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Abstract
Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric 
muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running 
disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of 
this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, 
using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential 
interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings 
of this review show that DR may have an impact on exercise performance by altering muscle structure and function due 
to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine 
kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as 
the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise dura-
tion, and running speed were − 12% (− 15%; − 10%), 40 min (30 min; 45 min) and 11.3 km h−1 (9.8 km h−1; 12.9 km h−1), 
respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. 
There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective 
to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear 
remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, 
DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, 
and adaptive strategies to DR.
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Key Points 

Due to its eccentric nature, downhill running (DR) 
induces lower limb muscle damage, manifested by altera-
tions in muscle structure, muscle function, and ensuing 
running performance for up to several days after exercise.

Manipulating DR characteristics (slope, running speed, and 
duration), independently or not, can influence the extent 
of exercise-induced muscle damage (EIMD). Although 
trained and/or accustomed people generally experience less 
muscle damage following DR, it is still unknown if sex 
and/or age may influence the adaptation to DR.

Scientific evidence suggests preventive strategies that 
consist of prior exposure to DR to limit the extent of 
muscle damage induced by DR.

Evidence is lacking to support the use of in-situ strate-
gies such as compression garments, specific footwear, or 
modification in running stride to limit muscle damage 
induced by DR, which highlights the need for further 
high-quality research.

1  Introduction

Eccentric muscle contractions occur when the magnitude 
of the force applied to the muscle exceeds the strength pro-
duced by the muscle itself (i.e. negative work), resulting in a 
lengthening action of the musculotendinous system. Eccen-
tric muscle contractions are known to induce high mechani-
cal strain on the musculotendinous system, leading to mod-
erate to severe exercise-induced muscle damage (EIMD) [1].

In laboratory settings, local (i.e. single muscle group 
tested with an isokinetic dynamometer) and whole-body 
eccentric-based models such as eccentric cycling and down-
hill running (DR) have been used to examine the physiologi-
cal consequences of eccentric muscle actions and/or EIMD 
[2]. For example, intense and/or prolonged DR is well-
known to induce muscle functional alterations [3]. More 
precisely, DR generally leads to substantial neuromuscular 
fatigue which can originate from both peripheral and cen-
tral mechanisms. The peripheral component of neuromus-
cular fatigue may be attributed to longer muscle length (i.e. 
overstretched sarcomeres) during eccentric muscle actions 
over braking phases, leading to myofibrillar damage such as 
disrupted weaker sarcomeres and/or excitation–contraction 
coupling failure [1, 4]. The central component of neuromus-
cular fatigue may be attributed to spinal and/or supraspinal 

factors [5, 6]. Thus, the DR modality has often been used 
for different purposes including: (1) studying the recovery 
kinetics of physical performance following muscle damage 
(e.g. [7–9]); (2) testing the reliability and validity of varied 
techniques to assess EIMD (e.g. [6, 10]); (3) studying the 
effects of strenuous exercise on physiological adaptations 
and/or alterations (e.g. [11–13]); (4) testing different strate-
gies to attenuate EIMD and/or improve subsequent recovery 
(e.g. [14–16]).

In a sporting context, DR sections can be part of off-road 
running races mostly taking place in natural environment 
and unsealed roads (e.g. trail running, mountain running, fell 
running and cross-country running, orienteering, obstacle 
course racing or ultramarathon running, [17]) or road run-
ning races including downhill sections (e.g. the St. George 
marathon, St George, USA; the Holualoa Tuscon marathon, 
Tuscon, USA; the Big Sur International marathon, Big Sur, 
USA) [18, 19]. Due to its eccentric-based muscle action 
modality, DR may play a major role in the occurrence of 
neuromuscular fatigue (especially due to peripheral factors) 
and muscle damage, and thus represents a main challenge 
for runners. For example, the maximal strength production 
capacity of lower-limb muscles (i.e. knee extensors, KE, 
and plantar flexors, PF), often assessed through isometric 
maximal voluntary contraction (MVC) is generally dramati-
cally reduced (− 15 to − 40%) following trail running races 
(i.e. the most popular off-road running races, taking place 
in natural environment over a variety of terrains with mini-
mal paved or asphalt roads; for review, [17]) (e.g. [19–22]). 
Although DR characteristics (running speed and/or inten-
sity, running duration and slope) vary among running disci-
plines, they do not predispose to the extent of an alteration 
in strength production capacity [3, 23]. For example, com-
parable force/torque losses and peripheral alterations were 
reported following a 6.5 km DR at maximal speed (altitude 
drop: 1264 m; average slope: − 16.8%) and in ultra-mar-
athons (i.e. > 42.195 km) in experienced trail runners (for 
review, [3]). In line with these observations, it has been sug-
gested that performance in trail running is largely influenced 
by the demanding nature of graded sections (especially DR 
sections where eccentric muscle actions are predominant), 
leading to EIMD including neuromuscular fatigue [3]. The 
same hypothesis may be applied to other running disciplines 
that include notable DR sections.

On the other hand, DR could be used during specific train-
ing periods to improve running performance via neural and 
musculotendinous adaptations. Some narrative reviews have 
focused on the physiological and/or biomechanical adapta-
tions to trail running and/or prolonged graded running [18, 
23]. However, a comprehensive analysis of the effects of DR 
on both in-situ physiological responses and recovery kinet-
ics (i.e. acute and delayed physiological responses and EIMD 
markers) according to training level is lacking. In parallel, 
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anecdotal data from field observations and a growing number 
of research studies show an interest in strategies to facilitate 
the adaptation to DR, namely reduce EIMD. These strategies 
include for example, DR training, wearing compression gar-
ments and using specific footwear, though it is difficult to draw 
conclusions due to the variety of results.

Within this framework, the purpose of this narrative review 
is threefold: (1) to further our understanding of the physio-
logical responses to DR; (2) to identify and discuss, using a 
comprehensive approach, the DR characteristics that affect the 
physiological responses to DR and their potential interactions; 
(3) to provide a synthesis of evidence on strategies to better 
tolerate DR by limiting EIMD. Manuscripts were acquired by 
searching the electronic databases of the US National Library 
of Medicine (PubMed), ScienceDirect and SPORTDiscus 
using the following keywords: “running” AND “downhill” 
OR “decline” OR “grade” OR “gradient” OR “slope” OR 
“muscle damage” OR “muscle fatigue” OR “biomechanics” 
OR “strategy” OR “compression garment” OR “running gar-
ment” OR “preconditioning” OR “training” OR “repeated bout 
effect” OR “footwear”. Electronic database searching was sup-
plemented by examining reference sections of relevant articles 
(i.e. hand search). The literature search was conducted up to 
March 2020. In the entire manuscript, we limited our analysis 
to studies including DR only as a modality of whole-body 
eccentric-biased exercise, with human participants only. We 
did not consider studies using other means (e.g. steps, one-
legged DR, sprint-assisted DR, eccentric cycling or eccentric 
muscle actions on isokinetic dynamometer) of generating mus-
cle damage or eccentric muscle actions. In studies including 
DR exercises that also tested a nutritional strategy or a strategy 
to limit EIMD, only the placebo groups (with no strategy) were 
included in the analyses performed in the second part of the 
manuscript to identify and discuss DR factors responsible for 
EIMD and their interaction. No limit to the search domain was 
applied regarding population characteristics, training level, and 
DR characteristics (i.e. running speed and/or intensity, exercise 
duration, and slope). In the present review, the generic term 
‘EIMD” refers to direct markers of muscle damage including 
ultrastructural alterations (e.g. myofibrillar disruption) as well 
as indirect markers such as physiological (e.g. systemic efflux 
of myocellular enzymes and proteins), perceptual (e.g. delayed 
onset muscle soreness) and functional alterations (e.g. loss in 
MVC force/torque) following DR [24]. Functional alterations 
refer to the concept of “neuromuscular fatigue” defined as 
any exercise-induced reduction in voluntary maximal force 
or power [25].

