100 replications for algorithms OC, AVP and DBS, where OC

stands for ordering constraints on η.

doi:10.1371/journal.pone.0138899.t003
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Real Data Analysis

Model
A common application of mixture model analysis on polytomous response data is the regres-
sion extension of the latent class analysis (RLCA) model proposed by Huang and Bandeen-
Roche [22]. The basic model of RLCA postulates an underlying categorical latent variable with,
say, K latent classes, and measured items are assumed independent of one another within each
component density. We define Yi = (Yi1, . . ., YiM)

T to be a set of M polytomous response vari-
ables for the ith individual, i = 1, . . ., n. Themth variable, Yim, can take one of values {1, . . .,
Jm}, where Jm � 2; the allocation variable, Ci, denotes the subpopulation in which the ith indi-
vidual belongs to, and takes a value {1, . . ., K}. The distribution of Yi can be expressed as the
finite mixture density:

Pr ðYi1 ¼ y1; . . . ;YiM ¼ yMjxi; ziÞ ¼
XK
k¼1

ZkðxiÞ
YM
m¼1

YJm
j¼1

p
ymj

mjkðzimÞ
( )

; ð11Þ

where ymj = I(ym = j) = 1 if ym = j; 0 otherwise. In addition, this model assumes ZkðxiÞ¼Pr ðCi ¼
KjxiÞ and pmjkðzimÞ ¼ Pr ðYim ¼ jjCi ¼ k; zimÞ. Covariates xi ¼ ð1; xi1; . . . ; xipÞT are predictors
associated with the allocation variable Ci, and zi ¼ ðzi1; . . . ; ziMÞ with zim ¼ ðzim1 . . . ; zimLÞT for
m = 1, . . .,M are covariates built to cause direct influence on response variables. The probabili-
ties ZkðxiÞ and pmjkðzimÞ are often implemented assuming the generalized logit link function

under the generalize linear model framework [23]:

log
ZkðxiÞ
ZKðxiÞ
� �

¼ b0k þ b1kxi1 þ . . .þ bPkxiP ð12Þ

and

log
pmjk0 ðzimÞ
pmJmk0 ðzimÞ

" #
¼ gmjk0 þ a1mjzim1 þ . . .þ aLmjzimL ð13Þ

for i = 1, . . ., N;m = 1, . . .,M;j = 1, . . ., (Jm−1);k = 1, . . ., (K−1);k0 = 1, . . ., K.
To perform Bayesian analysis on the RLCA model, prior distributions for βpk’s, γmjk’s and

αlmj’s are assumed normal prior distributions with mean 0 and variance 1.52. Parameters βpk’s,
γmjk’s and αlmj’s are sampled in Gibbs sampling approach with acceptance-rejection strategy

Table 4. Computation Times in Simulation Studies.

Algorithm (seconds)

K = 2, n = 10 AVP (41.6) ECR (81.7) SJW (61.5)

HPD (284.7) KL (290.2)

K = 2, n = 100 AVP (65.6) ECR (85.4) SJW (82.3)

HPD (336.9) KL (332.7)

K = 3, n = 160 AVP (145.0) ECR2 (230.6)

K = 4, n = 200 AVP (305.6) DBS (268.6)

The computation times (unit in second) averaging over scenarios having with the same numbers of

components (K) and sample size (N).

doi:10.1371/journal.pone.0138899.t004
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[24]. The Gibbs sampling scheme for the hierarchical RLCA model are according to Pan and
Huang [25]. The following briefly describes the move types:

Step 1: For i = 1, . . ., n, generate Ci from

pðSikjb01; . . . ; bPK ; g111; . . . ; gMJMK ; a111; . . . ; aLMJM
Þ

¼ ZkðxiÞ
QM

m¼1

QJm
j¼1 p

ymj

mjkðzimÞPK
k¼1 ZkðxiÞ

QM
m¼1

QJm
j¼1 p

ymj

mjkðzimÞ
ð14Þ

with Sij = I(Ci = j), and (Si1, . . ., SiK) can be sampled directly from a multinomial
distribution.

