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Abstract: Previous findings have suggested that the cortex involved in walking control in freely
locomotion rats. Moreover, the spectral characteristics of cortical activity showed significant differ-
ences in different walking conditions. However, whether brain connectivity presents a significant
difference during rats walking under different behavior conditions has yet to be verified. Similarly,
whether brain connectivity can be used in locomotion detection remains unknown. To address
those concerns, we recorded locomotion and implanted electroencephalography signals in freely
moving rats performing two kinds of task conditions (upslope and downslope walking). The Granger
causality method was used to determine brain functional directed connectivity in rats during these
processes. Machine learning algorithms were then used to categorize the two walking states, based
on functional directed connectivity. We found significant differences in brain functional directed
connectivity varied between upslope and downslope walking. Moreover, locomotion detection based
on brain connectivity achieved the highest accuracy (91.45%), sensitivity (90.93%), specificity (91.3%),
and F1-score (91.43%). Specifically, the classification results indicated that connectivity features in
the high gamma band contained the most discriminative information with respect to locomotion
detection in rats, with the support vector machine classifier exhibiting the most efficient performance.
Our study not only suggests that brain functional directed connectivity in rats showed significant
differences in various behavioral contexts but also proposed a method for classifying the locomotion
states of rat walking, based on brain functional directed connectivity. These findings elucidate the
characteristics of neural information interaction between various cortical areas in freely walking rats.

Keywords: electroencephalography; locomotion detection; granger causality; brain functional di-
rected connectivity; freely walking rats; machine learning

1. Introduction

Brain connectivity effectively describes information flow (including direction and
strength) between cortical areas [1], which comprises brain anatomical structure or func-
tional associations [2]. Brain connectivity has three forms: structural connectivity, functional
connectivity, and effective connectivity [3]. Structural connectivity represents the anatomical
connectivity of various brain regions [4]; functional connectivity describes the temporal
dependency of separate brain areas [5]; and effective connectivity reflects causal interactions
between different brain regions in a directly manner [6]. With the continuous development
of brain network analysis technology, brain connectivity estimation has been widely used in
neuroscience research, including disease diagnosis [7,8], emotional state recognition [9], as
well as action and intention recognition in brain–computer interfaces [10–12]. Post-traumatic
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stress disorder and major depression have significant difference within the frontoparietal
network and the default mode network, and based on these differences in connectivity, two
clinically relevant subtypes have been successfully identified [8]. An emotional classification
system using brain connectivity and convolutional neural networks has been introduced,
achieving excellent classification performance [9].

Previous studies have revealed that the cortex plays a critical role in walking control in
freely walking rats [13,14] instead of relying solely on spinal cord motor networks. Further,
the extent of cortex modulations appeared linked to the degree of volitional engagement
and the complexity of locomotion [13]. The spectral characteristics of electrocortical activity
in various brain regions also presented significant differences in behavioral conditions [14].
However, whether brain connectivity across distributed brain regions show significant
differences during walking tasks in freely moving rats remains undetermined. Further,
whether the brain connectivity can be used to detect the locomotion states is yet unknown.

In rodent models, brain network analysis is mainly used to study changes in connec-
tivity during the evolution of diseases, such as epilepsy [15], depression [16], Huntington’s
disease [17], and Alzheimer’s disease [18]. Studies on brain connectivity related to loco-
motion mainly focus on humans, and network analysis has not been applied to explore
the principles of rodent locomotion. Significant differences in brain connectivity in hu-
mans under different motion states have been indicated in several reports. Standing has
stronger connections in sensorimotor areas than walking. The opposite happens in non-
sensorimotor areas (prefrontal cortex, posterior parietal, and anterior cingulate) when
subjects are simultaneously engaged in a cognitive task [19]. Similarly, compared with
corresponding networks of normal walking, the supplementary motor and prefrontal areas
exhibit greater connectivity associated with walking while talking [20]. Notably, significant
changes in brain connectivity during motion preparation and execution were observed.
During the execution of the foot movement, the cingulate motor areas work as network
hubs, revealing numerous outgoing edges to other regions. During foot movement prepa-
ration, the brain networks exhibited the highest global efficiency and stronger small world
attributes [21]. A study also showed that global brain connectivity decreased in people
with stroke relative to healthy ones. The effects were particularly larger during pedaling
than foot-tapping. Moreover, local brain connectivity was higher in stroke than healthy
participants only during paretic foot tapping [22].