2 � Muscular Alterations Following Downhill 
Running

Grade-specific biomechanical and neuromuscular altera-
tions occur in running (for review, [18]). When compared 
to level running, DR is characterized by repeated and pro-
longed eccentric muscle actions of lower-limb muscles 
[14, 24], lowered capacity of the stretch–shortening cycle 
[26, 27], alterations in foot strike pattern (usually rear-foot 
strike pattern, i.e. heel contacts first) [27–29], changes in 
ground reaction forces (larger normal impact force and 
greater parallel braking force compared to level running, 
whatever the slope studied) [27, 30], specific mechani-
cal energy fluctuations of the centre of mass during each 
stride (e.g. greater negative external work and lower posi-
tive external work, i.e. the work done to decelerate and 
accelerate the body’s centre of mass with respect to the 
environment, respectively) [26, 29, 31–34], and alterations 
in impact shock attenuation (e.g. greater tibial accelera-
tion) [27, 33, 35–37]. Those grade-specific alterations 
originate from the greater mechanical strain applied to the 
lower-limb musculoskeletal system during the foot–ground 
contact time in DR, which may lead to accentuated acute 
and delayed EIMD (e.g. structural muscle alterations, 
leakage of specific-muscle proteins into the bloodstream, 
reduction in MVC force/torque) [3, 38], and consequently 
alteration in running economy (RE) and performance [3, 
18]. As such, a better understanding of these alterations 
following DR is the first stage in our aim to investigate the 
DR characteristics responsible for such alterations, and 
adaptative strategies.

2.1 � Structural Muscular Alterations Following 
Downhill Running

The presence of EIMD following strenuous exercise can 
be assessed through histological analysis of biopsy sam-
ples and magnetic resonance imaging (MRI) of muscle 
groups (KE and PF are the muscle groups the most inves-
tigated) involved in DR. Myofibrillar disruptions and 
necrosis in lower-limb (e.g. vastus lateralis) muscles are 
generally reported after eccentric exercise [39]. Follow-
ing 30-min treadmill DR (slope: − 12%; intensity: 80% of 
maximal aerobic velocity recorded on level grade), Féas-
son et al. [40] reported important ultrastructural muscular 
alterations in the vastus lateralis of healthy males. These 
alterations included streaming, disruption and dissolution 
of Z-disk structures associated with A-band disruption 
and misalignment of myofibrils, and disturbances of the 
cross-striated band pattern along the longitudinal sections. 
Increases in skeletal muscle mRNA expression of several 



2086	 B. Bontemps et al.

inflammation-related genes, increases in pro-inflammatory 
cytokine concentration, and satellite cells proliferation in 
KE muscles were also reported after DR [41, 42]. Using 
MRI, Maéo et al. [43] also reported structural muscular 
alterations (i.e. local inflammatory oedema estimated via 
transverse relaxation time, T2) in both KE and PF mus-
cle groups following 45-min treadmill DR (slope: − 15%; 
average speed: 10.0 km h−1) in healthy young adults.

The important leakage of muscle-specific proteins (cre-
atine kinase, CK; myoglobin, Mb; and lactate dehydroge-
nase, LDH) into the blood, accompanied by increases in 
muscle Ca2+ and K+ content following strenuous exercise, 
are also considered common indirect markers of EIMD 
[44–47]. Two main mechanisms could explain this efflux of 
muscle-specific proteins into the blood stream. Firstly, mus-
cle fibres may exhibit an increased membrane permeability 
following an increase in cytoplasmatic Ca2+ through an inhi-
bition of the Ca2+ pump that actively transports Ca2+ out of 
the cell, thus promoting the activation of the K+ channel and 
leading to membrane damage [48]. In addition, this could be 
explained by local tissue damage induced by the eccentric 
muscle actions which may cause a degeneration of the mus-
cle structure [49]. Peake et al. [50] reported a large increase 
(+ 1800%) in plasma Mb concentration 1-h post-DR (45 min 
at 60% V̇O

2max
 , − 10% slope; with V̇O

2max
 corresponding to 

the maximal aerobic capacity) followed by a large increase 
(+ 420%) in plasma CK concentration 24-h post-DR in well-
trained runners. This efflux of muscle-specific proteins into 
the blood stream may persist for several days following DR. 
For example, Malm et al. [38] reported a significant efflux 
of serum CK (+ 150%) up to 7 days following DR.

These structural muscular alterations occurring during 
DR may be accompanied by MVC force/torque decrements 
[51, 52] and thus, reflect the level of neuromuscular fatigue 
[25]. Since the manifestation of MVC force/torque loss and 
structural muscular alteration are concomitant [53, 54], it 
appears important to discuss their relationship.

2.2 � Functional Muscular Alterations Following 
Downhill Running

Loss of MVC force/torque is commonly used to assess the 
global state of neuromuscular fatigue that may originate 
from both peripheral and central levels [25]. Because the 
extent of force/torque loss is also influenced by the number 
of muscle fibres suffering from myofibrillar disruption and/
or excitation–contraction failure [49, 53, 55–57], it may pro-
vide information on the extent of EIMD [54]. The reduction 
in MVC force/torque may depend on the exercise modal-
ity (i.e. grade), exercise characteristics (duration, running 
speed and/or intensity) and population characteristics (age, 
sex, training level). For example, Garnier et al. [58] reported 
greater decrements in isokinetic (concentric and eccentric) 

MVC torque of KE, accompanied by a greater occurrence of 
the peripheral component of neuromuscular fatigue, in-situ 
perceived exertion (in gluteus muscles) and delayed muscle 
pain (in KE, PF and gluteus) following a 45-min DR bout, 
compared to uphill and level running bouts performed at the 
same relative intensity (same reserve heart rate, HR).

Immediately after DR, large reductions in isometric MVC 
force/torque of KE and PF muscles are generally reported, 
and may vary from − 14 to − 55% for KE [5, 9, 10, 15, 38, 
43, 58–87] and from − 15 to − 25% for PF [9, 15, 43]. Simi-
larly, a decline in muscle performance (expressed as MVC 
force/torque loss or endurance capacity) was reported during 
isokinetic muscle actions (tested from 0.52 to 5.2 rad s−1 and 
from 0.52 to 2.6 rad s−1 for concentric and eccentric modali-
ties, respectively) [58, 88, 89], dynamic strength measure-
ment such as counter movement jump [15, 90] and muscle 
endurance test [91]. Decrements in MVC force/torque gen-
erally last up to 4–5 days before complete recovery [38, 70, 
73, 92].

DR is well-known to alter muscle structure and to 
induce neuromuscular fatigue. More specifically, the acute 
reduction in MVC force/torque following DR is typically 
associated with a reduction in maximal central drive (i.e. 
a mechanism associated with a central component of neu-
romuscular fatigue, assessed via maximal voluntary activa-
tion, VA; from − 2.5 to − 8% in KE and PF; [9, 10, 15]) 
and the so-called “low-frequency fatigue”. The latter (usu-
ally investigated via muscle or nerve electrical stimulation) 
manifests through a decrease of the low (10–20 Hz)-to-
high (50–100 Hz) frequency doublet ratio [93], reflecting 
a reduction in Ca2+ release from the sarcoplasmic reticulum 
[93]. It is thus likely that the failure in excitation–contrac-
tion coupling is mostly responsible for the occurrence of the 
peripheral component of neuromuscular fatigue following 
DR. In addition, the acute reduction in maximal central drive 
immediately after DR may contribute to the acute reduction 
in MVC force/torque. Such reduction in VA may originate 
from the spinal and/or supraspinal level, with for instance a 
role of reflexes mediated by muscle III-IV afferents that may 
reduce the recruitment and/or firing rates of motoneurons 
[25]. In previous studies, the reduction in maximal central 
drive was usually observed through peripheral nerve stimu-
lation (PNS). However, PNS does not allow quantification of 
the source of drive to the motoneurons making unclear the 
relative contribution of spinal and supraspinal components 
in the reduction of MVC force/torque. Bulbulian and Bowles 
[7] investigated the spinal component using the Hoffman 
reflex (H-reflex) expressed as a ratio of the maximal electri-
cally stimulated muscle action potential (Hmax/Mmax ratio). 
The authors reported a reduction in Hmax/Mmax ratio follow-
ing a 20-min DR (slope: − 10%; intensity: 50% V̇O

