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Abstract: The Dempster-Shafer theory (DST) is an information fusion framework and widely used
in many fields. However, the uncertainty measure of a basic probability assignment (BPA) is still
an open issue in DST. There are many methods to quantify the uncertainty of BPAs. However, the
existing methods have some limitations. In this paper, a new total uncertainty measure from a
perspective of maximum entropy requirement is proposed. The proposed method can measure both
dissonance and non-specificity in BPA, which includes two components. The first component is con-
sistent with Yager’s dissonance measure. The second component is the non-specificity measurement
with different functions. We also prove the desirable properties of the proposed method. Besides,
numerical examples and applications are provided to illustrate the effectiveness of the proposed total
uncertainty measure.

Keywords: total uncertainty measure; dempster-shafer theory; maximum entropy; non-specificity

1. Introduction

With the development of sensor technology, it has become a trend for complex systems
to be equipped with multiple sensors. Compared with single-sensor monitoring, multi-
sensor monitoring could have higher reliability. Obviously, it is a key issue to effectively
fuse the multi-sensor information. Many techniques are proposed to solve the issue, such
as the Dempster-Shafer theory (DST) [1,2], Kalman filtering (KF) [3,4], fuzzy theory [5],
Bayesian reasoning method [6,7], neural network [8], and so on. However, there are many
uncertainties, for example, randomness and imprecision, in the real world. The treatment
of uncertainty is an important aspect in information fusion theories. Among them, DST
is an effective framework to deal with uncertain information. This theory was first pro-
posed by Dempster [9] and further developed by Shafer [10]. It is widely used in fault
diagnosis [11–14], decision-making [15,16], risk assessment [17], and so on. Many studies
in recent years have focused on conflict resolution [18–20], evidence revision [21], combi-
nation rules [22–25], and information volume [26,27]. Many methods about uncertainty
quantification have also been proposed [28]. However, the existing methods have some
limitations, and the uncertainty measure of BPAs is still an open issue in DST.

The concept of entropy was first proposed by the German physicist Clausius in 1865.
In thermodynamics, entropy is a measure of the “chaos” of a system [29]. In information
theory, entropy, also known as Shannon entropy, represents a measure of the uncertainty of
a random variable [30]. Besides, Ilya Prigogine proposed a famous statement: “The entropy
. . . leads to an ordering process” [31]. Parker and Jeynes also showed from a MaxEnt stand-
point that the (stupendously gigantic) entropy of the supermassive black hole at the centre
of the Milky Way can account for the geometrical stability of the galaxy [32]. Among them,
the Shannon entropy, verified in the past few decades, is an effective way to measure
uncertainty in probability theory (PT), but its direct application in DST is inappropriate.
That is because that PT describes the probability of the occurrence of singletons, while the
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evidence theory is based on the theory of non-additive probabilities, which can represent
the possibility of the occurrence of propositions with multiple elements [33].

Based on the above analysis, many scholars have proposed different entropy-like
measures to quantify the uncertainty of a body of evidences (BOEs) in DST. For instance,
Nguyen proposed a belief entropy based on the original basic probability assignment
(BPA) [34]. Dubois and Prade proposed a weighted Hartley entropy for measuring the
non-specificity of BPAs [35]. In addition, many other belief entropies have been proposed,
including Höhle’s entropy [36], Yager’s dissonance measure [37], Klir and Ramer’s dis-
cord measure [38], Klir and Parviz’s strife measure [39], Jousselme’s ambiguity measure
(AM) [40], Deng entropy [41], Yang and Han’s measure [42], the aggregated uncertainty
measure (AU) [43], Wang and Song’s measure (SU) [44], Jirousek and Shenoy’s entropy
(JS) [45], Deng’s measure [46], and so on [47–49]. These methods can effectively measure
the uncertainty of BOEs in some cases, and satisfy some desirable properties of uncertainty
quantification in DST [50]. Intuitively, when the system is completely unknown, that is,
m(Ω) = 1, Ω represents a frame of discernment (FOD), the uncertainty of evidence is the
greatest, which is called the maximum entropy property. Some of the existing methods do
not support this property. However, we think that maximum entropy should be a property
that must be satisfied.

Motivated by the above discussions, a new total uncertainty measure from a perspec-
tive of maximum entropy requirement is proposed. The proposed method can measure
both dissonance conflict and non-specificity in BPA, which includes two components.
The first component is consistent with Yager’s dissonance measure. The second component
is the non-specificity with different functions. We also prove the majority of the desired
properties of the proposed method, such as non-negativity, monotonicity, probability
consistency, and so on. The main contributions are summarized as follows.

• We propose a new total uncertainty measure from the perspective of the maximum
entropy requirement to quantify the uncertainty of BPAs in DST. Besides, properties
of the proposed method have also been proved, such as non-negativity, monotonicity,
maximum entropy, and so on.

• We conduct some numerical examples to evaluate the effectiveness of our proposed
method. The simulation results indicated that our proposed total uncertainty measure
could be degraded to Shannon entropy when BPA is a Bayesian mass function. Fur-
thermore, the proposed entropy could effectively deal with the redundant information
of the focal element.

The remainder of this paper is organized as follows. Section 1 reviews the related
concepts and works. Some preliminaries are introduced in Section 2. In Section 3, we
illustrate the proposed method in detail. Simulation results and discussion compared with
other methods are presented in Section 4. In Section 5, we give an application in feature
evaluation for pattern classification based on the Iris dataset. Section 6 is a conclusion of
the paper.

2. Preliminaries

Some basic concepts and existing methods are briefly introduced in this section.