As earlier described, our knowledge of brain connectivity properties in rats perform-
ing walking locomotion tasks remains limited despite the wise use of rodent models in
neuroscience. This study aimed to investigate differences in the brain connectivity of
rats in different walking locomotion states. To address this problem, we recorded the
locomotion states and implanted electroencephalography (EEG) signals in freely moving
rats performing two kinds of natural task conditions (upslope and downslope walking).
Although functional connectivity can measure the temporal synchronization correlation be-
tween active brain regions, effective connectivity indicating how the activity of one region
influences other separate regions provides more information, to be more suitable to explore
the variability of the brain connectivity in freely walking rats. Currently, in neuroscience,
Granger causality is the most popular algorithm for extracting directional transmission
information between brain regions [23]. It can effectively measure the effective connectivity
among neural signal sources in the brain. Thus, in this study, we applied the Granger
causality algorithm to determine brain connectivity in rats during walking under different
behavior conditions. Three kinds of classifiers—k-nearest neighbors (KNN), random forest
(RF), and support vector machine (SVM)—were then applied to categorize the two walk-
ing states on the basis of brain connectivity. We predicted an evident difference in brain
connectivity when rats performed different walking tasks. Based on this difference, motion
states could be classified using machine learning algorithms.
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2. Materials and Methods
2.1. EEG Data Description

In this study, previous EEG data on four male Sprague–Dawley rats (aged 8–10 weeks
and weighing 200–250 g) were used to examine differences in brain connectivity in rats in
different locomotion states [14]. Two types of locomotion tasks (upslope and downslope
walking) were performed by the rats in the experiment. The task conditions are shown
in Figure 1a. Simultaneously, a 32-channel invasive EEG electrode array was fixed on the
skull to record the EEG data of the rats, and the rat locomotion states were recorded by two
cameras (80 Hz) (see reference [14] for surgical details). Figure 1b shows the implantation
of the electrode array on the skull. The screws penetrated the skull to reach the epidural
space. Figure 1c shows the putative electrode positions on the rat brain surface, obtained
using the software Brainstorm3. The sampling rate of the EEG data is 1000 Hz.
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artifacts) to obtain clean EEG data. Fourth, the EEG data were divided by locomotion 
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Figure 1. Recording setup and task conditions. (a) Characteristics of locomotor paradigms (upslope
and downslope walking). (b) Electrode location on the rat skull surface; blue dots representing
screws that attach the electrode array to the skull; BP represented the bregma point; LP represented
lambda point. (c) Putative electrode positions on the rat brain, obtained using Brainstorm3. The
color of the electrode corresponds to the underlying brain region (yellow: frontal cortex; light green:
somatomotor areas; green: somatosensory areas; light blue: visual cortex; blue: posterior parietal
association area; dark blue: retrosplenial area).

2.2. EEG Data Preprocessing

Preprocessing of EEG data was performed using EEGLAB 14.1.2b functions [24]. First,
the EEG data were screened with a band-pass filter at 7–100 Hz and a notch filter at 50 Hz by
using the EEGLAB function “eegfilt” (zero-phase finite impulse response filter, order 1100).
Second, the function “common average” was used to re-reference the EEG data. Third, the
EEG data were parsed using the ICA algorithm to get independent component (IC) sources.
By visually inspecting each IC scalp projection and power spectrum, we identified and
removed those IC sources related to no-brain artifacts (head shaking artifacts) to obtain
clean EEG data. Fourth, the EEG data were divided by locomotion states into epochs, which
started the moment of rat paw first touched the slope and ended the moment of the same
paw next contacted the slope. The average length of each epoch was 600 ms. The epochs
were rejected if they contained values exceeding the average of the probability distribution
of values across the data segments by 5 standard deviations [25]. Approximately 1% of
epochs were eliminated in per condition across all animals.
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Ultimately, to better explore the difference in brain effective connectivity in rats
walking on different locomotion terrains, the EEG data were divided into four major sub-
bands: the alpha band (7–13 Hz), beta band (13–30 Hz), low gamma band (30–50 Hz), and
high gamma band (50–100 Hz). The filter used in this study is zero-phase finite impulse
response filter in EEGLAB, whose design method is two-way least-squares. The present
study investigated variations in brain connectivity in the full-frequency band (7–100 Hz)
and four sub-band signals.