2max
 ) 

reflecting a reduction in motoneuron pool excitability, in 
higher proportion compared to a level bout (e.g. − 24.6% 
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versus − 9.3%, respectively) performed at a comparable 
metabolic cost (expressed as % V̇O

2max
 ). It is possible that 

repeated and/or prolonged eccentric muscle actions could 
potentially damage muscle spindles [94, 95], which may 
impair motoneuron excitability by reducing Ia afferents input 
to the motoneuron pool. However, the H-reflex does not 
allow inferences on the potential role of supraspinal mecha-
nisms implicated in the reduction of MVC force/torque 
post DR. A recent study reported an increased corticospi-
nal excitability (assessed through motor-evoked potentials 
elicited by transcranial magnetic stimulation and recorded 
from the abductor pollicis brevis) 30-min post DR (dura-
tion: 30 min; slope: − 10%; intensity: 75% HRreserve). How-
ever, the absence of cortical VA measurements in this study 
makes unclear the potential role of changes in corticospi-
nal excitability/inhibition in the occurrence of supraspinal 
fatigue post DR. Future studies should combine measures of 
corticospinal excitability and inhibition (e.g. using paired-
pulse transcranial magnetic stimulation) with measures of 
cortical VA, obtained from muscles directly mobilised dur-
ing DR (e.g. KE and/or PF). Furthermore, although no com-
parison analysis of VA was conducted between laboratory 
and ecological settings, the DR surface could influence the 
magnitude of acute and delayed central fatigue. A greater 
reduction in VA could be expected upon completion of an 
ecological DR session, due to the higher cognitive demands 
of running on technical single tracks, compared to laboratory 
conditions. For instance, DR in an ecological setting, com-
pared to a laboratory, may further tax cognitive processes 
such as working memory and spatial navigation planning 
and thus exacerbate the activation of cortical areas such as 
the prefrontal cortex (PFC) [96]. A greater mobilization of 
brain resources may be expected during DR in an ecologi-
cal setting, with the necessity to accomplish the motor task 
while dealing with the additional cognitive demand (i.e. dual 
task). For example, a greater and earlier depletion of brain 
resources in cortical structures such as the PFC may nega-
tively impact the activity of interrelated motor areas such 
as the motor cortex, and lead to a greater reduction of VA. 
In line with this assumption, Mehta and Parasuraman [97] 
reported a decrease in PFC oxygenation at exhaustion fol-
lowing a fatiguing cognitive-motor dual task (i.e. submaxi-
mal handgrip and concomitant mental-math task) compared 
to the motor task performed alone. Moreover, Chatain et al. 
[98] found a greater decrease in VA during a fatiguing cog-
nitive-motor dual task (i.e. intermittent isometric quadriceps 
contractions with concomitant n-back task) compared to the 
motor task alone. Because replicating the physiological and 
cognitive demands of ecological DR in a laboratory setting 
is challenging, this paradigm may be tested during treadmill 
DR by adding a concomitant cognitive task that may rep-
licate the demanding real-life environment characterizing 
off-road running (e.g. using virtual reality technology).

It is well-reported that MVC force/torque is impaired for 
several days following DR (up to 4–5 days for a complete 
recovery; see Fig. 1). However, a better understanding of 
the mechanisms responsible for delayed MVC force/torque 
loss is warranted. Firstly, it is likely that several mechanisms 
related to EIMD could play a major role in delayed MVC 
force/torque loss [99, 100], including structural muscular 
alterations (e.g. sarcomeres ‘popping’-disruption, stream-
ing, disruption, and dissolution of Z-disk structures) and 
impairments in the excitation–contraction coupling (e.g. 
damaged T-tubules, sarcoplasmic reticulum and sarco-
lemma, impaired Ca2+ release by the sarcoplasmic reticu-
lum and impaired myofibrillar sensibility to Ca2+). To date, 
only a few studies have investigated recovery (expressed as 
MVC torque and coupled with peripheral and central assess-
ments of neuromuscular fatigue) up to 48-h post DR [9, 15]. 
Although Ehrström et al. [15] reported a low-frequency force 
depression 24-h post DR (duration: 40 min; slope: − 15%; 
intensity: 55% V̇O

2max
 ), such alterations were not recorded 

48-h after a 6.5-km ecological DR [9] where isometric MVC 
torque was still reduced. It is possible that the prolonged low-
frequency force depression may be underestimated within 
days following DR, as it has been observed after an isoki-
netic eccentric exercise (200 eccentric MVCs of dorsiflexor 
muscles) [101]. The decrement in low-frequency force could 
be higher and/or longer than the aforementioned results and 
thus may partly explain the prolonged MVC force/torque 
loss. Moreover, a modification in the muscle length-tension 
relationship up to 48-h post could partly explain the MVC 
force/torque decrement following DR, as observed following 
eccentric-biased exercises [102, 103]. Finally, the important 
leakage of CK, Mb and LDH into the bloodstream, often 
associated with the appearance of delayed onset muscle sore-
ness (DOMS) [53] and the inflammatory response, may con-
tribute to delayed MVC force/torque loss [104]. Although the 
relationship between the inflammatory response, DOMS and 
MVC torque is not clear [105], all these alterations tend to 
disappear within 4–10 days post DR [71, 73]. It is noteworthy 
that few studies have compared the extent of neuromuscular 
fatigue between KE and PF following DR, with contrasting 
results [9, 15, 43]. Regarding isometric MVC torque, some 
studies showed greater decrements in KE than in PF [15, 43] 
whereas Giandolini et al. [9] reported the contrary. The latter 
results appear difficult to interpret, since higher peripheral 
alterations (e.g. amplitude torque reduction to evoked twitch 
torque, M-wave and 10 Hz-to-100 Hz ratio) were reported 
in KE despite lower isometric MVC torque loss after DR. 
These conflicting results warrant the need for additional stud-
ies investigating possible muscle-specific adaptations to DR.

While DR studies have mostly investigated the alteration 
of muscle function using isometric testing, this may not rep-
resent the most relevant testing modality. Indeed, single-joint 
sustained maximal contractions do not represent the real 
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demand of most activities [106]. Future studies should com-
bine various approaches including assessment of isometric 
and eccentric (recommended from 0.52 to 2.1 rad s−1) MVC 
force/torque, and whole-body (e.g. counter movement jump 
or squat jump) or isolated power/maximal velocity tests to 
better characterize EIMD.

2.3 � Running Economy Alterations Following 
Downhill Running

In contrast with the aforementioned EIMD and muscle 
fatigue variables, RE may be measured during exercise and 

not only in a “pre-post” experimental design. RE is consid-
ered a major determinant of running performance [107, 108] 
and success in competitive distance running [109, 110]. It 
is typically measured to evaluate any form of intervention 
on global metabolic efficiency (e.g. [73, 92, 111]). In DR 
studies, RE is traditionally defined as the submaximal and 
steady-state oxygen uptake ( V̇O

2
 , mlO2 min−1 kg−1 with rate 

of exchange ratio, RER < 1) for a given running speed and is 
generally assessed on level grade (e.g. [73, 92, 112]). How-
ever, RE is often used synonymously with other indicators of 
metabolic efficiency. In such cases, RE may be expressed as 
oxygen cost (mlO2 kg−1 km−1) from the body mass-specific 

Fig. 1   a Decrease (% from baseline) in isometric maximal voluntary 
contraction (MVC) torque of knee extensors after downhill running 
(DR); b increase (% from baseline) in blood (plasma and serum) 
creatine kinase (CK) concentration after DR; c delayed onset mus-
cle soreness (DOMS) response (0–100 mm evaluated on visual ana-
logue scale) for knee extensors after DR. Based on data from original 
research articles reporting isometric MVC force/torque decrements 
(n = 37; [5, 9, 10, 15, 38, 43, 58–87]), blood CK elevation (n = 83; 
[14, 16, 38, 40–42, 44, 46, 50, 59–62, 65–67, 70, 72–75, 77, 80, 81, 
84, 85, 87–90, 92, 121, 134–183]) and DOMS (n = 23; [8, 15, 38, 

