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Abstract: Lung cancer is the worldwide leading cause of death from cancer. Epigenetic modifications
such as methylation and changes in chromatin accessibility are major gene regulatory mechanisms
involved in tumorigenesis and cellular lineage commitment. We aimed to characterize these processes
in the context of neuroendocrine (NE) lung cancer. Illumina 450K DNA methylation data were
collected for 1407 lung cancers including 27 NE tumors. NE differentially methylated regions
(NE-DMRs) were identified and correlated with gene expression data for 151 lung cancers and
31 human tissue entities from the Genotype-Tissue Expression (GTEx) consortium. Assay for
transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were
performed on eight lung cancer cell lines, including three NE cell lines, to identify neuroendocrine
specific gene regulatory elements. We identified DMRs with methylation patterns associated with
differential gene expression and an NE tumor phenotype. DMR-associated genes could further be split
into six functional modules, including one highly specific gene module for NE lung cancer showing
high expression in both normal and malignant brain tissue. The regulatory potential of NE-DMRs
was further validated in vitro using paired ATAC- and RNA-seq and revealed both proximal and
distal regulatory elements of canonical NE-marker genes such as CHGA, NCAM1, INSM1, as well
as a number of novel candidate markers of NE lung cancer. Using multilevel genomic analyses of
both tumor bulk tissue and lung cancer cell lines, we identified a large catalogue of gene regulatory
elements related to the NE phenotype of lung cancer.
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1. Introduction

Lung cancer is broadly divided into different histological subtypes, including adenocarcinoma
(AC), squamous cell carcinoma (SqCC), large cell carcinoma (LCC), large cell neuroendocrine carcinoma
(LCNEC), and small cell lung cancer (SCLC). Correct diagnosis of lung cancer histology is clinically
important as it can dictate treatment (e.g., chemotherapy) in both early and late stage disease [1,2], and
is strongly associated with the occurrence of actionable oncogenic alterations such as EGFR mutations
and ALK gene fusions [3]. On the basis of extensive molecular characterization, it is now firmly
established that the main histological subtypes represent distinct biological and molecular entities of
lung cancer at the DNA, RNA, and protein levels [4–8].

In the most recent WHO guidelines [9], LCNEC and SCLC form a neuroendocrine (NE) subgroup
which shares molecular similarities and, increasingly, also treatment strategies [4,8,10–12]. Considering
the distinct genomic and histopathological phenotypes of the histological subgroups, it has been
hypothesized that NE tumors develop from a cell of origin distinct from that of non-NE tumors [3,13].
Cellular differentiation states are regulated by different mechanisms, including epigenetic modifications.
The latter constitute a dynamic layer of regulation involved in all aspects of cellular development and
differentiation. In lung cancer, only a limited number of studies analyzing global DNA methylation and
chromatin patterns across different histological subtypes have been reported [14–18]. Although
few, these studies have corroborated that histological subtypes, in addition to having distinct
transcriptional patterns, also carry defining and specific epigenetic patterns, with NE tumors typically
being markedly different [8,14]. However, no directed global analyses of specific epigenetic patterns
driving neuroendocrine transcriptional programs have been reported to date.

In the current study, we aimed to define the epigenetic landscape of NE lung tumors and to identify
putative regulatory elements of the NE phenotype of lung cancer by using global DNA methylation
analysis of 1407 lung cancers of all histological subtypes and combined assay for transposase-accessible
chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) of eight cell lines representative
of the major histological subtypes. On the basis of the integrative analyses of DNA methylation
patterns and gene expression data in both lung cancer and normal human tissue, we were able to define
NE-specific gene regulatory elements. The epigenetic state of these were highly predictive of proximal
gene expression, and associated genes could be mapped onto six distinct modules representing both
tumor intrinsic and extrinsic processes. Importantly, one of the identified modules constituted a
neural 178-gene module highly expressed in brain tissue with the capacity to accurately identify
tumors of the NE lineage. Then, we demonstrated by combined ATAC- and RNA-seq that NE specific
differentially methylated regions (DMRs) overlap regions of differentially accessible chromatin and
that correlations observed in primary tumors between DNA methylation and gene expression could
also be captured in an in-vitro context. Predictably, we showed that NE-associated gene regulatory
elements were enriched for genes involved in neural differentiation and development, and identified a
number of high-confidence regulatory elements controlling the expression of canonical NE-marker
genes such as chromogranin A (CHGA), neural cell adhesion molecule (NCAM1/CD56), and the
insulinoma-associated 1 (INSM1) gene. Taken together, this study defines a compendium of epigenetic
regulators of the NE phenotype of lung cancer which serves as a foundation for future investigations
into the gene regulatory networks involved in the development and progression of NE lung cancer.

2. Results

The outline of the study is described in Figure 1.
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Figure 1. Study scheme. Cohorts listed refers to Karlsson et al. [14], Sandoval et al. [15], cancer genome 
atlas (TCGA) adenocarcinoma (AC) [5], TCGA squamous cell carcinoma (SqCC) [7] for Illumina 450K 
methylation data. Gene expression cohorts involved refers to Karlsson et al. [8]. TSS, transcription 
start site; NE, neuroendocrine; DMR, differentially methylated region; NSCLC, non-small cell lung 
cancer. 