2.3. Functional Directed Connectivity Computation

The Granger causality algorithm was utilized to compute brain connectivity in this
study. Notably, our brain connectivity analysis mainly discussed functional directed
characteristics. Therefore, in this study, the brain connectivity is more appropriately called
“functional directed connectivity” rather than “effective connectivity”. The electrodes
on the rat skull surface acted as nodes of connectivity EEG signals recorded by each
electrode reflects the activities of neurons in the brain area below and nearby [26]. Thus,
the brain functional directed connectivity reflected the dependency relationship between
different activated brain regions [27]. Based on definition, Granger causality is a widely
used statistical method for parsing the dependency relationship between two signals [28].
The definition of Granger causality is that if the past information of variables x and y is
included, the prediction of y is better than the prediction of y solely based on the past
information of y. That is, if the variable x can help predict the future variable y, the variable
x is considered to be the “Granger cause” of the variable y [28]. In the present study, the
Granger causality was applied to obtain the connectivity between all electrode pairs. The
mathematical derivation process is as follows: x(t) and y(t) respectively represent the EEG
signals from the two electrodes. They can be described as the following formula according
the bivariate autoregressive model [29,30]:

x(t) =
p

∑
k=1

ax|x,kx(t− k) +
p

∑
k=1

ax|y,ky(t− k) + uxy(t) (1)

y(t) =
p

∑
k=1

ay|x,kx(t− k) +
p

∑
k=1

ay|y,ky(t− k) + uyx(t) (2)

where the coefficient a are the model parameters, p is the order, and uxy(t) and uyx(t) are
the residuals associated with the models of x(t) and y(t), respectively. In this study, the
selection of p is based on the AIC criteria and the validation of the bivariate autoregressive
model is based on the Ljung-Box test.

The residuals then depend on the past values of both signals, and their variances are

Vx|x,y = var
(
uxy
)

(3)

Vy|x,y = var
(
uyx
)

(4)

where var(.) is the variance over time, and x|x,y is the prediction of x(t) by the past samples
of values of x(t) and y(t).

Therefore, Granger causality from y to x (predicting x from y) is

GCy→x = ln

(
Vx|x

Vx|x,y

)
(5)

In the current study, the Hermes toolbox was used to calculate the matrix formed by
the brain functional directed connectivity, based on its built-in Granger causality algorithm
from EEG data [30]. The obtained connectivity matrix performed two types of analysis. One
was to analyze the difference in brain functional directed connectivity between upslope
and downslope walking. The other was to classify the uphill and downhill motion states,
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based on connectivity features, by machine learning. Simultaneously, in evaluating the
classification performance, we used EEG signals to classify the motion states. Figure 2
presents a schematic of the EEG data processing flow. Connectivity matrix measurement
was performed in the Brain Connectivity Toolbox. The clustering coefficient is a vital
parameter to measure network characteristics, which measure the inherent tendency to
cluster of network [31]. In this study, we used the clustering coefficient measure to reflect
the clustering tendency of each node, to measure the importance of one node in the neural
information interaction with others. The BrainNet Viewer toolbox was used to visualize
the brain functional directed connectivity [32].
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2.4. Machine Learning Algorithms for Classifying Locomotion States by Brain Functional
Directed Connectivity

In this study, three kinds of popular classifiers were used in locomotion state detection:
KNN, RF, and SVM. KNN classifies samples based on measuring the distance between
different feature values [33]. The core idea is that one sample belongs to the category of
the k samples that are most similar to it. That is, the classification decision of this method
is based on the category of the nearest one or several samples to determine the category
of the sample to be classified. RF is an algorithm that integrates multiple decision trees
through the idea of ensemble learning [34]. The classification performance of RF depends
on the performance of a single decision tree and the correlation between them. During the
training process, each decision tree will randomly and put back training samples from the
training set. The basic idea of SVM is to solve the separation hyperplane that can correctly
divide the training data set and maximize the geometric interval [35]. As a parametric
technique, SVM transforms nonlinearity into linearity [36].