2.1. Dempster-Shafer Theory

The Dempster-Shafer theory, proposed by Dempster [9] and expanded by Shafer [10],
is a mathematical theory of multi-source information. This method can effectively cope
with uncertainty. It is widely used in target identification, fusion decision, and so on. Some
definitions about this theory are as follows.

• Frame o f Discernment (FOD). If Θ = {θ1, θ2, · · · , θr} is a finite complete set of r
mutually exclusive elements, it is called a frame of discernment [9,10,51].
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• Basic Probability Assignment (BPA). Set Θ is a FOD, and its power set constitutes a set
of propositions. If a function m : 2Θ → [0, 1] satisfies the following formula [9,10,52]:{

m(∅) = 0
∑
S

m(S) = 1 , (1)

the mass function m is a BPA. In this definition, m(S) is the basic probability number
of proposition S, and indicates the belief assigned to S.

• Dempster Combination Rule (DCR). Let m1 and m2 be two BPAs, and then the Demp-
ster combination rule is as follows [9]:{

m(∅) = 0
m(C) = ∑S∩B=C m1(S)m2(B)

1−k , C 6= ∅
(2)

where k = ∑S∩B=∅ m1(S)m2(B).

2.2. Belief and Plausibility Function

Let m be a BPA on FOD Θ, if Bel : 2Θ → [0, 1] statisfies [9]:

Bel(S) = ∑
B⊆S

m(B), S ∈ 2Θ (3)

then, Bel(S) is called the belief measure of proposition S.
Pl(S) is the plausibility function that is defined as follows:

Pl(S) = 1− Bel(S̄) = ∑
B∩S=∅

m(B) (4)

Pl(S) is the degree to which you do not disagree with proposition S.

2.3. Shannon Entropy

Let X be a sample space with possible values {x1, x2, · · · , xn}, then, the Shannon
entropy is defined as [30]:

Hs = ∑
xi∈X

p(xi)log2
1

p(xi)
, (5)

where p(xi) is the probability of xi. It also satisfies ∑
xi∈X

p(xi) = 1.

2.4. Some Existing Entropies in DST

In the information theory, Shannon entropy has been widely used, but it has an
inherent limitation of handling the uncertainty in DST. Nonetheless, the idea of Shannon
entropy still plays a crucial role in guiding the uncertainty measurement of BPA. Many
scholars proposed methods of uncertainty measurements. Let X be a FOD, and some
existing uncertainty measures in DST are listed as follows.

Nguyen’s entropy. Nguyen [34] proposed a belief entropy based on the original BPA:

HN = ∑
S∈2X

m(S)log2
1

m(S)
. (6)

Weighted Hartley entropy. Dubois and Prade [35] proposed a entropy for the non-specificity
measure:

HDP = ∑
S∈2X

m(S)log2|S|, (7)

where |S| is the cardinality of S.
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Aggregated uncertainty measure (AU). Harmanec and Klir [43] proposed a total uncer-
tainty measure of non-specificity and inconsistency:

AU(m) = max

[
− ∑

x∈X
pxlog2(px)

]
, (8)

where px is defined as: 
px ∈ [0, 1], ∀x ∈ X
∑

x∈X
px = 1

∑
x∈S

px ∈ [Bel(S), Pl(S)], ∀S ⊆ X
(9)

Yager’s entropy. Yager [37] proposed a dissonance measure of BPAs based on the plausi-
bility function:

HY(m) = − ∑
S∈2X

m(S)log2Pl(S), (10)

where Pl(S) is the plausibility measurement of S in m.

Deng entropy. Deng [41] proposed a new uncertainty measurement method, namely,
”Deng entropy”. It is defined as:

HDeng(m) = − ∑
S∈2X

m(S)log2
m(S)

2|S|−1

= ∑
S∈2X

m(S)log2

[
1

m(S)

]
+ ∑

S∈2X
m(S)log2

[
2|S| − 1

]
.

(11)

Höhle entropy. Höhle [36] proposed a belief entropy based on a belief function, which is
defined as:

Hc(m) = − ∑
S∈2X

m(S)log2Bel(S), (12)

where Bel(S) is the belief measurement of S.

Yang and Han’s measure (TU I). Yang and Han [42] defined a total uncertainty measure-
ment. The formula is defined as:

TU I(m) = 1−
√

3
n ∑

x∈X
dI([Bel(x), Pl(x)], [0, 1]), (13)

where n is the elements number of FOD X. The interval distance is defined as:

dI([c1, d1], [c2, d2]) =

√[
c1 + d1

2
− c2 + d2

2

]2
+

1
3

[
d1 − c1

2
− d2 − c2

2

]2
. (14)

Deng’s measure (TU I
E). In addition, Deng et al. [46] proposed an improved total uncer-

tainty measurement method based on belief intervals:

TU I
E(m) =

∑
x∈X

[
1− dI

E([Bel(x), Pl(x)], [0, 1])
]

|X| , (15)

where dI
E(·) indicates the Euclidean distance between two interval numbers

[Bel(x), Pl(x)] and [0, 1].
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3. Proposed Uncertainty Measure in DST
3.1. The Proposed Method

In this section, a new total uncertainty measure of BPAs in DST is proposed, which is
from a perspective of maximum entropy requirement. It can quantify the total uncertainty
of BPAs, including conflict and non-specificity. As for the conflict measure of BPAs, we
utilize the method of Yager’s dissonance entropy [37]. As for the non-specificity measure
of BPAs, Hn−s(m), we think that Hn−s(m) should be consistent with the maximum entropy
requirement. For example, the uncertainty of BPA m(S) = 1 defined on FOD X, S ⊂ X,
should equal to the uncertainty of vacuous BPA m′(Ω) = 1, where Ω is the FOD and
Ω = S. Furthermore, the uncertainty of m(S) = a should hence be a function of a and the
uncertainty degree of BPA m(S) = 1, but not measured by the weighted Hartley entropy.