2.1. Differentially Methylated Regions in Neuroendocrine Lung Cancer Correlated with Gene Expression 

After filtering, a final dataset interrogating 459,790 genomic positions for the 1407 tumors 
profiled by DNA methylation arrays remained. A total of 16,063 differentially methylated probes 
(CpGs) was observed between NE tumors versus normal lung and non-NE tumors (Mann–Whitney 
U test, Bonferroni p < 0.01, absolute difference in median methylation >0.1 in both comparisons). To 
form the final set of NE differentially methylated regions (NE-DMRs), we assigned each significant 
probe a 101 bp genomic window and merged probes with overlapping windows (n = 3214 probes 
mapping to 1295 regions) for each sample. This yielded a final set of 14,144 NE-DMRs.  

To investigate the association with gene expression, we correlated NE-DMRs with matched 
transcriptional data from Karlsson et al. [8]. Using a 1 Mb annotation window for each of the 14,144 
NE-DMRs, NE-DMRs were on average linked to 9.6 unique genes for which gene expression was 
available. A total of 663 NE-DMRs could not be linked to any gene for which expression data were 
available. For the 13,481 NE-DMRs which could be linked to gene expression data, we calculated the 
Pearson correlation between DNA methylation beta and mRNA expression resulting in a total of 
135,250 correlation coefficients. We used the 98th percentile of the absolute p-value distribution as a 

Figure 1. Study scheme. Cohorts listed refers to Karlsson et al. [14], Sandoval et al. [15], cancer genome
atlas (TCGA) adenocarcinoma (AC) [5], TCGA squamous cell carcinoma (SqCC) [7] for Illumina 450K
methylation data. Gene expression cohorts involved refers to Karlsson et al. [8]. TSS, transcription start
site; NE, neuroendocrine; DMR, differentially methylated region; NSCLC, non-small cell lung cancer.

2.1. Differentially Methylated Regions in Neuroendocrine Lung Cancer Correlated with Gene Expression

After filtering, a final dataset interrogating 459,790 genomic positions for the 1407 tumors profiled
by DNA methylation arrays remained. A total of 16,063 differentially methylated probes (CpGs)
was observed between NE tumors versus normal lung and non-NE tumors (Mann–Whitney U test,
Bonferroni p < 0.01, absolute difference in median methylation >0.1 in both comparisons). To form the
final set of NE differentially methylated regions (NE-DMRs), we assigned each significant probe a 101
bp genomic window and merged probes with overlapping windows (n = 3214 probes mapping to
1295 regions) for each sample. This yielded a final set of 14,144 NE-DMRs.

To investigate the association with gene expression, we correlated NE-DMRs with matched
transcriptional data from Karlsson et al. [8]. Using a 1 Mb annotation window for each of the 14,144
NE-DMRs, NE-DMRs were on average linked to 9.6 unique genes for which gene expression was
available. A total of 663 NE-DMRs could not be linked to any gene for which expression data were
available. For the 13,481 NE-DMRs which could be linked to gene expression data, we calculated
the Pearson correlation between DNA methylation beta and mRNA expression resulting in a total of
135,250 correlation coefficients. We used the 98th percentile of the absolute p-value distribution as
a significance cut-off (r more extreme than +/−0.496), a more stringent choice than that obtained by
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Bonferroni correction (approximate correlation cut-off = 0.4). This yielded 1306 significant positive
and 1399 significant negative correlation coefficients between NE-DMRs and genes. From the way
the test was set up, a single NE-DMR was allowed to correlate with the expression of multiple genes,
and a given gene could be correlated to multiple NE-DMRs. In total, the 2705 significant correlation
coefficients mapped to 2075 unique DMRs and 1110 unique genes (Figure 1 and Supplementary
Table S1).

2.2. NE-DMR Genes Expression in Normal Tissues Defines Six Transcriptional Programs

To understand the transcriptional programs of NE-DMRs linked with gene expression in
lung cancer, we investigated the expression of the 1110 unique genes in 53 non-cancer sample
types corresponding to 31 human tissues and transformed fibroblasts and lymphocytes from the
Genotype-Tissue Expression (GTEx) consortium. Of the 1110 genes, 1086 genes could be matched,
and were analyzed for the presence of transcriptional gene modules using k-means clustering for
dimensionality reduced gene expression data (see methods). Six gene modules were identified in
the GTEx data (GTEx modules), showing transcriptional differences across tissue types (Figure 2).
Gene ontology (GO-) term analysis identified the modules as related to (in some instances partly)
the following: (i) early cell cycle/metabolism (n = 193 genes), (ii) proliferation (n = 133 genes),
(iii) metabolic process/inconclusive (n = 165 genes), (iv) immune activation/infiltration (n = 197 genes),
(v) angiogenesis/TGFb-SMAD-signaling (n = 220 genes), and (vi) neurodevelopment/brain (referred to
as the neural module hereafter, n = 178 genes) (Supplementary Table S2). Notably, the neural GTEx
signature (module 6) included three of the currently used diagnostic marker genes for NE classification,
CHGA, NCAM1 (CD56), and INSM1, but not SYP. GO-term analysis was also performed on NE-DMR
correlated, downregulated genes in NE tumors (Supplementary Table S2).