58, 60, 66, 71, 75, 84, 89, 135, 151, 156, 159, 171, 178, 179, 182, 
184–188]) responses immediately post-, 24 h post-, 48 h post-, 72 h 
post- and 96 h post-DR. In all panels, circles and bars refer to indi-
vidual and mean data, respectively, in white and black for untrained 
(i.e. healthy and/or recreationally active) and trained populations (i.e. 
V̇O

2max
 > 54–60  ml  min  kg−1 and were involved in endurance-based 

activities at least 3 times/week), respectively. In the cases where data 
were not fully presented in the manuscript, data were extracted from 
original figures using ImageJ software (ImageJ V.1.45  s, National 
Institute of Health, MD, USA)
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V̇O
2
 . Given that substrate used to cover energy expenditure 

may vary according to exercise intensity and duration (for 
review, [113]), interpretations resulting only from the use of 
milliliters of oxygen (including oxygen cost) must be made 
with caution. For these reasons, expressing RE as gross 
energy cost (in J kg−1 m−1 or kcal kg−1 km−1), where each 
V̇O

2
 valued is converted to its metabolic energy equivalent 

(which depends on the RER) would be more appropriate 
[114]. In the literature, an enhanced RE is associated with 
a lower oxygen demand, energy cost or oxygen cost for a 
given running speed.

The negative slope of the terrain could also influence RE 
due to the higher proportion of eccentric muscle actions 
compared to flat running. Although the recruitment order 
of motor units has been recently reported to be similar dur-
ing submaximal shortening and lengthening contractions, 
the discharge rate is systematically lower during lengthen-
ing actions (for review, [115]) and thus, might lower the 
metabolic demand [116]. DR would be metabolically less 
demanding than level running and uphill running for a simi-
lar running speed and/or relative intensity (e.g. mechanical 
power, HR and V̇O

2
 ) [28, 31, 117–120]. For instance, at 75% 

HRreserve, Garnier et al. [117] linked the lower alteration in 
RE (expressed as V̇O

2
 ) during DR to a greater involvement 

of passive elastic structures in strength production compared 
to level and uphill treadmill exercise. The optimum slope 
(for which the metabolic demand is the lowest) is still a 
matter of debate due to the variety in DR protocols used and 
training levels of study participants.

Cardiorespiratory changes (e.g. increase in HR, V̇O
2
 , and 

minute ventilation) for a set speed [117, 121, 122], accom-
panied by an increase in core body temperature [121], gen-
erally occur during intense and/or prolonged DR sessions, 
and may be dependent on the slope that is used [123]. For 
example, a ~ 10% increase in V̇O

2
 was measured immedi-

ately after a prolonged DR (30–40 min) in recreational run-
ners [121, 122] whereas the increase was lower (+ 6.8%) in 
well-trained runners [15]. A reduced amplitude of the V̇O

2
 

slow component was also observed during a 15-min DR bout 
(slope: − 15%; average speed: 8.5 km h−1) in well-trained 
runners following the completion of a 15-min uphill bout 
(at the same running speed, with 10-min recovery between 
bouts [124]).

Alterations in RE were reported in various prolonged 
DR protocols and within several hours to days following 
DR [71, 73, 84, 112, 121, 122]. A 3–18% decrease in RE 
(expressed as V̇O

2
 or energy cost) was reported during flat 

treadmill running sessions performed immediately after DR 
[71, 73, 84, 112] and may be associated with an increase in 
stride frequency and/or reduction in the range of motion of 
lower-limb joints [64, 71, 73, 84, 92, 112]. Chen et al. [71] 
reported a 4–7% increase in V̇O

2
 up to 3 days after a 30-min 

DR (slope: − 15%; intensity: 70% V̇O
2max

 ), regardless of 

running speed [73]. While the time-course of RE alterations 
seems similar between studies, it was suggested that partici-
pants unaccustomed to running and/or untrained in running 
could experience greater alterations in RE during, immedi-
ately after and within days following DR [84].

The change in discharge rate of motor units over time 
[115], the preponderant type II muscle fiber recruitment 
[1, 122], and substantial normal impact force and parallel 
braking force [27] could account for the increased metabolic 
demand at the end of prolonged DR. This is aligned with the 
fact that type II fibres, which are energetically less efficient 
than type I fibres [125], may be further recruited follow-
ing DR to maintain force production [126], whereas type 
I fibres could preferentially be recruited during DR [122]. 
RE alteration after DR may depend on the extent of EIMD, 
since a greater neural input to the muscle is required to offset 
the lack of efficiency of damaged fibres [122, 127], and to 
maintain the force production capacity (particularly neces-
sary during the push-off phase of the running cycle) [128]. 
In contrast, Lima et al. [84] have recently demonstrated that 
alterations of RE (expressed as V̇O

2
 ) following DR (up to 

3 days after one 30-min DR bout; slope: − 15%; average 
speed: 9.9 km h−1) were not explained by changes in markers 
of EIMD (serum CK elevation, DOMS, changes in muscle 
function) or alterations in running mechanics. The authors 
speculated that other parameters might alter RE following 
DR, including haemodynamic alterations (such as damaged 
capillaries [129], compromised flow-mediated vasodilation 
[130] and oxygen delivery [131] to the damaged sites) and 
the increase in resting energy expenditure [132].

Taken together, these data provide evidence that pro-
longed DR can lead to substantial physiological and bio-
mechanical alterations, altering RE and subsequent running 
performance. While EIMD is well-known to be the main 
disruptor of running performance and subsequent recovery, 
underlying mechanisms which could influence the magni-
tude of muscle damage following DR must be clarified.

3 � Factors Influencing The Magnitude 
of Muscle Damage Following Downhill 
Running

Although the physiological responses to DR have been 
extensively investigated, the influence of DR characteristics 
(i.e. slope, running speed and/or intensity, and exercise dura-
tion) on the magnitude of EIMD is still unclear. The variety 
in population characteristics (i.e. training status, sex, age) 
among studies also adds complexity to our understanding. 
As discussed in the previous section, muscle damage follow-
ing DR is classically monitored within the first 24-h to 96-h 
following exercise via indirect markers of muscle structure, 
muscle function and perceptions of muscle soreness. As 
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such, we analysed the time-course of changes in isometric 
MVC force/torque (for KE only), DOMS (for KE only using 
a 0-100 mm visual analogue scale) and blood CK, the most 
reported markers in the literature, within this time window. 
The purpose of this comprehensive analysis is to present 
the current state of knowledge on how DR characteristics 
influence muscle damage post DR while highlighting the 
lack of data in certain areas. The main factors included in 
the analysis were the training level (trained vs untrained in 
running) and DR characteristics (exercise duration, running 
speed and slope), while additional factors (age, sex) were 
also discussed.

3.1 � Influence of Training Level and Downhill 
Running Characteristics

To investigate the effect of training level on indirect mark-
ers of EIMD, data extracted from original articles were 
separated into two different groups: untrained and trained 
populations. Untrained populations are described as healthy 
and/or recreationally active. In contrast, trained populations 
generally present a V̇O

2max
 > 54–60 ml min kg−1 and are 

involved in endurance-based activities (i.e. long-distance 
running, triathlon, trail running) at least 3 times/week [133].

The literature describes acute and delayed changes in 
indirect markers of muscle damage after DR (Fig. 1). The 
reduction in isometric MVC force/torque generally peaks 
immediately post-DR [5, 9, 10, 15, 38, 43, 58–87], whereas 
increases in blood CK [14, 16, 38, 40–42, 44, 46, 50, 59–62, 
65–67, 70, 72–75, 77, 80, 81, 84, 85, 87–90, 92, 121, 
134–183] and DOMS [8, 15, 38, 58, 60, 66, 71, 75, 84, 89, 
135, 151, 156, 159, 171, 178, 179, 182, 184–188] peak from 
24 to 48 h post-DR. Immediately post DR, a greater reduc-
tion in isometric MVC force/torque is observed in untrained 
(mean: − 23.5%; 95% CI: [− 26.9% to − 17.2%] compared 
to trained populations (− 16.4%; 95% CI: [ − 19.5% to 
– 12.3%]). In addition, the recovery of isometric MVC force/
torque seems to be faster in trained compared to untrained 
populations (return to baseline 72 h post vs. no full recov-
ery 96 h post, respectively). The peak of DOMS is identi-
fied 48 h after DR and seems to be of similar magnitude 
between populations (49.0 mm; 95% CI: [42.0–58.0 mm] 
and 53.7 mm; 95% CI: [45.3–67.50 mm] in untrained and 
trained participants, respectively). Finally, the peak increase 
in blood CK is identified 24 h post DR in similar propor-
tion between populations (+ 346.5%; 95% CI: [+ 164.7% 
to + 495.5%] and + 370.7%; 95% CI: [+ 173.6% to + 559.1%] 
in untrained and trained participants, respectively). How-
ever, it is possible that the leakage into the bloodstream is 
less pronounced 72 h and 96 h post DR in trained compared 
with untrained populations.