Based on the above idea, the proposed new total uncertainty measure is defined as
follows:

H(m) = ∑
S∈2X

m(S)log2
1

Pl(S)
+ ∑

S∈2X

m(S)QS

= ∑
S∈2X

m(S)log2
2QS

Pl(S)
, (16)

where X is the FOD, and QS represents the maximum entropy in S, that is, the uncer-
tainty of m(S) = 1. Logically, for S ⊆ X, QS is a monotonically increasing function of the
cardinality of S, that is, QX ≥ QS. In addition, when the BPA is a Bayesian mass function,
we expect the new entropy to be degraded to Shannon’s entropy. Therefore, QS = 0 when
|S| = 1. In summary, QS is a function QS : |S| → R, satisfying (i) QS = 0 i f |S| = 1; and
(ii) dQS

d|S| ≥ 0.

3.2. Properties of the Proposed Method

Similar to the probability theory (PT), there are some properties which need to be
satisfied for the uncertainty measurement in DST, such as probability consistency, additivity,
non-negativity, and so forth. The properties analysis of the proposed entropy is explored
as follows.

Property 1 (Non-negativity). H(m) ≥ 0, the equation holds if, and only if m({x}) = 1 and
x ∈ X.

Proof. Given X = {x1, x2, · · · , xn}, for any S ∈ 2X ,

0 ≤ m(S) ≤ 1,

|S| > 0,

QA ≥ 0,

then,

∑
S∈2X

m(S)log2
1

Pl(S)
≥ 0,

∑
S∈2X

m(S)QS ≥ 0,

hence, H(m) ≥ 0. If H(m) = 0, there must be m(S) = 0 or 2QS
Pl(S) = 1, that is, m({xi}) = 1

and xi ∈ X.

Property 2 (Set Monotonicity). Let m(X1) = 1 be a vacuous BPA on FOD X1, and m(X2) = 1
be also a vacuous BPA on FOD X2, if |X1| < |X2|, then H(m1) < H(m2).
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Proof. For any vacuous BPA m(X) = 1, there is Pl(X) = 1, then

H(m) = m(X)QX + m(X) · log2
1

Pl(X)

= m(X)QX

= QX .

From the analysis in Section 3.1, it can be obtained that QS is a monotonically increas-
ing function of |X|, and we have QX1 < QX2 if |X1| < |X2|. Hence, the proposed method
satisfies the set monotonicity property.

Property 3 (Maximum entropy). For all BPAs defined on a FOD X, the vacuous BPA m(X) = 1
has the most uncertainty.

Proof. Let m be a BPA on FOD X. According to the analysis of Section 3.1, QS is a monoton-
ically increasing function of the cardinality of S. Therefore, the proposed method obviously
satisfies the maximum entropy property.

Property 4 (Probability consistency). For a Bayesian BPA defined on FOD X, its uncertainty
equals to the form of Shannon entropy H(m) = ∑

S∈X
m(S)log2

1
m(S) .

Proof. If m is a Bayesian BPA, then Pl(S) = m(S), hence,

H(m) = ∑
S∈X

m(S)log2
1

Pl(S)
+ ∑

S∈X
m(S)QS

= ∑
S∈X

m(S)log2
1

m(S)
+ ∑

S∈X
m(S)QS

(
since QS = 0

i f |S| = 1

)
= ∑

S∈X
m(S)log2

1
m(S)

.

Therewith, the proposed method satisfies the property of probability consistency.

Property 5 (Range). The range of the proposed entropy is [0, QX ], where QX is a function of |X|.

Property 6 (Non-Additivity). Let mX and mY be two BPAs that are defined on FOD X and Y,
respectively. Then, H(mX ⊕mY) 6= H(mX) + H(mY).

Proof. Let Z be the Cartesian product space Z = X × Y, where x ∈ X and y ∈ Y,
Z = {z11, z12, · · · , zlk} is the corresponding joint focal element on Z, zij = {xi, yj},
and (mX ⊕mY)(A× B) = mX(A)mY(B). Then, the new entropy of mX ⊕mY is:

H(mX ⊕mY) = ∑
z∈2Z

m(z)Qz + ∑
z∈2Z

m(z)log2
1

Pl(z)

= ∑
z∈2Z

m(z)log2
2Qz

Pl(z)

6= ∑
S∈2X

∑
B∈2Y

mX(S)mY(B)log2
2QSQB

Pl(S)Pl(B)

= ∑
S∈2X

mX(S)log2
2QS

Pl(S)
+ ∑

B∈2Y

mY(B)log2
2QB

Pl(B)

= H(mX) + H(mY).

Therefore, the proposed method does not satisfy the additivity property.
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Property 7 (Generalized Set Consistency). When m(S) = 1, S is any subset of a FOD, H(m) =
f (|S|), where f is a monotonically increasing function of |S|.

Proof: Assuming m is a BPA defined on FOD X, for S ∈ 2X and m(S) = 1, the uncertainty
measurement based on the proposed entropy is:

H(m) = ∑
S∈X

m(S)QS + ∑
S∈X

m(S)log2
1

Pl(S)

= m(S)QS

= QS.

Therefore, the proposed entropy satisfies the property of generalized set consistency if, and only
if QS = log2|S|.

4. Numerical Examples

In this section, we give three different forms of QS. Some numerical examples are
given to verify the rationality and effectiveness of the proposed method.