2.3. Characterization of the Six GTEx Modules in Lung Cancer Gene Expression Data

To assess the gene modules derived from the GTEx normal tissue collection, we clustered the 151
lung tumors from Karlsson et al. [8], finding that coexpression of the individual module genes was
largely conserved in lung cancer. This indicated that normal gene expression circuits could be co-opted
in the process of malignant transformation (Figure 3A). To assess the gene modules performance
for NE prediction, we calculated the mean expression scores for each lung cancer sample and gene
module from row-standardized expression values. Next, the specificity of gene module expression
was evaluated using receiver-operating characteristic (ROC) curves, showing that the neural GTEx
signature (module 6) was highly predictive of a NE phenotype (AUC = 0.92) (Figure 3B). We confirmed
the latter result in the dataset reported by Djureinovic et al. [19] that comprises RNA sequencing data
from 199 lung tumors, showing the specificity and association of module 6 with an NE phenotype
(Figure 4A–C). When the gene signatures were applied to 25 glioblastoma multiforme (GBM) tumors,
25 low-grade gliomas, and five normal brain tissue specimens from the TCGA study, it again confirmed
the elevated expression of the neural gene module in normal brain tissue, low-grade glioma, and
high-grade GBMs (Figure 4D).

2.4. Assay for Transposase-Accessible Chromatin Sequencing (ATAC-Seq) Identifies Regions of Open
Chromatin Associated with NE Histology

We performed ATAC-seq and complementary RNA-seq on five NSCLC and three NE lung cancer
cell lines. After initial processing and filtering, a total of 108,973 regions (peaks) of open chromatin
remained, and of these peaks, 13,987 peaks showed differential presence in NE vs. NSCLC cell lines
(FDR adjusted Wald test, p < 0.05, Supplementary Table S3).
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expression data from 53 GTEx tissue samples corresponding to 31 tissue types and cell lines. Prior to 
MDS, expression was transformed using log10 (RPKM + 1) and mean-centered. For genes with 
multiple entries, the entry with the highest standard deviation entry was chosen. The different colors 
represent the modules as defined in (B); (B) Definition of six gene modules based on hierarchical 
clustering. Modules 1–6 are referred to as follows: (i) early cell cycle/metabolism (n = 193 genes), (ii) 
proliferation (n = 133 genes), (iii) metabolic process/inconclusive (n = 165 genes), (iv) immune 
activation/infiltration (n = 197 genes), (v) angiogenesis/TGFb-SMAD (n = 220 genes), and (vi) 
neurodevelopment/brain (referred to as the neural module, n = 178 genes); (C) Module expression 

Figure 2. Deriving Genotype-Tissue Expression (GTEx) gene modules. (A) Multidimensional scaling
(MDS) of gene expression of 1086 genes that correlate between NE-DMRs and gene expression in
expression data from 53 GTEx tissue samples corresponding to 31 tissue types and cell lines. Prior to
MDS, expression was transformed using log10 (RPKM + 1) and mean-centered. For genes with multiple
entries, the entry with the highest standard deviation entry was chosen. The different colors represent
the modules as defined in (B); (B) Definition of six gene modules based on hierarchical clustering.
Modules 1–6 are referred to as follows: (i) early cell cycle/metabolism (n = 193 genes), (ii) proliferation
(n = 133 genes), (iii) metabolic process/inconclusive (n = 165 genes), (iv) immune activation/infiltration
(n = 197 genes), (v) angiogenesis/TGFb-SMAD (n = 220 genes), and (vi) neurodevelopment/brain
(referred to as the neural module, n = 178 genes); (C) Module expression (average of standardized
expression of included genes) across GTEx tissue types. Boxplots show the distribution of expression
for respective module’s genes in tissue samples according to cell type legend.
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for each gene within the indicated cell type. For these, the bars extending to the leftmost edge signify 
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highest relative expression; (B) Classification results for the different gene modules in predicting NE 
status in the 151 cases. 

Figure 3. GTEx gene modules in lung cancer and tumor reclassification. (A) Gene expression clustering
in 151 lung cancers (columns) from Karlsson et al. [8] based on genes (rows) in the six GTEx modules,
using Pearson distance and Ward’s method. The horizontal column color bars above the expression
heatmap indicate lung cancer histology and NE-status, respectively. The grey-white panel to the right of
the row dendrogram shows six gene clusters derived by cutting the dendrogram at the six-group level.
The next color panel shows enrichment of GTEx modules within the six data-derived gene clusters (all
p < 0.001, Fishers exact test). The vertical color bars to the right of the heatmap indicates which module
each gene belongs to. The rightmost four vertical panels show rank scores for each gene within the
indicated cell type. For these, the bars extending to the leftmost edge signify lowest relative expression
across 53 GTEx cell types, the bars extending to the rightmost edge signify highest relative expression;
(B) Classification results for the different gene modules in predicting NE status in the 151 cases.
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corresponding RNA sequencing data for matched genes (mean of positive correlations = 0.73). 
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Figure 4. Validation and expression of the GTEx neural gene module in tumor data and normal brain,
low-grade glioma, and glioblastoma. Analysis of the GTEx neural gene module in RNA-seq data from
Djureinovic et al. [19]. (A) Sorted gene module scores in the dataset. Legend shows sample annotations
for large cell neuroendocrine carcinoma (LCNEC) tumors confirmed as LCNEC in re-review [20],
two tumors with mixed histological subtypes where only the adenocarcinoma component was RNA
sequenced, and one original adenocarcinoma case (L504) with immunohistochemistry expression of
a diagnostic NE marker (CHGA) (see [20] for details); (B) Gene module scores stratified by tumor
histological subtypes. LCC, large cell carcinoma; AC_SqCC, adenosquamous; SARC, sarcomatoid;
(C) ROC curve showing classification results for the gene module when not including tumors L480 and
L834 of mixed NE/non-NE histology; (D) Expression of the neural GTEx gene module in normal brain
tissue (n = 5), low-grade glioma (LGG, n = 25), and high-grade (n = 25) glioblastoma multiforme (GBM).