Endurance training seems to limit the occurrence of 
muscle damage following DR [3, 15]. Physical training 

has been shown to promote higher physiological mus-
cle resistance to exercise due to a combination of neural 
(motor unit recruitment), morphological (muscle–tendon 
unit stiffness) and structural adaptations (muscle fascicle 
pennation angle, and fascicle length) [189, 190]. These 
data support the importance of training status and training 
modality to reduce the occurrence of EIMD. It is impor-
tant to note that, in most research studies, endurance 
trained populations were not familiarised with DR and/or 
eccentric-based exercises. A greater training effect can be 
expected in participants familiarised with DR. They could 
benefit the most from specific training adaptations due to 
the important eccentric component of DR and, thus, limit 
the magnitude of muscle damage following DR.

When analyzing EIMD markers (Fig.  2), it is also 
important to consider the methodological differences 
between DR protocols. Slope, duration, running speed as 
well as the experimental design (i.e. continuous DR vs 
intermittent DR) may influence the magnitude of EIMD. 
Overall, in previous studies, for trained and untrained 
populations, the median (Q1; Q3) slope, exercise duration, 
and running speed were − 12.0% (− 15.0%; − 10.0%), 
40 min (30 min; 45 min) and 11.3 km h−1 (9.8 km h−1; 
12.9 km h−1), respectively. More specifically, in studies 
assessing isometric MVC in response to DR, the median 
(Q1; Q3) slope was − 14.95% (− 15.0%; − 12.0%, Fig. 2a). 
In studies assessing CK, and DOMS following DR, the 
median (Q1; Q3) slope was − 10% (− 15.0%; − 10.0%) 
and − 12.8% (− 15.8%; − 10.0%), respectively (Fig. 2b, 
c). The median (Q1; Q3) running speed was 11.5 km h−1 
(10.1 km h−1; 12.9 km h−1), 11.3 km h−1 (9.7 km h−1; 
12.5 km.h−1), 12.3 km.h−1 (9.7 km.h−1; 14.6 km.h−1) in 
studies analysing isometric MVC, CK and DOMS, respec-
tively (Fig. 2d–f). Finally, the median (Q1; Q3) exercise 
duration in DR protocols was 40 min (30 min; 40 min), 
30 min (30 min; 45 min), 40 min (30 min; 46.25 min), 
in studies analysing isometric MVC, CK and DOMS, 
respectively (Fig. 2g–i). Moreover, there was an impor-
tant proportion of intermittent protocols in untrained 
compared to trained populations (48.0% vs. 21.1% on 
average, respectively), likely to facilitate the completion 
of DR exercises in people not accustomed to eccentric 
muscle actions. The results also highlight important dis-
crepancies between studies in the assessment of DOMS 
(i.e. methods of evaluation, muscles and/or muscle groups 
investigated, type of scale used) limiting the amount of 
data presented in Figs. 1c and 2c, f, i. We can also notice 
a large variability in blood CK elevation in response to 
DR among studies in untrained and trained populations. 
Sex, age, genotype, menstrual cycle, familiarisation with 
DR and DR characteristics could explain this variability in 
blood CK response among studies. While blood CK eleva-
tion is considered a reliable and indirect marker of EIMD, 
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comparing the extent of EIMD between studies using this 
marker seems impossible due its variable nature between 
conditions and individuals.

Manipulating DR characteristics, independently or not, 
may lead to varied extents of EIMD. For example, increas-
ing the slope by 7.0% in combination with a higher speed 

Fig. 2   Relationships between peak changes in indirect markers of 
exercise-induced muscle damage (i.e. isometric maximal volun-
tary contraction, MVC; blood (plasma and serum) creatine kinase, 
CK; and delayed onset muscle soreness, DOMS) and downhill run-
ning (DR) characteristics (i.e. slope (a–c), running speed (d–f) and 
exercise duration (g–i)]. All data presented and DR characteristics 
were extracted from original articles. Peak MVC force/torque dec-
rement was reported immediately post-DR. Peak changes in blood 
CK and DOMS were reported between 24-h post and 48-h post DR. 

White and black circles refer to original data from untrained (i.e. 
healthy and/or recreationally active) and trained populations (i.e. 
V̇O

2max
 > 54−60 ml min kg−1 and were involved in endurance-based 

activities at least 3 times/week), respectively. In each panel, the grey 
shape highlights the slope, running speed or exercise duration used in 
the majority of studies (ranging between the 25th and 75th percen-
tile). In the cases where data were not fully presented in the manu-
script, data were extracted from original figures using ImageJ soft-
ware (ImageJ V.1.45 s, National Institute of Health, MD, USA)
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(+ 4.5 km h−1) induced a greater reduction in MVC torque 
and blood CK elevation following a 45 min DR [38]. Never-
theless, knowing the DR characteristics that have been used 
the most in scientific studies so far may help orientate future 
protocols using DR models. Specifically, from the analysis 
presented in Fig. 2, where isometric MVC, blood CK and 
DOMS were investigated in response to DR, it becomes 
clear that high running speeds (> 15 km h−1), steeper slopes 
(> 15%) and longer exercise durations (> 60 min) remain 
to be investigated. Future studies should also aim to isolate 
the different characteristics of DR to understand whether 
one or a combination of them might induce more EIMD 
than others.

3.2 � Other Factors Potentially Influencing Muscle 
Damage Following Downhill Running

Few studies have investigated the influence of sex on indi-
rect markers of muscle damage following DR [10, 67, 147, 
168, 191]. Following a 30 min DR (slope: − 20%; speed: 
10.0 km h−1), no differences were observed in MVC torque 
loss and no alterations in the central component of neuro-
muscular fatigue were observed between females and males 
[10]. Although the magnitude of absolute (compared to base-
line value) blood CK elevation is generally similar between 
males and females following DR [147, 168], Oosthuyse et al. 
[168] reported a faster return to baseline in females com-
pared to males. It was suggested that an elevated oestrogen 
level could confer a protective effect against EIMD [148] 
and/or may reduce the secondary phase of EIMD caused by 
local inflammation [161]. Carter et al. [141] also reported 
lower plasma CK elevation in link with higher oestrogen 
contents after 30-min DR (slope: − 10%; intensity: 60% 
V̇O

2max
 ). In contrast, although blood CK and DOMS eleva-

tions generally occur concomitantly in males, this does not 
seem to be the case in females. The DOMS response follow-
ing DR was delayed in females and may be influenced by 
the menstrual phase (with a greater recovery rate during the 
mid-luteal phase) [168], though this remains to be confirmed 
with additional studies.

Many studies have investigated adaptations to DR in 
adult populations, but only a limited number have included 
adolescents, pre-pubescent children and older populations. 
Some studies did not report differences in indirect mark-
ers of muscle damage between pre-pubescent children and 
adults [191], or between young and older trained triathletes 
[180] after DR. Other studies reported trends towards higher 
levels of indirect markers of muscle damage (neutrophil 
counts, plasma CK and DOMS) in young men compared to 
older men after DR [8, 142] but with comparable recovery 
kinetics [8]. Additional studies are required to better under-
stand the effect of maturation and/or age on the physiologi-
cal responses to DR.