Case 1 (Q1
S). According to [45], the maximum entropy is 2log2|X|, where X is a FOD.

In this paper, QS : S→ R represents the maximum entropy in S. Hence, based on the
above analysis, one function form of QS can be defined as:

Q1
S = 2log2|S|.

Case 2 (Q2
S). According to [26], the maximum Deng entropy is log2 ∑

S∈2X

(
2|S| − 1

)
. Theo-

retically, Q2
S should be log2 ∑

B∈2S

(
2|B| − 1

)
. However, the Deng entropy’s maximum

uncertainty is obtained at m(S) = (2|S|−1)
∑S∈2X (2|S|−1)

, which is inconsistent with our idea.

In this paper, we think that the uncertainty of m(S) = a should be a function of a
and uncertainty degree of BPA m(S) = 1. Hence, for any B ∈ 2S, there is only one
situation, B = S. Therefore, another function form of QS can be defined as:

Q2
S = log2

(
2|S| − 1

)
.

Case 3 (Q3
S). According to [44,46], the maximum entropy is |X|, where X is a FOD. Simi-

larly, the third function form of QS can be defined as:

Q3
S =

{
0, |S| = 1
|S|, |S| > 1

Then, the proposed entropy could be written as follows:

H1(m) = ∑
S∈2X

m(S)log2
1

Pl(S)
+ ∑

S∈2X

m(S) · 2log2|S|

= ∑
S∈2X

m(S)log2
22log2|S|

Pl(S)
. (17)

H2(m) = ∑
S∈2X

m(S)log2
1

Pl(S)
+ ∑

S∈2X

m(S)log2

(
2|S| − 1

)
= ∑

S∈2X

m(S)log2
2|S| − 1
Pl(S)

(18)
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H3(m) =


∑

S∈2X
m(S)log2

1
Pl(S) , |S| = 1

∑
S∈2X

m(S)log2
1

Pl(S) + ∑
S∈2X

m(S) · |S|, |S| > 1

=


∑

S∈2X
m(S)log2

1
Pl(S) , |S| = 1

∑
S∈2X

m(S)log2
2|S|

Pl(S) , |S| > 1
(19)

4.1. Example 1

This example is adapted from [53]. Let the FOD be X = {x1, x2, · · · , xn}. We give a
BPA as m({xi}) = 1/n. Then, we calculate the uncertainty of this BPA when n changes.

According to the definition and the desired properties of the entropy, it can be in-
ferred that as n increases, the uncertainty of this BPA increases. In addition, when the
BPA is a Bayesian mass function, the uncertainty of the BPA should be consistent with
Shannon entropy.

We calculate the uncertainty of this BPA in this example based on the proposed method
and some existing methods, as shown in Figure 1.
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 proposed method H^3
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 Weighted Hartley entropy
 Yang and Han's measure
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 JS
 AM
 Deng's measure
 Shannon entropy

Figure 1. Comparison results of Example 1.

For this example, all the methods gave exactly the same result as the Deng Entropy
(except the weighted Hartley entropy, and the two different “measures” of Deng, as well as
Yang and Han). In this paper, the “Deng entropy“ was proposed by Deng to measure the
uncertainty of BPAs in 2016, while “Deng’s measure (TU I

E)“, proposed by Deng et al. in
2017, is an improved total uncertainty measure method based on the belief interval.

In Figure 1, the uncertainty calculated by Yang and Han’s measure, TU I
E and the

weighted Hartley entropy show a downward trend with the increase of n, which was
inconsistent with our intuition. However, the uncertainty calculated by the proposed
methods in this paper and the remaining existing methods gradually increases with the
increase of n, which is consistent with the results calculated by Shannon entropy. Therefore,
the proposed methods in this paper are effective when BPA is a Bayesian mass function.



Entropy 2021, 23, 1061 9 of 20

4.2. Example 2

Let the FOD be X = {x1, x2, · · · , xn}. We also give a BPA as m({x1, · · · , xn}) = 1.
When n increases from 1 to 14, the uncertainty measure of BPAs based on the proposed
method and other existing methods are shown in Table 1. In addition, in order to visualize
the change of uncertain measurement results with n, the uncertainty measurement results
of different methods are given in Figure 2.

Table 1. The comparison between the proposed method and some existing methods in Example 2.

Uncertainty Measures n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14

Deng entropy 0 1.5850 2.8074 3.9069 4.9542 5.9773 6.9887 7.9944 8.9972 9.9986 10.9993 11.9996 12.9998 13.9999
AU 0 1 1.5850 2 2.3219 2.5850 2.8074 3 3.1699 3.3219 3.4594 3.5850 3.7004 3.8074

Weighted Hartley entropy 0 1 1.5850 2 2.3219 2.5850 2.8074 3 3.1699 3.3219 3.4594 3.5850 3.7004 3.8074
Yang and Han’s measure 0 2 3 4 5 6 7 8 9 10 11 12 13 14

SU 0 2 3 4 5 6 7 8 9 10 11 12 13 14
JS 0 2 3.1699 4 4.6439 5.1699 5.6147 6 6.3399 6.6439 6.9189 7.1699 7.4009 7.6147

AM 0 1 1.5850 2 2.3219 2.5850 2.8074 3 3.1699 3.3219 3.4594 3.5850 3.7004 3.8074
Deng’s measure(TU I

E) 0 2 3 4 5 6 7 8 9 10 11 12 13 14
Yager’s dissonance entropy 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Proposed method H1 0 2 3.1699 4 4.6439 5.1699 5.6147 6 6.3399 6.6439 6.9189 7.1699 7.4009 7.6147
Proposed method H2 0 1.5850 2.8074 3.9069 4.9542 5.9773 6.9887 7.9944 8.9972 9.9986 10.9993 11.9996 12.9998 13.9999
Proposed method H3 0 2 3 4 5 6 7 8 9 10 11 12 13 14

As shown in Figure 2, it is obvious that the uncertainty degree measured by the
Yager’s dissonance entropy is always 0. Intuitively, however, the uncertainty of this BPA
should increase as n increases. Therefore, Yager’s dissonance entropy will obtain wrong
results when m is a vacuous BPA in this example.
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 proposed method H^2
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 Weighted Hartley entropy
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Figure 2. Comparison results of Example 2.