Step 2: Generate (β01, . . ., βP(K−1)) from

pðb01; . . . ; bPðK�1ÞjC1; . . . ;CnÞ

/
Yn
i¼1

ZCi
ðxiÞ �

YK�1

k¼1

YP
p¼0

pðbpkÞ:

Step 3: Generate (γ111, . . ., γMJM K) from

pðg111; . . . ; gMJMK ja111; . . . ; aLMJM
;C1; . . . ;CnÞ

/
Yn
i¼1

YM
m¼1

YJm
j¼1

p
ymj
mjCi

ðzimÞ �
YK
k¼1

YM
m¼1

YJm
j¼1

pðgmjkÞ:

Step 4: Generate (α111, . . ., αLMJM) from

pða111; . . . ; aLMJM
jg111; . . . ; gMJMK ;C1; . . . ;CnÞ

/
Yn
i¼1

YM
m¼1

YJm
j¼1

p
ymj
mjCi

ðzimÞ �
YL
l¼1

YM
m¼1

YJm
j¼1

pðalmjÞ:

In addition to the four move types mentioned above, permutation sampling is adopted in
the 5th move type.

Step 5: Select on the permutation function vq for relabelling the current state. Define θk = (β0k,
. . ., βPk, γ11k, . . ., γMJM k) for k = 1, . . ., K−1, and yK ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

Pþ1

; g11k ; . . . ; gMJMkÞ for the ref-

erence class. Take a new state as vq(θ) = (θvq(1), . . ., θvq(K), ψ) and v
q(S) = [Sivq(k)]i = 1, . . ., n,

k = 1, . . ., K, where ψ = (α111, . . ., αLMJM) is the parameter common to all latent classes, and is
invariant to permutation function vq. The new state has to be adjusted to the new reference
class in which the β coefficients are required to be 0’s.

Adopting the permutation sampling forces the Markov chain quickly to explore all permuta-
tion states [15].

Data
To illustrate the usefulness of the proposed relabelling method, we used data (see S1 File) from
two projects: the Multidimensional Psychopathological Study on Schizophrenia (MPSS) project
and the Study on Etiological Factors of Schizophrenia (SEFOS) project. The details of study
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designs are described in detail in Chang et al. [26]. Written informed consent was obtained
from all participants after complete description of the studies. These studies (MPSS and SEFOS)
were approved by the institutional review boards of the 3 participating hospitals: National Tai-
wan University Hospital and the university affiliated Taipei City Psychiatric Center and
Taoyuan Psychiatric Center. Participants’ consent to the MPSS and SEFOS studies included
consent to use their data for other researches. The capacity for consent of patients were assessed
by their attending certified psychiatrists to rule out those participants whose psychotic symp-
toms or mentality were so severe that impair their capacity for consent. All the psychiatric
patients who were compulsory hospitalized did not allow to enter our studies. All informed con-
sents were obtained from patients themselves. Proxy consent was prohibited in our studies.

The datasets had been published [27], but not available through any data repositories before.
The data had been anonymized prior to access for this study and the age range of participants
was from 18–65 years old. The inclusion/exclusion criteria were (i) meeting the DSM-IV diag-
nostic criteria of schizophrenia, (ii) no history of alcohol and drug abuse, (iii) no neurologic
disease, (iv) no mental retardation, (v) no medical illnesses that may significantly impair neu-
rocognitive function.