We calculated the functional directed connectivity matrix between all pairs of elec-
trodes (32 × 32 = 1024 connections), obtaining 1024 connectivity metrics per locomotion
state. The strength of the connection between an electrode and itself was zero and thus
could not provide effective features for the classifier. Consequently, we removed them
from the connectivity metrics, finally obtaining 992 (1024−32 = 992 connections) dimen-
sional classification features. In this study, the dimension of EEG features was 19,200
(32 × 600 = 19,200).
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In this study, we selected four evaluation metrics (accuracy, sensitivity, specificity,
and F1-scores) widely used in machine learning, to evaluate the detection effect of rats
locomotion states [37]. Accuracy (ACC) is defined as the proportion of correctly classified
samples to the total samples. Sensitivity, namely, true positive ratio (TPR), is defined as the
proportion of the number of true positives (TP) to the sum of the TP and false negatives
(FN). Specificity, also called true negative rate (TNR), is defined as the proportion of true
negatives (TN) to the sum of false positive (FP) and TN. F1-score is the harmonic mean of
precision and sensitivity, where precision is the proportion of TP to the sum of TP and FN.
F1-score combines sensitivity and accuracy, showing a more comprehensive evaluation
index. In this study, we classified the detection results according F1-score, perfect (F1-
scores >90%), high (F1-scores >85% and <90%), satisfactory (F1-scores >80% and <85%),
and not satisfactory (F1-scores <80%).

2.5. Statistics

Linear mixed-effects models (using the MATLAB function “fitlme”) were used to
test for the presence of significant differences in brain functional directed connectivity for
different locomotion states. Because the connectivity measures that comes from different
rats are independent non-identically distributions, they are not suitable for the General
Linear Model. The linear mixed-effects model can only consider fixed effects and remove
random effects [38]. Therefore, the linear mixed-effects model can be used to calculate
the significant differences in brain connectivity for different locomotion states, excluding
the influence caused by different rats. All values are reported as mean ± 95% confidence
interval values, unless otherwise specified.

3. Results
3.1. Brain Functional Directed Connectivity in Rats Varied with the Locomotion State

We first identified variations in brain functional directed connectivity in the full-
frequency band (7–100 Hz) in rats walking on different terrains. We found a significant
difference in functional directed connectivity between different locomotion states. Specif-
ically, compared with downslope-walking, the connectivity increased significantly when
rats in upslope-walking, including larger-degree nodes, more connected edges, and
greater connection weights (Figure 3a). The most greatly increased connections started
from the left motor cortex to other brain areas. Only a small number of connections
increased in rats walking on a downward slope relative to those walking on an upward
slope (Figure 3b). The increased connections mainly originated from the right visual
cortex to other brain regions.

At the network level, the brain network indexes showed a considerable difference
between upslope and downslope walking. In upslope walking, the brain network exhibited
an increased global efficiency (Figure 4a). Analogously, the transitivity of the brain network
presented a similar trend for these two locomotion states (Figure 4b). This similarity
indicated that the brain network exhibited a higher efficiency of information processing in
rats walking on an upward slope. At the node level, a significant difference in connectivity
index was also determined. The clustering coefficient and node strength were higher
in rats walking on a downward slope than in those on a downward slope (Figure 4c,d).
The efficiency of information processing in nodes in different brain regions evidently
varied. The nodes located in the posterior parietal association cortex and retrosplenial area
possessed higher clustering coefficients. That is, brain functional directed connectivity in
rats varied with locomotion states in the full-frequency band.
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3.2. Brain Functional Directed Connectivity in Rats Presented a Significant Difference in
Each Sub-Band