The uncertainty measure results obtained by AU, weighted Hartley entropy, and AM
are the same. This is because when BPA is a vacuous BPA, the three methods give us the
same result log2|n|. The degree of uncertainty obtained by these three methods increases
with the increase of n, which is consistent with expectations. Similarly, the degree of
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uncertainty calculated based on the methods proposed in this paper (H1, H2, H3), Deng’s
entropy, SU, JS, Yang and Han’s measure, and TU I

E also increases with the increase of
n. Additionally, the growth trend of the proposed method H2 in this paper is basically
the same as that of the Deng entropy. This is because for a vacuous BPA, m(A) = Pl(A).
Hence, the two methods have the same function form. The proposed method H3 and SU,
Yang and Han’s measure, TU I

E also have the same growth trend. However, we think that
when the change trend is consistent with the theoretical connotation of uncertainty, it can
be considered as a reasonable and effective measure method. Hence, the proposed methods
are all effective when BPA is a vacuous BPA.

For this example, the proposed method H2 gave the same results as the Deng entropy.

4.3. Example 3

Let X = {a, b, c, d} be the FOD. We give two BPAs as follows.

m1 : m1({a}) = 1
5 , m1({b}) = 1

5 , m1({a, b}) = 3
5

m2 : m2({a}) = 1
5 , m2({b}) = 1

5 , m2({c, d}) = 3
5

.

For m1,

Plm1({a}) =
4
5

, Plm1({b}) =
4
5

, Plm1({a, b}) = 1,

for m2,

Plm2({a}) =
1
5

, Plm2({b}) =
1
5

, Plm2({c, d}) = 3
5

,

then the uncertainty based on the proposed method are:

H1(m1) =
1
5
· log2

22·log21

4/5
+

1
5
· log2

22·log21

4/5
+

3
5
· log2

22·log22

1

= 2× 1
5
· log2

1
4/5

+
3
5
× 2 = 1.3288.

H2(m1) =
1
5
· log2

2log2(21−1)

4/5
+

1
5
· log2

2log2(21−1)

4/5
+

3
5
· log2

2log2(22−1)

1

= 2× 1
5
· log2

1
4/5

+
3
5
× log23 = 1.0797.

H3(m1) =
1
5
· log2

20

4/5
+

1
5
· log2

20

4/5
+

3
5
· log2

22

1

= 2× 1
5
· log2

1
4/5

+
3
5
× log24 = 1.3288.

H1(m2) =
1
5
· log2

22·log21

1/5
+

1
5
· log2

22·log21

1/5
+

3
5
· log2

22·log22

3/5

= 2× 1
5
· log2

1
1/5

+
3
5
× log2

4
3/5

= 2.5710.

H2(m2) =
1
5
· log2

2log2(21−1)

1/5
+

1
5
· log2

2log2(21−1)

1/5
+

3
5
· log2

2log2(22−1)

3/5

= 2× 1
5
· log2

1
1/5

+
3
5
× log2

3
3/5

= 2.3219.
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H3(m2) =
1
5
· log2

20

1/5
+

1
5
· log2

20

1/5
+

3
5
· log2

22

3/5

= 2× 1
5
· log2

1
1/5

+
3
5
× log2

4
3/5

= 2.5710.

In addition, the uncertainty measured by other methods, as shown in Table 2.

Table 2. The uncertainty measured by other methods in Example 3.

Uncertainty Measures m1 m2

Deng entropy 2.3219 2.3219
AU 1 1.9710

Weighted Hartley entropy 0.6 0.6
Yang and Han’s measure 0.4 0.4394

SU 1.6 2.5710
JS 1.6 2.4113

AM 1 1.9710
Deng’s measure (TU I

E) 0.3586 0.3877
Yager’s dissonance entropy 0.1288 1.3710

Obviously, owing to differences in the focal elements in these BPAs, the uncertainty
degree of m1 and m2 are different, though the values of the two BPAs are the same,
and H(m1) should be less than H(m2). However, the results obtained by the Deng entropy
and weighted Hartley entropy are the same for m1 and m2. The results obtained by other
methods are as expected. However, Yager’s dissonance entropy method did not consider
the non-specificity measure. The methods proposed in this paper obtain reasonable results
and consider the total uncertainty. Therefore, when the focal elements are different but the
BPA values are the same, the proposed method in this paper can effectively measure the
degree of uncertainty.

4.4. Example 4

Let X = {a, b, c, d} be a FOD. Two BPAs defined on the FOD are given as follows.
There is an intersection relationship between propositions.

m1 : m1({a, b}) = 0.4, m1({c, d}) = 0.6
m2 : m2({a, c}) = 0.4, m2({b, c}) = 0.6

The uncertainties are measured by different methods, as shown in Table 3.

Table 3. The uncertainty measured by different methods in Example 4.