Briefly, MPSS and SEFOS projects recruited subsided schizophrenia patients (N = 225)
from three hospitals in Taiwan. The patients are based on the Diagnostic and Statistical Manual
of Mental Disorders [28] criteria for schizophrenia. Schizophrenia symptoms used in this
study are assessed by the Positive and Negative Syndrome Scale (PANSS) [29, 30]. The PANSS
is composed of three subscales and has 30 items (M = 30) with positive (seven symptoms, P1–
P7), negative (seven symptoms, N1–N7) and general psychopathology (sixteen symptoms,
G1–G16). Each item was originally rated on a 7-point scale (1 = absent, 7 = extreme), but the
7-point scale was reduced to the binary scale (J1 = . . . = J30 = 2) (no symptom and having
symptom) for easing the sparseness problem of the latent class model. The hierachical RLCA
applied here is to explore the underlying subtypes (classes) of schizophrenia based on the
PANSS measurement, and to study the relationship between external covariates and obtained
patient subtypes. The external covariates used in this study include demographic variables and
one neuropsychological variable. Demographic variables are gender, age at recruitment, onset-
age of psychotic symptoms, years of education, and occupation (having versus no occupation).
The neuropsychological variable is the sensitivity index of the Continuous Performance Test
(CPT) [31, 32]. The CPT score is transformed into z-score by comparing to a control group
matched for three demographic variables: age, gender and education years [33]. This adjust-
ment was made so that the higher z-score indicates better performance.

The hierarchical RLCA was applied to 30 dichotomized PANSS items. Demographic variables
and the z-standardized CPT score were the covariates that were associated with the underlying
latent class through Eq (9). Gender and age are identified as covariates incorporated in condi-
tional probabilities in Eq (10). This analysis used the subsample of subjects that without missing
values (N = 160). The hierarchical RLCAmodel was fitted through the Gibbs sampling scheme.

Analysis Results
In this data analysis, we set K = 3. We run for 210,000 samples with the first 10,000 samples
being the burn-in period. Only every 10 scan is stored to keep independence, and 20,000 sam-
ples are recorded for analysis.

Fig 6a and 6(b) show the unconstrained samples and the relabelled samples after applying
the AVP algorithm, respectively, in 3-dimension scatter plots with the dimensions of parame-
ters γ211, γ212 and γ213. Because the schizophrenia syndrome scale data is fitted by a three-
component latent class model, Fig 6a with 20,000 samples clearly shows the 3! = 6 clusters in
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Fig 6. Plot (a) is the 3-dimensional scatter plot of unconstrained sample with (γ211; γ212; γ213). The six colors represent the 3! sets of labels before
relabelling. The relabelled samples applied by AVP algorithm are shown in Plot (b). Plot (c) is the trace plots of γ811, γ812 and γ813.

doi:10.1371/journal.pone.0138899.g006
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unconstrained posterior samples, distinguished by 6 different colors. Fig 6b shows the rela-
belled samples after applying the AVP algorithm. The AVP algorithm can identify one out of
the 3! sets of unconstrained posterior samples, and relabels the labels of the other 5 sets
unconstrained samples to the specific one set. The trace plot of parameters γ811, γ812 and γ813
is shown in the plot of Fig 6c. From these plots, we see that the distributions of parameters are
separated well.

After applying the AVP algorithm, the quantities of posterior distributions are summarized
in Tables 5 and 6. Table 5 gives the estimation of relationship between subgroups member-
ships and covariates. The odds ratios (ORs) are the exponential transformation of β’s from
regression coefficients. The 2.5% and 97.5% quartiles of posterior samples of β’s also take the
same exponential transformation to obtain the 95% credible interval (CI) of the correspond-
ing ORs. By comparing with the patients from class 3. The characteristics of the other two
classes from this analysis are as follows. Patients in class 1 tend to be younger at onset age of
psychotic symptoms. Patients in class 2 are more likely to be male, more years of education
and better ungraded CPT.

Table 6 contains the direct association between PANSS symptom items and covariates. The
ORs are obtained by the exponential transformation of regression coefficients α’s. The same
exponential transformation is also applied to the 2.5% and 97.5% quantiles of the posterior
samples of α’s to obtain 95% CI. Males are more likely to have G12 (lack of judgement and
insight) symptom than females. The older the age, the higher the probability of having G5
(mannerisms and posturing) symptom and G6 (depression) symptom, but the lower the prob-
ability of having N4 (passive/apathetic social withdrawal) symptom.