Among the 13,987 peaks, 977 were associated with transcription start site (TSS +/− 1000 bp) in
923 unique protein coding genes. The 977 TSS peaks showed high Pearson correlation values with
corresponding RNA sequencing data for matched genes (mean of positive correlations = 0.73). Filtering
of the 977 TSS peaks versus gene expression correlation (absolute Pearson correlation > 0.7) resulted in
564 peaks in 540 unique protein coding genes that, as expected, could separate NE from NSCLC cell
lines using hierarchical clustering (Figure 5A). Gene ontology analysis of these 540 genes revealed
overrepresentation of neural gene ontology terms, consistent with the finding of a tumor expressed
neural GTEx module (Figure 5B and Supplementary Table S4). Prototypical diagnostic NE marker
genes were included, such as CHGA, NCAM1 (CD56), and INSM1. Hierarchical clustering using 338
(of 540) matching genes in the cohort of 151 lung tumors from Karlsson et al. [8] formed one gene
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expression cluster that included 94% of all NE-tumors (Figure 5C). In addition, the clustering stratified
NSCLC tumors grossly by histological subtype.
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Figure 5. Assay for transposase-accessible chromatin sequencing (ATAC-seq) of NE and non-NE lung
cancer cell lines and integration with tumor derived DMRs. (A) Clustering of 564 NE-associated TSS
ATAC-seq peaks with absolute Pearson correlation to expression >0.7 in eight lung cancer cell lines
using Euclidean distance and ward linkage; (B) Top 10 gene ontology terms for genes associated with
the 733 NE-associated TSS ATAC-seq peaks; (C) Clustering of 338 genes matching the 540 unique
genes from the 564 TSS peaks in A in bulk tumor tissue gene expression data from 151 lung cancers
reported by Karlsson et al. [8]. Genes (rows) and samples (columns) were clustered using Pearson
correlation and ward.D linkage. Expression data were in the form of mean-centered log2 transformed
intensity values; (D) Clustering of 5866 genes matching 8729 distal (10 Kbp) ATAC-seq peaks defined
by differential peak count between NE and non-NE cell lines and correlated with RNA-seq for genes in
a ±1 Mbp window in the 151 tumor tissues [8]. Genes (rows) and samples (columns) were clustered
using Pearson correlation and ward.D linkage. Expression data were in the form of mean-centered log2
transformed intensity values. Only the cluster tree is shown; (E) Similar analysis as in (D) but now
for genes within a ±500 kbp window. Only the cluster tree is shown; (F) Similar analysis as in (D) but
now for genes within a ±200 kbp window. Only the cluster tree is shown; (G) Clustering of 197 TSS
ATAC-seq peaks matched to genes in the neural GTEx module (module 6) in the eight lung cancer cell
lines using Euclidean distance and ward linkage; (H) Average expression of the neural GTEx module in
the eight cell lines based on mean-centered log2 transformed expression data; (I) Fraction genes in each
of the six GTEx gene modules with a specific range of Pearson correlation between ATAC-seq data and
RNA-seq (GEX) in cell lines, and DMR beta values and gene expression in tumors of correlation.



Cancers 2020, 12, 2003 9 of 17

Next, we next investigated ATAC-seq peaks statistically different between NE and non-NE cell
lines but distal of TSSs (10 kbp). For each peak, we identified, within a ±1 Mbp window, all genes with
a Pearson correlation >0.7 between RNA-seq and ATAC-seq peak counts (n = 7874 genes, n = 9720
peaks), with the hypothesis that peak gene pairs could represent putative distal regulatory elements.
Hierarchical clustering of matching genes (n = 5866) in the 151-sample tumor cohort almost perfectly
discerned the histological subtypes (Figure 5D). Similar results were obtained for window sizes of
±500 kbp (n = 7647 peaks and n = 6139 genes) and ±200 kbp (n = 5180 peaks and n = 4108 genes)
(Figure 5E,F).

Finally, to investigate whether the neural GTEx module (module 6) accounted for the NE
component of the NE cell lines, we extracted both ATAC-seq peaks in transcription start site regions
(TSS +/− 1000 bp) of module six genes and ATAC-seq peaks distal to the TSS of these genes. Clustering
of the TSS ATAC-seq peaks separated NE cell lines from non-NE cell lines, with the exception of
one NSCLC cell line (H23) (Figure 5G), which showed some expression of neural module genes by
RNA-sequencing (Figure 5H). Clustering of distal ATAC-seq peaks to the neural module genes (n =

1158, annotation window TSS +/− 500 kb) separated two out of three NE cell lines into a single cluster,
while the U-1906 NE cell line clustered with remaining samples (Supplementary Figure S1).