We next explored the difference in brain functional directed connectivity in four
major sub-bands—the alpha band (7–13 Hz), beta band (13–30 Hz), low gamma band
(30–50 Hz), and high gamma band (50–100 Hz)—between rats in two locomotion states.
Significant differences in brain functional directed connectivity for each sub-band were
determined between upslope-walking and downslope-walking rats. In the alpha and low
gamma bands, connections (including the node degree, connected edge, and connection
weight) in the upslope state increased relative to those in the downslope state (Figure 5a,c);
increased connections rarely occurred in the downslope state (Figure 5e,g). By contrast, in
the beta band, connections in large numbers increased in the downslope state (Figure 5f),
whereas few connections increased in the upslope state (Figure 5b). Notably, in the high
gamma band, no significant difference in increased connected edges was found between
the two locomotion states. However, stronger connections were mostly distributed in the
left sensorimotor areas in the upslope-walking rats than in the downslope-walking ones.
For the locomotion state of downslope walking, the stronger connections were mainly
distributed in the right visual–motor integration areas (e.g., the retrosplenial area).
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Figure 5. Difference in brain functional directed connectivity between two locomotion states in
four sub-bands. (a) Increased connectivity in upslope locomotion relative to that in downslope
locomotion in the alpha band (7–13 Hz). (b) Increased connectivity in upslope locomotion relative
to that in downslope locomotion in the beta band (13–30 Hz). (c) Increased connectivity in upslope
locomotion relative to that in downslope locomotion in the low gamma band (30–50 Hz). (d) Increased
connectivity in upslope locomotion relative to that in downslope locomotion in the high gamma
band (50–100 Hz). (e) Increased connectivity in the downslope relative to that in upslope locomotion
in the alpha band (7–13 Hz). (f) Increased connectivity in downslope locomotion relative to that in
upslope locomotion in the beta band (13–30 Hz). (g) Increased connectivity in downslope locomotion
relative to that in upslope locomotion in the low gamma band (30–50 Hz). (h) Increased connectivity
in downslope locomotion relative to that in upslope locomotion in the high gamma band (50–100 Hz).
Threshold set to 50% of the strongest connection (i.e., preserving those connections exceeding
50% of the strongest connection). The node size is the degree, and the edge color denotes the
connection weight.

At the network level, the brain network indexes showed striking differences in alpha,
beta, and low gamma bands for upslope and downslope walking. By contrast, the global
efficiency and transitivity of the brain network in the alpha and low gamma bands were
greater in upslope-walking rats than in the downslope-walking ones (Figure 6a,b and
Figure 8a,b). In the beta band, the global efficiency and transitivity of the brain network
were smaller in the downslope-walking ones than in the upward-walking ones upslope
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state (Figure 7a,b). Notably, the global efficiency and transitivity of the brain network in
the high gamma band showed no significant differences in the upslope-walking rats than
in the downslope-walking ones (Figure 9a,b). At the node level, the connectivity indexes
also varied with the locomotion states. In the alpha band, the clustering coefficient was
significantly greater for the upslope state than for the downward state (Figure 6c), whereas
for the node strength, the values increased slightly for the upslope state compared with the
downslope state (Figure 6d). In the beta band, no significant differences in the clustering
coefficient were observed between the two locomotion states (Figure 7c). Notably, the node
strength was significantly greater for the downslope state than the upward one (Figure 7d).
The nodes located in the right sensorimotor areas exhibited higher clustering coefficient
and strength. In the low gamma band, the clustering coefficients of most nodes were greater
when rats walked on the upslope state (Figure 8c). All node strengths were significantly
greater for the upslope state than the downslope state (Figure 8d). Notably, in the high
gamma band, although no significant differences in global efficiency and transitivity were
observed between both states, the clustering coefficient was markedly greater when rats
walked on the upslope state than on the downslope state (Figure 9c). No significant
difference in node strength was found (Figure 9d). In summary, brain functional directed
connectivity in rats markedly varied between both states for each sub-band.
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(a,b) Global indexes of the brain network, including global efficiency and transitivity. (c,d) Local
indexes of the brain network, including clustering coefficient and strength. All error bars indicate the
95% confidence interval of the mean. * p < 0.05.
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Figure 7. Indexes of the brain network for the two locomotion states in the beta band (13–30 Hz).
(a,b) Global indexes of the brain network, including global efficiency and transitivity. (c,d) Local
indexes of the brain network, including clustering coefficient and strength. All error bars indicate the
95% confidence interval of the mean. ** p ≤ 0.01.
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Figure 8. Indexes of the brain network for the two locomotion states in the low gamma band
(30–50 Hz). (a,b) Global indexes of the brain network, including global efficiency and transitivity.
(c,d) Local indexes of the brain network, including clustering coefficient and strength. All error
bars indicate the 95% confidence interval of the mean. ** p ≤ 0.01.
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Figure 9. Indexes of the brain network for the two locomotion states in the high gamma band
(50–100 Hz). (a,b) Global indexes of the brain network, including global efficiency and transitivity.
(c,d) Local indexes of the brain network, including clustering coefficient and strength. All error
bars indicate the 95% confidence interval of the mean. ns, not significant.