Conclusion
The proposed AVP algorithm has the following features. (i) AVP is attributed to probabilistic
approach, which prevents over-corrected results compared with deterministic methods.
(ii) AVP seems to perform reasonably well with the limiting settings in our simulation stud-
ies. (iii) The computation time of AVP depends on the dimension of allocation variables S
(i.e., the number of observations (n) and the number of components (K) in the mixture
model), but not on the complexity of the density function of mixture models. That is, even
when data is drawn from a complicated mixture model, the computational cost for AVP
holds the same as that from the models where have the same numbers of observations and

Table 5. The relationship between underlying subgroups and covariates from hierarchical LCA.

group 1 vs. group 3 group 2 vs. group 3

Variable OR a CI b OR CI

Male gender 1.08 (0.31, 3.60) 2.80 * (1.00, 8.22)

Age 0.90 * (0.82, 0.99) 0.95 (0.88, 1.02)

Age of onset 0.84 (0.68, 1.02) 1.12 (0.94, 1.34)

Years of education 1.73 (0.41, 7.08) 3.80 * (1.21, 13.20)

Having occupation 1.12 (1.00, 1.28) 1.05 (0.96, 1.17)

Ungraded CPT 1.27 (0.97, 1.69) 1.61 * (1.25, 2.13)

a OR: odds ratio
b CI: 95% credible interval of OR

* Asterisk is added if value is significantly different from 1, judged by CI not covering 1.

doi:10.1371/journal.pone.0138899.t005
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components. (iv) AVP can have a long computation time when K is large, since a probabilis-
tic based algorithm requires the computation of K! quantities to find the optimal permutation
per MCMC draw.

Supporting Information
S1 Table. The Performances of the AVP and DBS Algorithms for Multivariate Normal
Mixture Model under Scenarios (7) and (8). This table summaries standard deviations of pos-
terior means over 100 replications for algorithms OC, AVP and DBS, where OC stands for
ordering constraints on η.
(PDF)

Table 6. The association between the PANSS symptoms’ probability and covariates from hierarchical RLCA.

Male Gender Age

Variable OR a CI b OR CI

P1 Delusis 1.20 (0.55, 2.63) 1.01 (0.97, 1.06)

P2 Conceptual disorganization 0.96 (0.39, 2.33) 1.04 (0.99, 1.09)

P3 Hallucinatory behavior 1.13 (0.52, 2.49) 1.03 (0.99, 1.08)

P4 Excitement 1.11 (0.44, 2.82) 1.03 (0.98, 1.09)

P5 Grandiosity 1.57 (0.63, 4.00) 1.01 (0.96, 1.06)

P6 Suspiciousness/persecution 1.95 (0.87, 4.43) 1.01 (0.96, 1.05)

P7 Hostility 1.24 (0.49, 3.15) 1.01 (0.96, 1.06)

N1 Blunted affect 0.42 (0.13, 1.14) 0.98 (0.93, 1.03)

N2 Emotional withdrawal 1.20 (0.44, 3.18) 0.98 (0.93, 1.03)

N3 Poor rapport 0.59 (0.20, 1.57) 1.03 (0.97, 1.08)

N4 Passive/apathetic social withdrawal 1.34 (0.50, 3.50) 0.93 * (0.89, 0.98)

N5 Difficulty in abstract thinking 0.85 (0.37, 1.92) 1.02 (0.97, 1.06)

N6 Lack of spontaneity/flow of conversation 0.81 (0.33, 1.90) 1.03 (0.98, 1.08)

N7 Stereotyped thinking 1.84 (0.79, 4.29) 1.03 (0.98, 1.08)

G1 Somatic concern 0.90 (0.43, 1.86) 1.00 (0.96, 1.04)

G2 Anxiety 1.04 (0.49, 2.18) 1.01 (0.97, 1.06)