2.5. ATAC-Seq Supports Epigenetic Regulation of NE-DMR Genes

Tumor-based DNA methylation findings were integrated with cell line ATAC-seq by subanalysis of
the 1110 unique genes that showed a significant gene expression correlation with NE-DMR methylation.
Of these, 827 (75%) also showed significant Pearson correlation between RNA expression and ATAC-seq
signal in the eight cell lines. Of the 827 genes, 585 (71%) had ATAC-seq peaks in the TSS region
(TSS +/− 1000 bp), including diagnostic NE marker genes such as CHGA, NCAM1 (CD56), and INSM1.
Gene ontology enrichment analysis of the 585 genes showed overrepresentation of multiple gene
ontology terms associated with cell proliferation, biosynthesis, metabolic processes, but also a number
of cell development and neural associated terms (Supplementary Table S4). Notably, when analyzing
the overall pattern of correlations between tumor DNA methylation and gene expression for the genes
with ATAC-seq peaks in the promoter region, we found that the neural GTEx module genes showed the
strongest positive correlations in the ATAC-seq data and negative correlations in the tumor methylation
data (Figure 5I). Figure 5I also illustrates that two GTEx modules (IV, immune activation/infiltration
and V, angiogenesis/TGFb-SMAD) show predominantly positive DMR-GEX correlation in tumors. It is
conceivable that these modules represent the contribution of non-tumor signal, because the data were
generated from bulk cancer tissue.

2.6. Assessing the Regulatory Potential of Tumor Derived NE-DMRs in ATAC-Seq Data

To validate the regulatory potential of tumor-derived DMRs in ATAC-seq data, first, we adjusted
the 14,144 DMRs to a consensus window size of 500 bp. Of the 14,144 DMRs, 33.5% overlapped
with an ATAC-seq peak. Of the 2075 DMRs with significant correlation to gene expression data,
45.4% overlapped (n = 942), indicating that a large proportion of NE-DMRs represent bona fide
regulatory elements.

Conversely, of all 13,987 NE-associated ATAC-seq peaks, 5.8% (819/13,987) overlapped with a
DMR region. Similar overlap frequencies were seen for the 10 kbp distal peaks irrespective of window
size (±1 Mbp window 6.5% overlap, ±500 kbp window 6.8% overlap, and ±200 kbp window 7.2%
overlap). In contrast, for the 564 TSS peaks, 13.7% overlapped with a DMR. This larger overlap was
likely due to bias in CpG probe positioning on the Illumina platform. Nonetheless, our results indicate
that high correlations between DNA methylation and gene expression in bulk tumor material can be
used to capture putative regulatory associations.

With respect to distal regulatory interactions, integration of bulk tumor methylation sequencing
and cell line ATAC-seq data supported the existence of several candidate DMRs involved in the
regulation of NE-specific gene expression (Supplementary Table S5).
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Figure 6A illustrates a putative distal regulatory element for the established NE-gene DLL3 [21].
The DMR is situated within the DYRK1B gene, approximately 200 kbp distal to the DLL3 TSS, and
is significantly correlated with DLL3, but not DYRK1B, gene expression in both primary tumor
samples and cell lines. Expression analysis of genes in the region surrounding DLL3 demonstrates the
putative demarcation of a regulatory domain by the aforementioned NE-DMR with markedly reduced
expression of several genes between DLL3 and the ATAC-supported distal NE-DMR, but with higher
expression of genes both upstream and downstream of the silent genomic segment consistent with a
putative looping-type interaction (Figure 6B).
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Figure 6. Example of distal ATAC-seq peaks overlapping with tumor DMR in DLL3. (A) Genomic
location of NE-associated ATAC-seq peaks and tumor DMRs surrounding the DLL3 gene. The position
of the distal ATAC-seq peak (with Pearson correlation to RNA expression in cell lines >0.7) is highlighted;
(B) Gene expression of genes surrounding the DLL3 gene and the distal ATAC-seq peak in tumors from
Karlsson et al. [8] stratified by NE status.

3. Discussion

In this study, we investigated DNA methylation patterns and regions of open chromatin specific
for NE versus non-NE lung cancer. On the basis of the strong evidence of the histological subtypes
representing distinct molecular entities [4,8,10,14,15,17], we found that epigenetic changes specific
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for NE cancer were pervasive, and that a substantial proportion of these could be gene regulatory
in nature.

To test our hypothesis, we used high-resolution DNA methylation profiles of >1400 lung cancers of
all histological types, allowing us to identify 14,144 NE-DMRs. These DMRs, on average, were linked to
9.6 unique genes per DMR, of which 2075 DMRs and 1110 unique genes showed significant correlations
between DNA methylation and gene expression in lung cancer. To understand the composition of
these genes, i.e., to determine if they grouped in biological subsets, we analyzed the expression of these
genes broadly in 29 non-malignant human tissue types, identifying six modules of tightly regulated
genes. One of these modules appeared as a neural gene module, based on functional annotation and
high expression in normal, as well as malignant, brain tissue. This module was capable of predicting
NE lung tumors with high accuracy and included three currently used diagnostic marker genes for NE
classification (INSM1, NCAM1, and CHGA) but not the fourth gene, synaptophysin (SYP), since this
gene was not correlated to any of the derived NE-DMRs. However, SYP did have two distal regions of
open chromatin highly correlated to the expression of the gene and significantly enriched in NE cell
lines as compared with NSCLC. In support of the tumor-based analyses, regions of open chromatin in
the TSS regions of the neural module genes could differentiate ATAC sequenced NE from NSCLC cell
lines, with the exception of H23, an NSCLC cell line showing some expression of neural module genes.