3.3. Identifying Locomotion States by Their Brain Functional Directed Connectivity

In this study, we used three kinds of classification algorithms to detect rat locomotion
states and recorded the results for each classifier. To explore the altered connections in
different frequency bands when rats were in different locomotion states, the classifiers
were applied in the alpha, beta, low gamma, high gamma, and full bands. We recorded the
results for the different classifiers in different frequency bands via 10-fold cross-validation.
Simultaneously, in evaluating the performance of classification characterized by connectiv-
ity, we used EEG signals as features to classify the motion states. The performances of the
different classifiers characterized by EEG signals in different frequency bands are shown
in Figure 10. The results in Figure 10 shows that different classifiers yielded different
results for the same band EEG set. The KNN classifier achieved the highest accuracy
of 70.9% (F1-score = 71.16%) in the full frequency band. For the other two classifiers,
the classification accuracy of SVM was 69.09% (F1-score = 69.73%), and that of RF was
67.69% (F1-score = 64.55%). For different frequency bands, the same kind of classifier
yielded markedly different classification results. The highest classification accuracy was
achieved in the alpha band, and the accuracy and F1-score of the three classifiers exceeded
70%. However, this classification result was not satisfactory (F1-scores <80%, according
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to the definition in the Methods section). The results indicate that using EEG signals as
classification features in locomotion state detection cannot achieve satisfactory results.
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Accuracy (ACC), F1-score, true positive ratio (TPR), and true negative rate (TNR)).

Characterized by the functional directed connectivity in different bands, the perfor-
mances achieved using different classifiers are shown in Figure 11. All classifiers achieved
an accuracy of 80% in the full-frequency band. With the KNN and SVM classifiers, the
F1-score surpassed 80%. The performance markedly improved relative to that with the EEG
signal as the classifier. Notably, the best classification was achieved using the high gamma
band, achieving the highest accuracy (91.45%) (F1-score = 91.43%) with the SVM classifier;
even the lowest accuracy, achieved using KNN, also reached 88.93% (F1-score = 88.39%).
For other frequency bands, SVM still performed more efficiently. In summary, the results
indicate that the connectivity features of the high gamma band contain the best discrimina-
tive information with respect to rat locomotion detection. SVM provided the best detection
results in most frequency bands, and RF was partly better than KNN.
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4. Discussion

Although rodents are often used in neuroscience research, our knowledge of brain con-
nectivity properties in walking rats remains limited. In the present study, we investigated
the difference in brain functional directed connectivity in rats during different locomotion
states and proposed a novel method based on brain functional directed connectivity for
locomotion state detection. Results showed that brain functional directed connectivity
showed a significant difference in the full-frequency band and each sub-band when the
rats were in upslope and downslope locomotion. The classification results also indicated
that the connectivity features of the high gamma band contained the best discriminative
information with respect to locomotion detection in rats. These findings elucidate the
characteristics of neural information interaction between various cortical areas in freely
walking rats.