G3 Guilt fellings 0.42 (0.17, 1.02) 1.00 (0.95, 1.04)

G4 Tension 0.56 (0.24, 1.27) 0.99 (0.95, 1.04)

G5 Mannerisms and posturing 1.27 (0.42, 4.00) 1.08 * (1.02, 1.16)

G6 Depression 1.08 (0.49, 2.37) 1.06 * (1.01, 1.12)

G7 Motor retardation 0.68 (0.27, 1.66) 1.04 (0.99, 1.10)

G8 Uncooperativeness 1.15 (0.44, 3.04) 1.03 (0.98, 1.09)

G9 Unusual thought content 0.96 (0.41, 2.21) 1.03 (0.98, 1.08)

G10 Disorientation 0.39 (0.14, 1.03) 1.00 (0.95, 1.06)

G11 Poor attention 1.16 (0.46, 2.89) 1.01 (0.96, 1.06)

G12 Lack of judgement and insight 2.58 * (1.16, 5.85) 0.98 (0.93, 1.02)

G13 Disturbance of volition 1.04 (0.48, 2.25) 1.02 (0.98, 1.07)

G14 Poor impulse control 0.76 (0.31, 1.85) 1.04 (0.99, 1.10)

G15 Preoccupation 0.73 (0.26, 1.98) 1.01 (0.96, 1.07)

G16 Active social avoidance 0.68 (0.31, 1.47) 1.01 (0.97, 1.06)

a OR: odds ratio
b CI: 95% credible interval of OR

* Asterisk is added if value is significantly different from 1, judged by CI not covering 1.

doi:10.1371/journal.pone.0138899.t006
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S1 File. Raw data of the study sample. This dataset contains 30 outcome variables and 6
explanatory variables. The variables are summarised as follows and variable names are shown
parenthetically. The 30 outcome variables are seven positive symptoms (P1–P7), seven nega-
tive symptoms (N1–N7) and sixteen general psychopathology symptoms (G1–G16) with
binary response with 0 = no symptom and 1 = having symptom. The 6 explanatory variables
are gender (Male_gender) with 0 = female and 1 = male, age at recruitment (Age), onset-
age of psychotic symptoms (Age_of_onset), years of education (Year_of_education),
occupation (Having_occupation) with 0 = no occupation and 1 = having occupation and
CPT score (Ungraded_CPT).
(CSV)

Acknowledgments
The authors thank the National Center for High-performance Computing for computer time
and facilities.

Author Contributions
Conceived and designed the experiments: JP GH. Analyzed the data: JP. Wrote the paper: JP
GH. Conducted simulation studies: JP. Provided the clinical dataset and the ideas for discus-
sion: CL HH.

References
1. Titterington DM, Smith AF, Makov UE, et al. Statistical analysis of finite mixture distributions. vol. 7.

Wiley New York; 1985.

2. McLachlan G, Peel D. Finite mixture models. JohnWiley & Sons; 2004.

3. HastingsWK. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Bioamie-
trika. 1970; 59:97–109.

4. Stephens M. Bayesian methods for mixtures of normal distributions. University of Oxford; 1997.

5. Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society
Series B, statistical methodology. 2000; 62(4):795–809. doi: 10.1111/1467-9868.00265

6. Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of
the Royal Statistical Society Series B (Methodological). 1994;p. 363–375.

7. Richardson S, Green PJ. On Bayesian Analysis of Mixtures with an Unknown Number of Components.
Journal of the Royal Statistical Society, Series B. 1997; 59:731–792. doi: 10.1111/1467-9868.00095

8. Celeux G, Hurn M, Robert CP. Computational and Inferential Difficulties with Mixture Posterior Distribu-
tions. Journal of the American Statistical Association. 2000; 95(451). doi: 10.1080/01621459.2000.
10474285

9. Grün B, Leisch F. Dealing with label switching in mixture models under genuine multimodality. Journal
of Multivariate Analysis. 2009; 100(5):851–861. doi: 10.1016/j.jmva.2008.09.006