While the significance of the neural gene module has a conceptually simple link to NE lung cancer,
we identified five other gene modules from a diverse set of normal human tissue types (Figure 2).
Some of these also classified NE tumors with fairly high accuracy, however, they appeared less distinct
for NE when considering their gene expression patterns in lung cancer in general (Figure 3A,B). For
instance, genes in module two (associated with proliferation) show high expression also in subsets
of SqCC, AC, and WHO 2004 LCC cases, while genes in module four (associated with immune
activation/infiltration) are low in expression in NE cancers but also in other subsets of SqCC, LCC, and
AC consistent with previous observations [8]. Thus, these gene modules could represent a difference
in cellular composition with respect to non-malignant cells between NE tumors and non-NE tumors in
general, with NE cases being generally more proliferative and characterized by a more dense growth
pattern [22]. One indication of this could be that two gene modules showed mainly positive correlation
between DNA methylation and gene expression data, in contrast to the expected negative correlation
(Figure 5I).

To extend our analyses of NE specific transcription, we performed ATAC- and RNA-seq of
the NE and NSCLC cell lines. Despite the heterogeneity of U-1906 and H23 (NE and NSCLC cell
lines, respectively), both showing moderate expression of neural module genes at RNA sequencing,
the ATAC-seq data provided robust evidence for NE specific regions of open chromatin. In fact,
NE-associated TSS regions of open chromatin were strongly enriched for neural associated genes, and
TSS associated genes were able to recapitulate the major lung cancer histological groups including NE
tumors in bulk tumor gene expression data. The latter was true also in bulk tumor tissue for genes
associated with distal ATAC-seq peaks (Figure 5D–F). Approximately 14% of TSS peaks overlapped
with a tumor DNA methylation DMR as compared with approximately 7% of NE-associated peaks
distal of TSSs that overlapped with tumor DMRs. The limited overlaps were likely due to the platform
design of the Illumina Human Methylation 450K Beadchips, focusing on CpG islands and promoters
as compared with the genome-wide coverage of ATAC-seq, limiting an unbiased “validation” of
ATAC-seq peaks from the in vitro analysis in tumor tissue. The latter especially applies to distal
ATAC-seq peaks (representing putative distal gene regulatory elements). Nevertheless, overlap
analysis identified well-established NE-associated genes such as DLL3 and its upstream regulator,
achaete-scute complex-like 1 gene (ASCL1), as having distal ATAC-seq peaks and overlapping a tumor
DMR in bulk tissue analysis. ASCL1 is a transcription factor critical for development of pulmonary
neuroendocrine cells in the developing lung, with DLL3 as a downstream target [23]. These form the
ASCL1–DLL3–Notch1 pathway which is frequently perturbed in SCLC [24,25]. Analysis of expression
patterns surrounding the DLL3 TSS and the distal peak region showed no expression of genes in
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between the TSS and distal region, consistent with a chromatin-loop mediating the regulatory function
(Figure 6B). Although the analyses performed in the current study did not provide functional evidence
for epigenetic regulation of, for example, DLL3, NCAM1, or INSM1, in NE lung cancers, it has been
reported in hepatocellular carcinoma that DLL3 appears to be regulated by promoter methylation
(silenced by hypermethylation), and that, for example, 5-Aza-2′-deoxycytidine treatment of cancer cell
lines could reactivate expression of the gene [26,27]. Clearly, additional functional studies, coupled with
genome-wide omics characterization, are needed that also consider, for instance, the NE transcription
and differentiation factors. Together, the results in the current study highlight the hypothesis generating
potential of multilevel genomic characterization that may facilitate the identification of novel druggable
targets in SCLC based on further functional studies.

Finally, we investigated the potential of our data in addressing the need for more specific and
sensitive clinical NE markers [28]. Given the specificity of module 6 genes to neural tissues, we
further identified a subset with both regions of open chromatin highly positively correlated to gene
expression in the NE cell lines and an associated NE-DMR with significant negative correlation to
gene expression in bulk tissue, and thus proposed a set of candidate genes to be investigated for their
potential as clinical NE markers (Supplementary Table S5). Although definitive supportive data are
currently lacking, future experiments utilizing chromatin conformation capture technology [29] on cell
lines representative of the major LC histological subtypes have the potential to greatly expand our
understanding of the gene-regulatory landscape of neuroendocrine LC.

4. Materials and Methods

4.1. Patient Cohorts

A DNA methylation dataset of 1407 lung tumors and 88 histologically normal lung samples was
compiled from previously published research studies and the TCGA data portal (obtained as level
3 data) [5,7,14,15,30], or was generated specifically for this study (n = 36 tumors). All cases were
analyzed using the Illumina methylation 450K platform [31]. Sample annotations, including tumor
histology based on the WHO 2004 classification, were collected from each study for previously reported
data. For the 36 new tumors, gene expression data have been previously reported along with clinical
data in Karlsson et al. [8] but not DNA methylation profiles. The combined set of new tumors and
previously reported DNA methylation analyzed cases from [14] that are also included in [8] is referred
to as Karlsson et al. (Figure 1). Histological subtypes (five LCNEC and 31 LCC) for the new tumors
were determined by a lung cancer pathologist based on the WHO 2004 classification scheme that was
the current guideline at the time of data generation. The final set consisted of 840 AC, 504 SqCC, 14
SCLC, 13 LCNEC, and 36 tumors of other histological subtypes (e.g., LCC).

4.2. DNA Methylation Analyses

DNA methylation profiling using Illumina Human Methylation 450K beadchips was performed
for 36 cases specifically for this study at the Centre for Translational Genomics, Lund University and
Clinical Genomics Lund, SciLifeLab using protocols and methods as previously described [14]. DNA
methylation data were uniformly processed using methods described previously [14,32], resulting in a
final processed dataset interrogating 473,864 autosomal genomic positions. An initial data filtering was
performed to remove probes with >5% missing values in tumors classified as NE, non-NE, or normal
lung tissue. Next, we removed probes with zero standard deviation across the respective groups. In
total 14,074 probes were eliminated by these steps and resulted in a final dataset interrogating 459,790
genomic positions.