4 � Adaptation Strategies to Downhill 
Running

As discussed in Sects. 2 and 3 of this review, the occur-
rence of EIMD following DR may be deleterious to run-
ning performance and subsequent recovery. The search for 
adaptation strategies to DR, i.e. strategies to better tolerate 
repeated eccentric muscle actions, is, therefore, warranted. 
Applications extend from recreational to competitive sport 
involving DR, such as trail and road running. To date, the 
focus has been on either pre-exercise strategies designed to 
accustom the athlete to the demanding nature of DR, or in-
situ strategies to reduce the occurrence of EIMD (Table 1 
and Fig. 3). Pre-exercise strategies (i.e. preconditioning, 
DR training) involve a first exposure to eccentric muscle 
actions prior to DR. In-situ strategies mainly consist in 
wearing innovative running apparels (i.e. compression gar-
ments, specific footwear) or voluntarily changing one’s 
running pattern during DR.

4.1 � Pre‑exercise Adaptation Strategies

4.1.1 � Prior Exposure to Downhill Running

Performing two bouts of DR separated by several days 
or weeks is well-known to reduce or attenuate markers 
of muscle damage after the second bout [192, 193]. This 
protective mechanism is termed as ‘repeated bout effect’ 
(RBE) [57, 194, 195]. Several mechanisms were identi-
fied to be likely involved in the RBE, including neural 
adaptations (e.g. ɑ-motoneuron excitability, shift in motor 
unit recruitment), adaptations of the muscle–tendon com-
plex (e.g. reduced fascicle elongation, increased tendon 
compliance), increased sensitivity to inflammation and 
improved muscle extracellular matrix remodelling [190]. 
Byrnes et al. [193] reported smaller increases in plasma 
CK, plasma myoglobin and DOMS up to 48 h after a sec-
ond DR bout when two 30 min bouts (slope: − 10%; inten-
sity: 170 beats min−1 of heart rate recorded on level grade) 
were separated by 3-, 6- and 9-weeks. Further studies cor-
roborated these results by reporting a lower leakage and/
or a faster clearance of intracellular muscle proteins in the 
blood [46, 63, 67, 85, 92, 121, 141, 143, 165, 181, 185], 
lower DOMS [63, 68, 85, 92, 121, 141, 143, 185, 192, 196, 
197] and enhanced recovery of MVC force/torque [63] 
after a second DR bout (Table 1 and Fig. 3b). The RBE is 
generally reported in greater proportion through blood CK 
elevation than DOMS and post-exercise MVC force/torque 
decrement [190]. Chen et al. [92] also suggested a ben-
eficial effect of a first DR bout on RE (expressed as V̇O

2
 ; 

preserved up to 72 h post exercise) and stride parameters 
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Fig. 3   a Schematic representation of the time course of alterations 
following downhill running (DR) and b current scientific evidence on 
the benefits of different adaptation strategies to DR (i.e. prior expo-
sure to DR [46, 63, 67, 68, 85, 92, 121, 141, 143, 165, 181, 184, 185, 
192, 193, 196, 197], preconditioning strategies [16, 81], DR training 
[14, 209, 210, 254], changes in stride pattern [32, 67, 68, 218, 219, 
221, 220, 228, 255], the use of lower limb compression garments [15, 
236, 237], and the use of specific footwear [28,  149, 253, 256]. In 
a and b, orange, blue, red, purple, and green spheres correspond to 
isometric MVC force/torque loss, changes in running economy and 
mechanics, ultrastructural alterations, inflammation and oedema, 

and muscle soreness, respectively. In b, full sphere, indicates a high 
tendency for a beneficial effect; half full sphere, indicates a lack of 
tendency for a beneficial effect and/or lack of studies for this param-
eter; empty sphere, indicates no data for this parameter. In b for each 
strategy, the strength of scientific evidence is represented with stars 
on a 1–3 scale where 1 meaning little evidence and 3 meaning high 
evidence. The level of evidence was determined according to the 
abundance of data available and the number of studies reporting the 
same outcome. The illustration of the running  man is adapted from 
©maximmmmum/Adobe Stock
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(preserved stride length and frequency) recorded after the 
second bout, likely explained by less muscle damage after 
the second bout. It can be hypothesized that a lower mag-
nitude of EIMD following a second bout of DR may limit 
the increase in neural input to the muscle (especially dur-
ing the push-off phase of the running cycle) resulting in a 
lower increase in V̇O

2, and consequently lower alterations 
in RE. It would be interesting to analyse simultaneously 
the electromyographic activity of KE and PF and RE dur-
ing the completion of two bouts of DR separated by sev-
eral days or weeks.

Prior exposure to DR confers protective effects against 
EIMD that are limited in time. Byrnes et al. [193] showed 
that the RBE procured by a prior 30 min DR disappeared 
after 9 weeks with no eccentric muscle actions between the 
first and second bout. The magnitude of the RBE would 
mainly depend on the level of exposition to EIMD, with the 
most EIMD leading to the highest RBE [190, 198]. Within 
this context, implementing specific DR sessions in the train-
ing program of runners could be recommended to benefit 
from the protective effects of the RBE and adapt well to the 
next DR session or to better tolerate DR sections in off-road 
or road races.

4.1.2 � Preconditioning Strategies

Performing an isolated strenuous exercise within days prior 
to a DR session, termed as ‘preconditioning exercise’ may 
also confer a form of RBE [16, 81]. Eston et al. [16] inves-
tigated the effects of repeated isolated KE eccentric muscle 
actions (100 continuous voluntary eccentric muscle actions 
at low speed: 0.58 rad s−1) performed 14 days prior to a 
40 min DR bout (5 × 8 min interspersed with 2-min rest; 
slope: − 10%;intensity: 80% maximal heart rate). Compared 
to the control group, the reduction in maximal isokinetic 
peak torque (concentric and eccentric at 2.82 rad s−1 and 
0.58 rad s−1) was less pronounced at lower eccentric and 
concentric muscle action speeds (− 22 and − 19% immedi-
ately post-DR, respectively), accompanied by a lower eleva-
tion in plasma CK (− 79% 48-h post-DR) and an increase 
in muscle tenderness (− 52% 48 h post-DR) up to 7 days 
post-DR.

A short isometric preconditioning exercise (10 MVCs at 
long muscle-length performed 2 days prior DR) could also 
confer RBE [81]. The authors reported beneficial effects of 
isometric preconditioning on MVC torque recovery (return 
to baseline 72-h post in the preconditioning group vs no full 
recovery 96-h post in the control group) and DOMS (− 25% 
48-h post in the preconditioning group vs control group). 
However, no beneficial effects of isometric preconditioning 
were observed on RE (expressed as V̇O

2
 ), counter movement 

jump height and plasma CK [81]. Isometric precondition-
ing exercise at long muscle length could confer RBE, but 

in lower proportion compared to eccentric precondition-
ing, although these data are based on studies investigating 
adaptations of upper-limb muscles [199, 200]. Implement-
ing isometric instead of eccentric-based exercises in train-
ing programmes could be an interesting strategy for runners 
aiming to benefit from the RBE but with no prior muscle 
damage, especially in the lead up to competitions.

4.1.3 � Downhill Running Training

Eccentric-biased exercise training is well known to enhance 
maximal strength production [201, 202]. In endurance run-
ners, resistance training has been proposed as a strategy to 
improve running economy [203, 204]. Concurrent plyomet-
ric and endurance training for several weeks (8–12 weeks) 
improved RE (expressed as V̇O

2
; + 4 to + 8% recorded on 

level grade) [205–208]. Thus, due to their eccentric-biased 
muscle action modality, repeated DR sessions may also stim-
ulate muscle growth factors, promote adaptations to the neu-
ral system, muscle–tendon complex and running biomechan-
ics, and could lead to improvements in RE. Toyomura et al. 
[209] argued in favour of DR training to improve running 
performance on level grade. The authors suggested that DR 
training could improve the effectiveness of the stretch–short-
ening cycle (paramount for level running performance; 
[128]) by accentuating the eccentric work (impact and stance 
phase) involved, which may consequently enhance RE on flat 
sections. Further studies are required to verify if DR training 
may lead to a better RE on negative slopes.