Consequently, in the full-frequency band, brain functional directed connectivity ex-
hibited an apparent difference between rats walking upslope and downslope (Figure 3).
Compared with the rats in downslope locomotion, those in upward locomotion showed
stronger connectivity (including large-degree nodes, more connections, and greater weights)
(Figure 3a). By contrast, only a small number of connections increased in downslope walk-
ing, compared with upslope walking (Figure 3b). The reason could be that, the greater
gait length and higher locomotion velocity of rats walking uphill led to more connections
between brain regions [14,39]. In addition, for upslope locomotion, the increased edges
mostly started from the left motor cortex to other brain areas, whereas for downslope
locomotion, the right visual area served as a network hub with numerous outgoing edges
to other regions. This occurrence is possible that rats adopt different motion strategies
when performing uphill and downhill walking. For upslope walking, in order to move
continuously the body mass upward and forward, rats may need to increase muscle strength
and improve the speed to ensure that the paws clear uphill obstacles during each swing [40].
Meanwhile, for downslope walking, rats may need to constantly adjust their posture and
rely more on proprioception feedback to increase braking force to counteract the external
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force that accelerates joint movement [41]. Specifically, the brain network characteristics
largely varied between upslope and downslope walking (Figure 4), with the former exhibit-
ing higher global efficiency and transitivity than the latter (Figure 4a,b). That is, compared
with downslope walking, upward walking required more neural information interactions
between various areas of the brain. The clustering coefficient and node strength showed
a similar trend (Figure 4c,d). In addition, the nodes located in both the posterior parietal
association area and the retrosplenial area showed higher efficiency in information pro-
cessing. This difference may be attributable to the crucial role of the posterior parietal
and retrosplenial cortex in the integration of motor, visual, and spatial information during
locomotion [42–44].

The results further showed that functional directed connectivity in the rat brain presented
significant differences for each sub-band between the rats walking upslope and those walking
downslope. In the alpha band, the rats in upslope locomotion showed greater brain network
connectivity (including large-degree nodes, more connections, and greater weights), com-
pared with the rats in downslope locomotion (Figure 5a). Moreover, the increased stronger
connections mainly originated from the left motor cortex to other brain regions. Several
studies indicated that alpha band modulation was linked to the degree of volitional engage-
ment, particularly in demanding walking tasks [39,45]. This relation was consistent with the
finding that rats need to participate more actively to increase the speed of locomotion and
thus remove obstacles to climb uphill. Moreover, the higher global efficiency and transitivity
of the brain network in upslope than downslope walking indicated that the rats required
more efficient neural information transmission to drive the rapid contraction of the muscles
and thus perform uphill locomotion (Figure 6a,b).

By contrast, in the beta band, the brain network in the rats performing downslope
locomotion had more connections (Figure 5f). In addition, the increased edges mainly
connected the somatomotor and somatosensory areas. Meanwhile, few connections
were increased for the rats in upslope locomotion than those in downslope locomotion
(Figure 5b). A previous review suggested that the synchronization or desynchronization
of β band activity might indicate the interruption and maintenance of the current
movement [46]. Thus, in the current study, the increased connections may reflect the
adjustment in the gait of the rats to continue the next phase of walking. Similarly, the
brain network exhibited higher global efficiency and transitivity in the downslope-
walking than in the upslope-walking rats (Figure 7a,b). This difference suggests that
downhill walking required stronger synchronization of beta-band activity to allow
more efficient feedback processing (e.g., proprioceptive signals), which is necessary for
monitoring the status quo and recalibrating the sensorimotor system [47]. The results
for the nodes located in the left sensorimotor areas with greater clustering coefficient
and strength verified that the somatosensory cortex is a dominant source of information
flow in the beta band [48,49].

In the low gamma band, the brain network of the rats in upslope locomotion had more
connections, larger-degree nodes, and greater weights (Figure 5c). Prior studies suggested
that rhythm in the low gamma band was related to increased cortical computation [50]
and reflected the requirements for cortical engagement in the walking task [51]. In the
current study, the increased connectivity in the low gamma band may be a sign of increased
demand for cortical muscle interactions in the coordination and control of peripheral move-
ments [39]. Compared with upslope walking, downslope walking exhibited significantly
lower global efficiency and transitivity (Figure 8a,b). Some studies indicated that low
gamma power decreased in walking tasks requiring gait adjustment in response to visual
feedback [52]. This finding suggested that rats walking downhill may require more visual
information to drive the next movement.