The Mann–Whitney U test (Bonferroni adjusted, p < 0.01) comparing NE tumors versus normal
lung and non-NE, respectively, was used to identify positions in the genome associated with NE lung
cancer. Differentially methylated regions (NE-DMRs) were formed by assigning each significant probe
a 101 bp genomic window and merging probes with overlapping windows by their median value. Each
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NE-DMR was annotated to genomic transcripts using the UCSC hg19 “known gene” database contained
in the Bioconductor package “TxDb.Hsapiens.UCSC.hg19.knownGene” (db-version 1.1). Transcripts
were further matched to gene symbols using the Bioconductor package “org.Hs.eg.db” (db-version 2.1)
and each NE-DMR was annotated with transcript, promoter, and exon overlaps. Illumina CpG ID’s
were carried over to the NE-DMRs and CpG island or shore overlaps were assigned using the UCSC
genome browser RefCgi-track (hg19 data freeze). To explore putative distal regulatory associations
we linked each NE-DMR to TSSs inside of 500 kb up- or downstream from the NE-DMR-midpoint.
The choice of 500 kb was motivated by similar analyses performed by the FANTOM [33] and cancer
genome atlas (TCGA) [18] consortia. All overlap calculations were performed using the Bioconductor
package GenomicRanges [34] in the R-programming environment [35]. Analyses are further detailed
in Supplementary Methods.

4.3. Gene Expression Analyses

Preprocessed and normalized gene expression data derived using Illumina HT12 v4 arrays were
available for 151 of the tumors included in the methylation dataset [8]. The most variable probe was
selected for each unique gene resulting in a final dataset with expression for 20,440 unique genes. For
matching to NE-DMR annotations we used Entrez identifiers.

To analyze the expression of correlated genes from the NE-DMR analysis in normal tissues,
average gene expression data for 53 sample types corresponding to 31 human tissues and transformed
fibroblasts and lymphocytes were obtained from the GTEx consortium (www.gtexportal.org, v6p
data freeze). The dimensionality of the variation patterns of the genes in the GTEx data was reduced
using multidimensional scaling (MDS, R function cmdscale, 3 dimensions) of the row-standardized
expression matrix and visualized in 3 dimensions in R (R package scatterplot3d). Expression modules
were derived using k-means clustering of the MDS output (R function k-means, K = 6). Agglomerative
hierarchical clustering using Euclidean distance and Ward’s method (R function hclust with method
“ward.D2”) was used as a complementary approach to evaluate the six expression modules. Statistical
overrepresentation GO-term analysis was performed using the Panther web tool (www.pantherdb.org).

Mean expression scores were derived for each LC sample and gene module from row-standardized
expression values. Gene module expression scores by histological subtype were visualized using
boxplots and the specificity of module gene expression was evaluated using receiver operating
characteristic (ROC) curves in R (function roc in package pROC). Gene module expression was further
assessed in RNA sequencing data from Djureinovic et al. [19] including 199 lung tumors of mixed
histological subtypes. The expression data (FPKM) were offset by 0.5 and log2 transformed prior to
module score calculations. Original pathological assessments for the dataset were updated with data
from Karlsson et al. [20] who reclassified two NE samples (L480/L834) as mixed histology and one
adenocarcinoma (L504) as having a NE component.

To assess NE-DMR methylation patterns and gene expression correlations in brain-derived
samples, we obtained 450K and RNA-seq data from the Genomic Data Commons (GDC) portal [36]
for 25 glioblastoma multiforme (GBM) and 25 low-grade glioma (LGG), as well as for normal brain
samples (five with RNA sequencing and two with 450K data). Analyses are further detailed in
Supplementary Methods.

4.4. ATAC- and RNA-Seq of NSCLC and NE Cell Lines

ATAC-seq was performed on the following eight cell lines: five NSCLC, NCI-H2228 (ATCC
Cat# CRL-5935 RRID:CVCL_1543), LC-2/ad (ECACC Cat# 94072247 RRID:CVCL_1373), U-1752
(RRID:CVCL_0565) [37], A549 (ATCC Cat# CCL-185 RRID:CVCL_0023), NCI-H23 (ATCC Cat#
CRL-5800 RRID:CVCL_1547); and three SCLC/NE, U-1906 (RRID:CVCL_D075) [37], U-2020
(RRID:CVCL_D076) [37], and NCI-H345 (ATCC Cat# HTB-180 RRID:CVCL_1558). All cell lines
were grown as two replicates, according to standard protocols (Supplementary Methods). Libraries
were prepared from 100,000 to 150,000 cells per replicate according to the Omni-ATAC protocol [38],