In addition, DOMS recorded after a 45-min DR bout was 
lower following a short DR training (five training sessions 
in 1 week; duration: 5–15 min; slope: − 10%; intensity: 80% 
of running speed associated with V̇O

2max
 recorded on level 

grade, s V̇O
2max

 , with % s V̇O
2max

 corresponding to running 
speed associated to a percentage of V̇O

2max
 ) compared to a 

non-trained control group [14]. In the same study, a longer 
training period (ten training sessions in 2 weeks vs. five 
training sessions in 1 week) conferred a greater beneficial 
effect on DOMS after a 45-min DR compared to the control 
group. An improvement in maximal isometric and isoki-
netic (concentric and eccentric) torque (+ 9 to + 24%) was 
also recorded after a 5-week DR training in physically active 
young males (three sessions per week; duration: 5–20 min; 
slope: − 10%) [209]. In contrast, the same authors did not 
report any effect of DR training on V̇O

2max
 , running speed 

at V̇O
2max

 and RE (expressed as energy cost) in physically 
young men. This result was supported by Shaw et al. [210], 
who reported no change in RE (expressed as energy cost) 
and stride parameters in already well-trained runners taking 
part in an 8-week DR training program (with two DR ses-
sions per week added to their habitual training; duration: 
15–45 min; slope: − 5%; speed: from 90 to 110% speed 
at lactate threshold). It can be hypothesized that the initial 
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training level may lower the effectiveness of DR training 
on RE responses during level running and/or DR. In this 
regard, Breiner et al. [211] showed that the most economi-
cal runners in level running were also the most economical 
in uphill and downhill slopes, reinforcing the importance 
of running experience in the RE responses to DR training. 
It is well-established that at least a single bout of DR can 
confer a protective mechanism against EIMD. Although the 
literature is scarce on the load-response to DR training, it 
seems that a greater training volume could confer a greater 
protective effect against EIMD [14]. Accordingly, DR train-
ing could be incorporated in the training regime of off-road 
and road runners, in an attempt to improve tolerance to DR, 
and possibly enhance running performance in races. Recent 
data tend to support these recommendations showing that 
maximal strength and lower-limb musculotendinous stiffness 
as well s V̇O

2max
 are strong predictors of DR performance in 

trail runners used to DR [212]. These results strengthen the 
rationale for including specific DR sessions in the athlete’s 
training regime. In addition, DR training may improve the 
effectiveness of the stretch–shortening cycle on level grade 
[128]. On another hand, caution must be taken, and a prin-
ciple of progressivity must be applied when implementing 
DR sessions into a runner’s training program to avoid mal-
adaptation and injuries. The greater negative net joint work 
accompanied by larger extension moments and negative joint 
power [34] reported in DR might require longer recovery 
times post training sessions, especially at the beginning of 
the implementation. Further studies should aim to investi-
gate the load-response to DR training to provide practical 
guidance for runners. From a scientific standpoint, training 
data suggest that implementing more than one familiarisa-
tion session to DR is crucial in experimental cross-over stud-
ies (e.g. [15, 213]) using the DR model to investigate in-situ 
and recovery strategies, so that the RBE can be offset.

4.2 � In‑situ Adaptation Strategies

4.2.1 � Optimisation of Stride and Foot Strike Pattern

The manipulation of foot stride (i.e. length and frequency) 
and foot strike pattern (i.e. rear-, mid- and fore-foot) can 
influence the mechanical strain applied to lower limb mus-
cles during running [214–217]. Accordingly, manipulating 
foot stride frequency [218] and foot strike pattern [219] 
during DR could reduce EIMD including neuromuscular 
fatigue. Following an intermittent 45-min treadmill DR 
(9 × 5-min; slope: − 15%; speed: 10.5 km h−1), Rowlands 
et al. [68] reported lower MVC torque decrements post-DR 
using an understride strategy (− 8.8% MVC torque; 92% pre-
ferred stride length) compared with an overstride (− 14.7% 
MVC torque; 108% preferred stride length) or preferred 
stride strategy (− 15.5% MVC torque). This was associated 

with a faster recovery of muscle function within days follow-
ing exercise. Interestingly, the authors also reported a greater 
RBE conferred by a first bout of DR with the overstride 
strategy, likely caused by more EIMD (+ 20 to + 40 mm 
for DOMS measured on a visual analogue scale immedi-
ately post- and 24-h post exercise, respectively) compared 
to understride and preferred stride strategies. In contrast, 
Eston et al. [67] observed no difference in plasma CK, MVC 
force and muscle tenderness after a 40-min intermittent DR 
(5 × 8-min; slope: − 12%; speed: 11.3 km h−1) in untrained 
participants, regardless of the foot stride manipulation 
tested. Regarding the impact of foot stride manipulation on 
running performance, Sheehan et al. [220] reported that foot 
stride manipulation can affect RE (expressed as energy cost) 
during DR (slope: − 10.5%; speed: 10.8 km h−1) with a 
lower energy cost reported with a preferred stride frequency 
(PSF) compared to understride (− 12% for 85% PSF) and 
overstride (− 6% for 115% PSF). Similar results, albeit not 
significant, were reported by Snyder and Farley [32] when 
PSF was compared to understride (− 17.4% vs. 85% PSF) 
and overstride (− 16.2% vs. 115% PSF) during DR at shal-
low negative slope and low running speed (− 5.2%; speed: 
7.2 km h−1). Recently, Vincent et al. [221] corroborated pre-
vious results by showing that slight changes in PSF (± 5%) 
during DR had no detrimental effect on the energy cost 
of running. In addition, the choice of stride length affects 
the energy absorption and impact attenuation characteris-
tics of lower extremity joints during DR [218]. More pre-
cisely, the authors reported that shortening step length by 
10% (i.e. using an overstride strategy) reduced knee joint 
(at a slope corresponding to − 8.8% and − 17.6%) and hip 
energy absorption (at a slope corresponding to − 8.8%) and 
enhanced impact attenuation. Such a strategy may be applied 
to reduce EIMD and maintain running performance [218]. 
It is worth mentioning that, on level grade, novice runners 
ran with a PSF that was about 8% lower than their optimal 
stride frequency (established from polynomial equations 
with stride frequency, V̇O

2
 and HR) whereas the PSF of 

experienced and trained runners was significantly closer to 
their optimal one (~ − 3%) [222]. Taken together, these data 
suggest that during DR: (1) metabolic cost, energy absorp-
tion and impact attenuation depend on the stride pattern; (2) 
adopting a stride pattern close to PSF may be an effective 
strategy to optimize RE. On another hand, the benefits of 
increasing stride frequency on energy absorption and impact 
attenuation may occur at the expense of RE. Additional stud-
ies are necessary to clarify the effects of stride manipula-
tions on RE and subsequent EIMD during DR, while also 
taking into account different training levels.

By influencing muscle-length and muscle activity during 
the ground-contact phase, foot strike pattern could also influ-
ence the occurrence of EIMD. Depending on the portion of 
the foot that initially hits the ground [223], three main foot 
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strike patterns employed by runners have been identified: 
rearfoot (heel contacts first), midfoot (metatarsal heads con-
tact first accompanied by heel contact) and forefoot (meta-
tarsal heads contact first without heel contact). The forefoot 
pattern is characterized by greater plantar and knee flexion 
at initial contact [224–226]. The negative work (i.e. the work 
done to decelerate the body’s centre of mass with respect to 
the environment) has been shown to be lower at the knee 
and greater at the ankle in forefoot compared to rearfoot 
strike [227]. In line with these observations, Giandolini et al. 
[219] investigated the effects of foot strike pattern on muscle 
activity and muscle fatigue following a 6.5 km off-road DR 
(average slope: − 16.8%) in well-trained trail runners. In 
this study, forefoot strike was associated with higher activ-
ity of the gastrocnemius lateralis and lower activity of the 
vastus lateralis and tibialis anterior during DR. It was also 
positively correlated with higher decrements in the periph-
eral fatigue components (i.e. twitch and 10 to 100 Hz ratio 
decrements) compared to rearfoot strike [219], which may 
potentially accentuate damage in PF muscles. Interestingly, 
runners exhibiting various foot strike patterns (alternation 
between forefoot, midfoot and rearfoot) during DR pre-
sented lesser peripheral alterations underlying neuromus-
cular fatigue following the run. Although no ideal foot strike 
pattern seems to exist, Giandolini et al. [219] suggested that 
a high variability in foot strike pattern (based on regres-
sion analysis) may limit neuromuscular fatigue during DR. 
However, when this strategy (i.e. voluntarily alternating foot 
strike patterns every 30 s) was applied in DR sections over a 
2.5-h graded treadmill run, no benefit was reported in terms 
of neuromuscular alterations compared to the control group 
(i.e. no switch pattern over DR sections), though no marker 
of EIMD was recorded in this study [228]. It is possible 
that (1) the beneficial effect of the variability in foot strike 
pattern during DR sections was offset by the extent of neu-
romuscular fatigue during the uphill and level sections (both 
performed with natural foot strike for 60 min and 20 min 
in total, respectively), (2) a longer training/familiarisation 
period is required to benefit the most from this strategy. In 
the field, we can assume that the best runners spontaneously 
adapt their running pattern, technique and propulsive func-
tion to the varied characteristics of the terrain, which would 
influence the neuromuscular, energetic and biomechanical 
demands, thus limiting direct comparisons with laboratory 
studies.