Uncertainty Measures m1 m2

Deng entropy 2.5559 2.5559
AU 1.9710 1.9710

Weighted Hartley entropy 1.0000 1.0000
Yang and Han’s measure 0.5000 0.5000

SU 2.9710 2.4855
JS 2.9710 2.4855

AM 1.9710 1.4855
Deng’s measure (TU I

E) 0.5000 0.5000
Yager’s dissonance entropy 0.9710 0

Proposed method H1 2.9710 2.0000
Proposed method H2 2.5559 1.5850
Proposed method H3 2.9710 2.0000

For the body of evidence (BOE) m1, the intersection between the two propositions
a, b and c, d is empty. For BOE m2, the intersection between the two propositions a, b
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and c, d is a single element c. However, the values of BPAs are the same. Based on
the above analysis, the uncertainties of two BOEs are obviously different. However,
according to Table 3, the results are the same for m1 and m2, measured by Deng entropy,
AU, weighted Hartley entropy, Yang and Han’s measure, and Deng’s measure. Besides,
the uncertainty of BOE m2 calculated by Yager’s dissonance entropy is 0. This result is
clearly wrong. This is because there is an intersection between two propositions of m2,
and Yager’s dissonance entropy eliminates the distinction between the two propositions
when calculating a plausibility function. On the contrary, the three methods we propose can
all distinguish the uncertainty difference between the two BOEs. Therefore, the proposed
method can effectively distinguish the uncertainty when there is an intersection relationship
between propositions.

4.5. Example 5

Let X = {1, 2, · · · , 15} be a FOD with 15 elements. A BPA defined on the FOD is:

m(3, 4, 5) = 0.05, m(7) = 0.05, m(A) = 0.8, m(X) = 0.1,

where A is a variable subset of X, with the number of single elements changing from 1 to
14. This example was adopted from [53].

The results are shown in Tables 4 and 5, and Figure 3. Table 4 shows changes in the
number of elements in S from 1 to 7, and Table 5 shows changes in the number of elements
in A from 8 to 14. All the results are plotted in Figure 3.

Table 4. The comparison between the proposed method and some existing methods in Example 5.

Uncertainty Measures A = {1} A = {1, 2} A = {1, 2, 3} A = {1, 2, 3, 4} A = {1, 2, · · · , 5} A = {1, 2, · · · , 6} A = {1, 2, · · · , 7}

Deng entropy 2.6623 2.9303 4.9082 5.7878 6.6256 7.4441 8.2532
AU 1.4328 2.2180 2.6707 2.9821 3.0378 3.2447 3.2956

Weighted Hartley entropy 0.4699 1.2699 1.7379 2.0699 2.3275 2.5379 2.7158
Yang and Han’s measure 0.1246 0.2216 0.2749 0.3283 0.3816 0.4349 0.4867

SU 4.3583 5.7797 6.4096 7.0394 7.6693 8.3716 8.9394
JS 3.8322 4.4789 4.8870 5.2250 5.5200 5.8059 6.0425

AM 1.3461 2.1037 2.4623 2.7011 2.8762 3.0684 3.1083
Deng’s measure (TU I

E ) 0.1195 0.2199 0.2732 0.3266 0.3799 0.4332 0.4853
Yager’s dissonance entropy 0.3953 0.3953 0.1997 0.1997 0.1997 0.1997 0.0074

Proposed method H1 1.3352 2.9352 3.6756 4.3396 4.8547 5.2756 5.4390
Proposed method H2 2.0357 3.3036 4.0860 4.9656 5.8035 6.6219 7.2387
Proposed method H3 2.0453 3.6453 4.2497 5.0497 5.8497 6.6497 7.2574

Table 5. The comparison between the proposed method and some existing methods in Example 5.

Uncertainty Measures A = {1, 2, · · · , 8} A = {1, 2, · · · , 9} A = {1, 2, · · · , 10} A = {1, 2, · · · , 11} A = {1, 2, · · · , 12} A = {1, 2, · · · , 13} A = {1, 2, · · · , 4}

Deng entropy 9.0578 9.8600 10.6612 11.4617 12.2620 13.0622 13.8622
AU 3.4497 3.5796 3.6909 3.7824 3.8538 3.8986 3.9069

Weighted Hartley entropy 2.8699 3.0059 3.1275 3.2375 3.3379 3.4303 3.5158
Yang and Han’s measure 0.5400 0.5933 0.6467 0.7000 0.7533 0.8067 0.8600

SU 9.6417 10.3440 11.0463 11.7486 12.4510 13.1533 13.8556
JS 6.2772 6.4921 6.6903 6.8743 7.0461 7.2071 7.3587

AM 3.2511 3.3747 3.4833 3.5797 3.6663 3.7446 3.8160
Deng’s measure (TU I

E) 0.5386 0.5920 0.6453 0.6986 0.7520 0.8053 0.8586
Yager’s dissonance entropy 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074

Proposed method H1 5.7473 6.0192 6.2624 6.4824 6.6832 6.8680 7.0390
Proposed method H2 8.0432 8.8455 9.6466 10.4472 11.2475 12.0476 12.8477
Proposed method H3 8.0574 8.8574 9.6574 10.4574 11.2574 12.0574 12.8574

As shown in Figure 3, with the increase of the number of elements in A, the uncertainty
calculated by Yager’s dissonance entropy shows a downward trend, which is inconsistent
with the connotation of uncertainty. The reason is that when the number of elements
in A gradually increases, it gradually intersects with other propositions, and Yager’s
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entropy does not show this difference. This suggests that Yager’s entropy does not correctly
measure the uncertainty of the evidence in this example.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

U
nc

er
ta
in
ty

Element number in A

 proposed method H^1
 proposed method H^2
 proposed method H^3
 Deng entropy
 AU
 Weighted Hartley entropy
 Yang and Han's measure
 SU
 JS
 AM
 Deng's measure
 Yager's dissonancce entropy

Figure 3. Comparison results of Example 5.