10. Papastamoulis P, Iliopoulos G. An Artificial Allocations Based Solution to the Label Switching Problem
in Bayesian Analysis of Mixtures of Distributions. Journal of Computational and Graphical Statistics.
2010; 19(2):313–331. doi: 10.1198/jcgs.2010.09008

11. YaoW, Lindsay BG. Bayesian Mixture Labeling by Highest Posterior Density. Journal of the American
Statistical Association. 2009; 104(486):758–767. doi: 10.1198/jasa.2009.0237

12. Sperrin M, Jaki T, Wit E. Probabilistic relabelling strategies for the label switching problem in Bayesian
mixture models. Statistics and Computing. 2009;p. 1–10.

13. Rodriguez CE, Walker SG. Label switching in Bayesian mixture models: Deterministic relabeling strate-
gies. Journal of Computational and Graphical Statistics. 2014; 23(1):25–45. doi: 10.1080/10618600.
2012.735624

14. Jasra A, Holmes CC, Stephens DA. Markov chain Monte Carlo methods and the label switching prob-
lem in Bayesian mixture modeling. Statistical Science. 2005; 20(1):50–67. doi: 10.1214/
088342305000000016

AVP Algorithm to Deal with Label Switching Problem

PLOSONE | DOI:10.1371/journal.pone.0138899 October 12, 2015 22 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138899.s002
http://dx.doi.org/10.1111/1467-9868.00265
http://dx.doi.org/10.1111/1467-9868.00095
http://dx.doi.org/10.1080/01621459.2000.10474285
http://dx.doi.org/10.1080/01621459.2000.10474285
http://dx.doi.org/10.1016/j.jmva.2008.09.006
http://dx.doi.org/10.1198/jcgs.2010.09008
http://dx.doi.org/10.1198/jasa.2009.0237
http://dx.doi.org/10.1080/10618600.2012.735624
http://dx.doi.org/10.1080/10618600.2012.735624
http://dx.doi.org/10.1214/088342305000000016
http://dx.doi.org/10.1214/088342305000000016


15. Frühwirth-Schnatter S. Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and
Mixture Models. Journal of the American Statistical Association. 2001; 96(453).

16. Papastamoulis P, Iliopoulos G. On the convergence rate of random permutation sampler and ECR
algorithm in missing data models. Methodology and Computing in Applied Probability. 2013; 15
(2):293–304. doi: 10.1007/s11009-011-9238-7

17. Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Artificial
intelligence and Statistics. vol. 2001. Morgan KaufmannWaltham, MA; 2001. p. 27–34.

18. Bishop CM. Pattern recognition and machine learning. springer; 2006.

19. Hansen LP. Large sample properties of generalized method of moments estimators. Econometrica:
Journal of the Econometric Society. 1982;p. 1029–1054. doi: 10.2307/1912775

20. Papastamoulis P. label. switching: An R Package for Dealing with the Label Switching Problem in
MCMCOutputs. arXiv preprint arXiv:150302271. 2015;.

21. Dellaportas P, Papageorgiou I. Multivariate mixtures of normals with unknown number of components.
Statistics and Computing. 2006; 16(1):57–68. doi: 10.1007/s11222-006-5338-6

22. Huang GH, Bandeen-Roche K. Building an Identifiable Latent Variable Model with Covariate Effectson
Underlying and Measured Variables. Psychometrika. 2004; 69:5–32. doi: 10.1007/BF02295837

23. McCullagh P, Nelder JA. Generalized Linear Models. 2nd ed. London: Chapman and Hall; 1989.

24. Zeger SL, Karim MR. Generalized Linear Models with Random Effects; a Gibbs Sampling Approach.
Journal of the American Statistical Association. 1991; 86:79–86. doi: 10.1080/01621459.1991.
10475006