4.2.2 � The Use of Lower Limb Compression Garments

Although wearing lower limb compression garments (CGs) 
after exercise has been shown to facilitate the recovery pro-
cess [229–231], there is currently no consensus regarding 
their use during exercise [15, 232–235]. To date, only a few 
studies have investigated the impact of wearing CGs during 

DR [15, 236, 237]. Ehrström et al. [15] showed that wear-
ing high-pressure compression garments (15–20 mmHg) 
during 40-min treadmill DR (slope: − 15%; intensity: 55% 
V̇O

2max
 ) likely presented benefits for reducing alterations 

in the peripheral and central components of neuromuscular 
fatigue (for KE muscles) immediately after DR, in well-
trained trail runners. The beneficial effects of CGs may be 
explained by an attenuation of soft-tissue vibrations which 
might improve muscle function [238], accompanied by 
lower muscle activity during exercise [15, 239]. Ehrström 
et al. [15] suggested that wearing CGs may exert ‘dynamic 
immobilization’, reducing soft-tissue oscillation and improv-
ing joint stability, and in turn, enhancing neural input [240, 
241]. Through a histological and immunohistochemical 
analysis of muscle biopsy samples of KE muscles, Valle 
et al. [237] reported less muscle fibre injuries (− 26.7% on 
average) after 40-min DR (slope: − 10%) for the compressed 
leg compared to the control leg in amateur soccer players. 
However, since soccer players were not accustomed to DR, 
this raises the question of the extent of the protective effect 
conferred by CGs in trained athletes used to running on DR 
sections. In addition, CGs might contribute to enhanced 
post-exercise muscle recovery [15, 239]. A greater mechani-
cal protective effect was also observed during the recovery 
period in KE compared to PF muscles only when athletes 
wore CGs during DR. This suggests a beneficial mechanical 
support particularly for the largest muscles recruited in DR 
[15]. In summary, these few data suggest that wearing CGs 
could be a relevant strategy to limit EIMD during specific 
off-road and/or road races involving notable DR sections. 
Recreational runners and masters athletes (> 40 years) more 
prone to EIMD may also benefit the most from CGs to help 
them to stabilise their muscle mass during DR. Wearing CGs 
could also facilitate adherence to training by limiting the 
risk of muscle–tendon unit injuries thanks to a reduction 
in impact shock accelerations during long duration running 
sessions [15, 242].

4.2.3 � The Use of Specific Running Footwear

The selection of appropriate running footwear has become 
an essential requirement for distance running [243]. Recent 
meta-analyses and systematic reviews showed that footwear 
characteristics (i.e. shoe mass, cushioning, motion control, 
midsole viscoelasticity, comfort, longitudinal bending stiff-
ness, drop height) may reduce the risk of injury [244–246] 
and improve RE [247, 248] on level grade. Minimalist shoes 
(i.e. lighter mass, greater sole flexibility, lower drop height, 
smaller heel elevation) have been shown to induce beneficial 
biomechanical adjustments (e.g. accentuated mid-forefoot 
stride pattern, knee and ankle range of motion changes) 
during level running compared to traditional shoes [246, 
249]. A lower V̇O

2
 (− 1 to − 4.5%) was reported during 
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level running at a set running speed with minimalist shoes 
compared to traditional shoes [111, 250–252]. Similar RE 
(measured as cost of running) improvements with minimal-
ist shoes were reported during treadmill graded running 
(slope: + 8% to − 8%; speed: 10 km h−1) [28], and from a 
specific RE (measured as cost of running) protocol (flat and 
uphill treadmill evaluations) completed before a short trail 
running session (18.4 km with an alternation of uphill and 
downhill sections) [111]. Although the metabolic benefit of 
wearing minimalist shoes is evident in the non-fatigued con-
dition, additional investigations are needed to verify whether 
these benefits can be preserved with fatigue in trained and 
experienced minimalist runners.

Hardin and Hamill [149] investigated the effects of spe-
cific footwear features (soft-, mid-, and hard-midsole) dur-
ing DR. Following a 30-min treadmill DR session (slope: 
− 12%; speed: 12.2 km h−1), no difference was reported 
between midsole conditions on leg shock and EIMD.

In parallel, additional cushioning provided by maximalist 
shoes has been claimed by manufacturers to provide shock 
absorption during running, potentially reducing the impact 
loading and the risk of injury. However, wearing maximalist 
shoes might not be capable of reducing the impact load-
ing on a level surface and might even increase the external 
impact loading during short DR treadmill sessions [253].

In summary, current scientific evidence suggests that run-
ning footwear is the least effective in-situ strategy to limit 
the physiological alterations induced by DR. So far, the 
“metabolic saving” conferred by minimalist shoes has only 
been recorded in flat running and on non-fatigued muscles.

5 � Conclusion

Downhill running (DR) is a whole-body exercise character-
ised by a high proportion of eccentric-biased muscle actions 
well known to induce muscle damage (EIMD) including 
neuromuscular fatigue, and ensuing alterations in exercise 
performance. These physiological alterations generally 
persist for several days after exercise with a peak recorded 
between immediately post and 96-h post exercise, depend-
ing on the variable that is monitored. Our review shows 
that in the majority of studies conducted so far, EIMD was 
assessed through isometric maximal voluntary contrac-
tion, blood CK and DOMS, with DR characteristics (slope, 
exercise duration, and running speed) acting as the main 
influencing factors. In previous studies, the median (Q1; 
Q3) slope, exercise duration, and running speed were − 12% 
(− 15%; − 10%), 40 min (30 min; 45 min) and 11.3 km h−1 
(9.8 km h−1; 12.9 km h−1), respectively. The training level, 

and specifically that being used to train on DR sections, can 
also greatly influence the magnitude of EIMD and must be 
considered in future studies. Other factors including age and 
sex might influence the response to DR, though evidence is 
lacking. Moreover, our analysis highlights the large vari-
ety of protocols using the DR model, which prohibits firm 
conclusions about the factors most responsible for muscle 
damage and fatigue in DR. In this regard, there is a need for 
further high-quality research using a consistent approach in 
the assessment of muscle damage.

The final aim of this review was to gather scientific evi-
dence on strategies implemented in the field to limit EIMD 
and thus better adapt to DR. We identified two types of strat-
egies; (1) pre-exercise strategies that mainly consist of prior 
exposure to DR; (2) in-situ strategies that involve the use of 
specific sportswear (lower limb compression garments and 
running shoes), and/or voluntary modifications in stride and 
foot strike patterns. Current scientific evidence shows that 
prior exposure to DR is the most effective strategy to limit 
the magnitude of EIMD as a result of the so called “repeated 
bout effect”. Amongst in-situ strategies, CGs present the 
most potential but additional studies are required to confirm 
these findings and understand the underlying mechanisms. 
Finally, despite a growing interest in the development of 
innovative running shoes, current data, albeit limited, do not 
show any influence on the adaptation to DR.
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