From a “common sense” point of view, the uncertainty of BPA increases as the num-
ber of elements increases in A. Additionally, other methods except Yager’s dissonance
entropy show an increasing trend on the whole. The corresponding values can be found in
Tables 4 and 5. However, it should be noted that when A changes from {1, 2} to {1, 2, 3},
A begins to intersect with the proposition {3, 4, 5}. Therefore, the change of the uncer-
tainty should be slightly less than the change of A from {1} to {1, 2}. From Figure 4, it
can be obtained that the proposed methods in this paper present this change. As for the
uncertainty measure of BOEs, as far as we know, there is no reasonable evaluation index
at present, and it is not certain that the greater the uncertainty, the better. Nevertheless,
when its change trend is consistent with the theoretical connotation of uncertainty, it can
be considered as a reasonable and effective measurement method.

4.6. Example 6

Let X = {θ1, θ2} be a FOD with two elements. Additionally, we give a BPA as:

m({θ1}) = a, m({θ2}) = b, m({θ1, θ2}) = 1− a− b,

where a, b ∈ [0, 0.5]. This example is adopted from [53]. Here, we calculate the uncertainty
values based on the proposed methods and some existing methods with the changes of a
and b. The results are shown in Figure 4.
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Figure 4. Comparison results of Example 7. (a) The proposed method H1; (b) the proposed method H2; (c) the proposed
method H3; (d) Deng entropy; (e) AU; (f) weighted Hartley entropy; (g) Yang and Han’s measure; (h) SU; (i)JS; (j) AM;
(k) Deng’s measure(TU I

E); (l) Yager’s dissonance entropy.

For the proposed methods H1, H2, and H3, Yang and Han’s measure, weighted Hartley
entropy, SU, JS, and Deng’s measure (TU I

E), it can be found that the maximum uncertainty
is obtained when m(X) = 1, which is consistent with the property of maximum entropy.
In addition, as the value of m(X) decreases, the uncertainty of BOE decreases gradually.
As for Deng entropy, according to [26], its maximum uncertainty is obtained at m(θ1) =

2|θ1|−1(
2|θ1|−1

)
+
(

2|θ2|−1
)
+
(

2|{θ1,θ2}|−1
) = 0.2, m(θ2) = 0.2, and m(X) = 0.6, which is consistent

with Figure 4(d) and does not satisfy the maximum entropy property. For Yager’s disso-
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nance entropy, the maximum uncertainty is obtained at m(θ1) = 0.5, m(θ2) = 0.5, m(X) = 0.
As the value of m(X) decreases, the uncertainty also increases, which is counter-intuitive.
Hence, in this example, Yager’s dissonance entropy fails to measure the uncertainty of
BOEs. Besides, for the method of AU, it obviously fails to measure the uncertainty of BOEs
in this example.

The above numerical examples are analyzed and summarized. For Example 1, since
we give a Bayesian mass function, the uncertainty of the Bayesian BPA is proportional
to the number of elements n in FOD based on the proposed method. It can also be
understood from the concept of entropy that with the increase of the elements number
of FOD, the “chaos” degree of information in this example also increases. The results
obtained by all methods are consistent with this understanding, except weighted Hartley
entropy, and two different “measures” of Yang and Han, as well as Deng. For Example 2,
we give a vacuous BPA. Obviously, as the number of elements in the FOD increases,
the disorder of the system increases. This is true for all methods except Yager’s dissonance
entropy. It is because Yager’s dissonance entropy only measures dissonance, not non-
specificity. For Examples 3 and 4, the two BPAs given in each example are assigned the
same belief value, but with different propositions. Because the uncertainty of a BPA is
related to its belief value and proposition, the uncertainty is obviously different when
the propositions are completely disjointed and partially intersected. Example 5 further
illustrates the problem. In this example, the degree of intersection between the different
propositions of the BPA changes gradually, that is, the belief values for elements in the
FOD change gradually. Therefore, the degree of confusion in the system changes gradually,
and the results of the uncertainty measure change accordingly. However, overall, as the
number of elements in A increases, the confusion of BPA to the system should also increase.
For Example 6, different belief values are assigned to BPA, but the propositions are the
same. Obviously, when m({θ1, θ2}) = 1, the system is in a completely unknown state, so
the uncertainty should be at the maximum, which is the maximum entropy.

The proposed method in this paper can effectively measure the uncertainty of BOEs
in the above examples. However, for the non-specificity measure of BPA, QS function
is determined based on the maximum entropy of three existing uncertainty measures.
Actually, there are many other entropies which can be considered, such as info-entropy [32].
This is a good guide for our future research direction.

5. Application

In this section, feature evaluation is performed with the Iris dataset to further verify
the rationality of the proposed uncertainty measure. In the Iris dataset, three types of iris
plants are surveyed, including “Setosa“, “Versicolour“, and “Virginica“. Besides, sepal
length (SL), sepal width (SW), petal length (PL), and petal width (PW) are taken as four
features. With respect to each iris class, each feature of instances is a Gaussian distribution
with different standard deviations and means, as shown in Table 6 and Figure 5.

Table 6. The mean value and standard deviation value for features.

Features Setosa Versicolour Virginica

SL Mean 5.0060 5.9360 6.5880
Standard deviation 0.3525 0.5162 0.6359

SW Mean 3.4180 2.7700 2.9740
Standard deviation 0.3810 0.3138 0.3225

PL Mean 1.4640 4.2600 5.5520
Standard deviation 0.1735 0.4699 0.5519

PW Mean 0.2440 1.3260 2.0260
Standard deviation 0.1072 0.1978 0.2747
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Setosa VirginicaVersicolour

Figure 5. Probability density functions (PDFs) of different features of samples in the Iris dataset.