25. Pan JC, Huang GH. Bayesian Inferences of Latent Class Models with an Unknown Number of Classes.
Psychometrika. 2014; 79(4):621–646. doi: 10.1007/s11336-013-9368-7 PMID: 24327064

26. Chang CJ, ChenWJ, Liu SK, Cheng JJ, Ou YangWC, Chang HJ, et al. Morbidity Risk of Psychiatric
Disorders Among the First Degree Relatives of Schizophrenic Patients in Taiwan. Schizophrenia Bulle-
tin. 2002; 28:379–392. doi: 10.1093/oxfordjournals.schbul.a006947 PMID: 12645671

27. Huang GH, Tsai HH, Hwu HG, Chen CH, Liu CC, Hua MS, et al. Patient subgroups of schizophrenia
based on the Positive and Negative Syndrome Scale: composition and transition between acute and
subsided disease states. Comprehensive psychiatry. 2011; 52(5):469–478. doi: 10.1016/j.comppsych.
2010.10.012 PMID: 21193177

28. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).
4th ed. Washington, DC: American Psychiatric Press; 1994.

29. Kay SR, Flszbein A, Opfer LA. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia.
Schizophrenia Bulletin. 1987; 13:261–276. doi: 10.1093/schbul/13.2.261 PMID: 3616518

30. Cheng JJ, Ho H, Chang CJ, Lan SY, Hwu HG. Positive and Negative Syndrome Scale (PANSS): Estab-
lishment and Reliability Study of a Mandarin Chinese Language Version. Chinese Psychiatry. 1996;
10:251–258.

31. Rosvold HE, Mirsky AF, Sarason I, Bransome ED Jr, Beck LH. A Continuous Performance Test of
Brain Damage. Journal of Consulting Psychology. 1956; 20:343–350. doi: 10.1037/h0043220 PMID:
13367264

32. ChenWJ, Hsiao CK, Hsiao LL, Hwu HG. Performance of the Continuous Performance Test among
community samples. Schizophrenia Bulletin. 1998; 24(1):163–174. doi: 10.1093/oxfordjournals.schbul.
a033308 PMID: 9502554

33. Liu SK, Hsieh MH, Huang TJ, Liu CM, Liu CC, Hua MS, et al. Patterns and Clinical Correlates of Neu-
ropsychologic Deficits in Patients with Schizophrenia. Journal Formosan Medical Association. 2006;
105:978–991. doi: 10.1016/S0929-6646(09)60282-5

AVP Algorithm to Deal with Label Switching Problem

PLOSONE | DOI:10.1371/journal.pone.0138899 October 12, 2015 23 / 23

http://dx.doi.org/10.1007/s11009-011-9238-7
http://dx.doi.org/10.2307/1912775
http://dx.doi.org/10.1007/s11222-006-5338-6
http://dx.doi.org/10.1007/BF02295837
http://dx.doi.org/10.1080/01621459.1991.10475006
http://dx.doi.org/10.1080/01621459.1991.10475006
http://dx.doi.org/10.1007/s11336-013-9368-7
http://www.ncbi.nlm.nih.gov/pubmed/24327064
http://dx.doi.org/10.1093/oxfordjournals.schbul.a006947
http://www.ncbi.nlm.nih.gov/pubmed/12645671
http://dx.doi.org/10.1016/j.comppsych.2010.10.012
http://dx.doi.org/10.1016/j.comppsych.2010.10.012
http://www.ncbi.nlm.nih.gov/pubmed/21193177
http://dx.doi.org/10.1093/schbul/13.2.261
http://www.ncbi.nlm.nih.gov/pubmed/3616518
http://dx.doi.org/10.1037/h0043220
http://www.ncbi.nlm.nih.gov/pubmed/13367264
http://dx.doi.org/10.1093/oxfordjournals.schbul.a033308
http://dx.doi.org/10.1093/oxfordjournals.schbul.a033308
http://www.ncbi.nlm.nih.gov/pubmed/9502554
http://dx.doi.org/10.1016/S0929-6646(09)60282-5