Notably, in the high gamma band, the brain network in rats walking upslope and rats
walking downslope both increased abundant connected edges (Figure 5d,h). Compared
with other frequency bands, the global efficiency and transitivity of the brain network
significantly increased for the two locomotion states (Figure 9a,b). Studies suggested
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that gamma band oscillations reflected the dynamics of local neuronal groups [53,54] and
may reflect more directly the specific details of rats walking. Moreover, a prior study
indicated that power fluctuations in the high gamma band were related to the processing
of sensory information during movement execution [55]. Thus, in the current study, the
increased connectivity of the high gamma band may serve to facilitate kinesthetic feedback
from muscles and joints in rats during walking. Although no significant difference in
global efficiency and transitivity was found, the clustering coefficient of the nodes was
markedly larger in downslope walking than in upslope walking. The reason might be
that downhill locomotion required more efficient information processing to accelerate
kinesthetic feedback to achieve gait adjustment.

We subsequently determined whether machine learning algorithms can be used to
classify locomotion in rats the difference in brain network connectivity. Previous studies
suggested that effective connectivity measures carried critical information about the neural
properties of cognition and behavior [5]. Moreover, effective connectivity has been used to
decode hand joint angles during grasp [12]. Results demonstrated that using functional
directed connectivity as classification features for locomotion detection exhibited satis-
factory performance (Figure 11). Specifically, the KNN and SVM classifiers achieved an
accuracy of 81% (F1-score > 81%) in the full-frequency band. However, the classifiers
using EEG signals as classification features failed to achieve the desired effect, even the
highest classification accuracy did not exceed 80% (Figure 10). Those results indicated that
complex network analysis can be employed in parsing EEG signals to obtain discriminative
information features for locomotion detection in rats. Further, the obvious difference in the
classification performance was observed in different frequency bands. The highest classifi-
cation efficiency was observed in the high gamma band, with the highest accuracy reaching
91.45% (F1-score = 91.43%) by using the SVM classifier; even the classifier (KNN) with
the lowest accuracy also reached 88.93% (F1-score was 88.39%). The lowest classification
efficiency was observed in the alpha and beta bands. Some recent studies suggested that the
spectrum power in high gamma band oscillated along with gait cycle phase during human
treadmill walking [56]. Moreover, our previous research also suggested that high gamma
band activity presented significant difference in different walking task in rats [14]. Those
studies indicated that gamma rhythm contained rich motion information, and network
analysis can effectively extract the discriminative features among them. That might be why
high gamma oscillations could give rise to a better classification rate. Some studies have
suggested the use of high gamma signals to decode highly fractionated movements [57],
further controlling prosthetic limbs with large degrees of freedom [58,59]. Another study
suggested that the intracortical microstimulation based on implanted neuroprosthesis
induced the gamma band oscillations in the primary auditory cortex in a similar way
as a natural sensory information communication process [60]. All those results showed
that the analysis of gamma band signal might be a potential method for improving the
accuracy of neuroprosthetic control. The results also showed that different classifiers
yielded different results. It was easy to observe that the SVM classifier exhibited the best
performance in most frequency bands, and the performance of RF was better than that of
KNN. However, the differences between the three classifiers were not that evident in the
same frequency band.

5. Conclusions

In this study, we revealed the brain functional directed connectivity properties in
rats during different walking locomotion states and verified the feasibility of locomotion
detection in rats based on brain functional directed connectivity. The results indicated
that the functional directed connectivity in the rat brain showed apparent differences
in the full frequency band and each sub-band between rats in upslope and downslope
walking. Moreover, the use of functional directed connectivity as the classification feature
for locomotion detection achieved satisfactory performance. Specifically, the classification
results indicated that the connectivity features of the high gamma band contained the
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best discriminative information with respect to locomotion detection in rats, and the SVM
classifier exhibited the best performance. This finding can elucidate rodent walking and
help advance the research in neuro-prosthetic limb control in brain–machine interfaces.
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