As shown in Figure 5, intuitively, PL has the best class discriminability, which is
attributed to the best separation of Gaussian probability density functions (PDFs) of the
three iris types, while the PDFs of the three iris types in SW almost overlap. Thus, the class
discriminability of SW is the worst.

In addition, the method proposed in [54] is utilized to quantify the discriminability of
different fault features, which is as shown below.

J=
tr(Sw)

tr(Sb)
, (20)

where tr is the trace of a matrix, and Sw and Sb are the within-types scatter matrix and
between-types scatter matrix, respectively.

Sw =
C
∑

i=1
P(Ci)E

(X− 1
Ni

∑
X∈Ci

X

)(
X− 1

Ni
∑

X∈Ci

X

)T


Sb =
C
∑

i=1
P(Ci)

(
1
Ni

∑
X∈Ci

X−M

)(
1
Ni

∑
X∈Ci

X−M

)T , (21)

with

M =
1
C

C

∑
i=1

(
1
Ni

∑
X∈Ci

X

)
, (22)

where X is a feature vector of a sample and M is the mean of all fault types’ centroids.
The smaller the value of J, the better the discriminability of the corresponding fault

feature. For the fault features, the J values are

J(SL) = 0.6163, J(SW) = 1.5518, J(PL) = 0.0623, J(PW) = 0.0766.

The above results are the same as those intuitively obtained in Figure 5. The rank of
the four fault features is PL � PW � SL � SW.

Now, we turn to using uncertainty measures for feature evaluation, including weighted
Hartley entropy, AU, Yang and Han’s measure, Deng’s measure, AM, JS, Deng entropy, SU,
and the proposed method.
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Step1 (BPA generation). For different features in {SL, SW, PL, PW}, we generate the BPA
corresponding to each sample in the fault dataset according to [55].

Step2 (Uncertainty measure of BPAs). For each feature, calculate the uncertainty of each
BPA on it by using all the above uncertainty measures.

Step3 (Average uncertainty measure). Calculate the average uncertainty value on differ-
ent features corresponding to different methods.

The results are shown in Table 7, and visually represented in the histogram, which are
shown in Figure 6.
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Deng entropy AU AM SU JS

Yang and Han's measure

Deng's measure

Proposed method H^1

Proposed method H^2

Proposed method H^3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

un
ce

rta
in

ty
 m

ea
su

re

Uncertainty measures

 SL
 SW
 PL
 PW

Figure 6. Average uncertainty of samples on each feature based on different uncertainty measures.

Table 7. The average uncertainty for different features.

Uncertainty Measures SL SW PL PW

Weighted Hartley
entropy 0.6642 0.6660 0.5540 0.6556

Deng entropy 3.7394 3.8863 3.1025 3.7501
AU 1.5850 1.5850 1.4869 1.5850
AM 1.5333 1.5756 1.2764 1.5183
SU 2.1950 2.2364 1.8396 2.1723
JS 2.2226 2.2463 1.9536 2.2068

Yang and Han’s
measure 0.6072 0.6227 0.4787 0.5986

Deng’s measure 1.6208 1.6532 1.3023 1.5981
Proposed method H1 1.7057 1.7509 1.3665 1.6833
Proposed method H2 1.4729 1.5178 1.1709 1.4542
Proposed method H3 1.6810 1.7260 1.3467 1.6586

Features with smaller average uncertainty have better discriminability. It can be
found in Table 7 and Figure 6 that for the proposed methods H1, H2 and H3, the average
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uncertainty on feature PL is the smallest. The result indicates the feature PL has the
best ability to distinguish the iris types. The ranking of the discrimination of the four
features is PL � PW � SL � SW, which is consistent with intuition obtained by Figure 5.
The same result can be obtained by Deng entropy, AM, SU, JS, Yang and Han’s measure,
and Deng’s measure except weighted Hartley entropy and AU. Therefore, the application
has demonstrated the effectiveness of the proposed method.

6. Conclusions

In this work, we proposed a new total uncertainty measure from the perspective of
maximum entropy requirement. The properties of the proposed method are analyzed,
such as non-negativity, monotonicity, maximum entropy, and so on. Besides, we give three
uncertainty measure functions for the body of evidences, and analyze the effectiveness and
reasonableness of the proposed methods through several different numerical examples
and an application. It can be seen from these examples that our methods are in general
agreement with the connotation of uncertainty. Compared with Deng entropy, the proposed
method can effectively measure the uncertainty of BPA when the propositions intersect
with the same reliability value, and satisfy the maximum entropy property. In addition, it is
not that the greater the uncertainty for a BPA, the better the measure. How do we evaluate
uncertainty measure methods more rationally in DST? Is there a reasonable indicator
system for the evaluation? Actually, we think that when we adapt the proposed method,
and the uncertainty trend of the measured evidence is consistent with the theory, it can
be considered as a reasonable and effective method. Our study provides the framework
for further studies to assess the performance characteristics of uncertainty function. Our
results are encouraging and should be validated in application areas, such as decision-
making, fault diagnosis, target recognition, and many other areas. We will be devoted
to the applications in depth in further work. Beyond that, a maximum entropy from the
Parker and Jeynes argument showed that the entropy of the supermassive black hole at the
centre of the Milky Way can account for the geometrical stability of the galaxy. We believe
that this is a good guide for our future work about uncertainty measures.
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