www.gtexportal.org
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with minor adjustments, i.e., the final spin column purification step for removal of primer-dimers and
large fragments was replaced with double-sided AMPure XP bead purification. Then, libraries were
sequenced on a NextSeq 500 (Illumina) with paired end reads of 80 bp. Data analysis was performed
according to recent ENCODE guidelines, with minor changes, as outlined (Supplementary Methods),
and produced a set of high confidence peaks for each cell line. Using the GenomicRanges [22], SoGGi
(version 1.18.0), and Rsubread (doi: 10.1093/nar/gkz114) R packages, high confidence peaks form all
cell lines were merged, overlapping peaks were reduced and the number of reads per peaks were
counted. Normalization of peak counts and differential peak analysis in NE versus non-NE cell lines
were performed with Deseq2 (doi:10.1186/s13059-014-0550-8). Then, the peaks were annotated to
genomic transcripts using the UCSC hg19 “known gene” database contained in the Bioconductor
package “TxDb.Hsapiens.UCSC.hg19.knownGene” (db-version 1.1), using the annotatePeak function
in ChIPseeker. Transcripts were further matched to gene symbols using the Bioconductor package
“org.Hs.eg.db” (db-version 2.1). Alternatively, peaks were annotated to all flanking genes within 2Mb,
1Mb, or 0.4 Mb windows centered on the peak midpoint (Supplementary Methods). RNA sequencing
was performed on all cell lines as previously described to generate FPKM expression estimates [39],
resulting in a dataset with expression for 17,897 unique protein coding genes matched to peaks through
gene symbols. Gene expression data were correlated to matched peaks using the Pearson correlation.

4.5. Data Sharing

RNA-seq data (FPKM) and processed ATAC-seq data for NE and NSCLC cell lines are available
through doi:10.17632/wmt6bvrwx8.1. DNA methylation data for additional NE tumors are available
through GSE149521 at Gene Expression Omnibus.

5. Conclusions

We used a multilayered genomic approach to identify hundreds of putative causal regulators
of the neuroendocrine tumor phenotype. Our approach identified regulatory elements capable of
discriminating NE from non-NE lung cancer using two methodologically distinct approaches, bulk
tumor analysis and in vitro experiments. Importantly, both layers of analysis identified largely the
same set of genes as prominent features of the NE phenotype and even converged on a common set
of regulatory elements with high correlations to proximal or distal gene expression. Future studies
utilizing ATAC-seq optimized for frozen tissue [38] in combination with gene expression and DNA
methylation analysis holds great potential for a more in-depth characterization of the pangenomic
landscape of primary neuroendocrine lung cancer. While our current analyses were restricted to the
question of the NE phenotype, a similar approach combining all the histological subtypes of lung
cancer has the potential to provide new and more granular insights into the underlying biology of
these tumor entities and facilitate the discovery of novel clinical biomarkers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2003/s1,
Supplementary Figure S1: Clustering of distal ATAC-seq peaks for genes in the neural gene module. Of the
178 neural gene module genes, 1158 had an ATAC-seq peak within 1Mb window of their TSS. Clustering was
performed using Euclidean distance and ward linkage, Supplementary Table S1: DMRs associated with NE in
DNA methylation data, Supplementary Table S2: GTEx gene modules and GO-term analysis, Supplementary
Table S3: NE-associated ATAC-seq peaks from analysis of lung cancer cell lines, Supplementary Table S4: Gene
ontology analyses of genes derived from ATAC-seq alone or integration with DMRs, Supplementary Table S5:
Putative marker genes of the neuroendocrine tumor phenotype. Supplementary Information. Detailed description
of analysis steps.

Author Contributions: Conceptualization, J.S., E.A., and M.A.; Methodology, E.A. and M.A.; Software, E.A.
and M.A.; Formal analysis, J.S., E.A., and M.A.; Validation, J.S., E.A., and M.A.; Investigation, J.S., E.A., and
M.A.; Data curation, J.V.-C., H.B., A.K., J.S., E.A., and M.A.; Resources, M.P., S.M., J.D., A.K., J.V.-C., and H.B.;
Writing—original draft preparation, all authors; Funding acquisition, J.S., J.D., and M.P.; Project administration,
J.S., E.A., and M.A.; Supervision, J.S.; Final approval of manuscript, all authors; Agree to be accountable for all
aspects of the work, all authors. All authors have read and agreed to the published version of the manuscript.

http://www.mdpi.com/2072-6694/12/8/2003/s1


Cancers 2020, 12, 2003 15 of 17

Funding: Financial support for this study was provided by the Swedish Cancer Society, the Foundation for
Strategic Research through the Lund Centre for Translational Cancer Research (CREATE Health), the Sjöberg
Foundation, the Mrs Berta Kamprad Foundation, the Gunnar Nilsson Cancer Foundation, the Crafoord Foundation,
BioCARE a Strategic Research Program at Lund University, the Gustav V: s Jubilee Foundation, and governmental
funding (ALF). M.A. is supported by a postdoctoral grant from the Swedish Childhood Cancer Foundation (grant
number TJ2016-0057) and has received funding by The Gunnar Nilsson Foundation (grant number GN-2018-5).

Acknowledgments: The authors would like to acknowledge the Center for Translational Genomics, Lund
University and Clinical Genomics Lund, SciLifeLab for support with DNA methylation analyses.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Scagliotti, G.V.; Brodowicz, T.; Shepherd, F.A.; Zielinski, C.; Vansteenkiste, J.; Manegold, C.; Simms, L.;
Fossella, F.V.; Sugarman, K.; Belani, C.P. Treatment-by-histology interaction analyses in three phase III trials
show superiority of pemetrexed in nonsquamous non-small cell lung cancer. J. Thorac. Oncol. 2011, 6, 64–70.
[CrossRef]

2. Scagliotti, G.V.; Parikh, P.M.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.;
Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with
cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J.
Clin. Oncol. 2008, 26, 3543–3551. [CrossRef] [PubMed]

3. Swanton, C.; Govindan, R. Clinical Implications of Genomic Discoveries in Lung Cancer. N. Engl. J. Med.
2016, 374, 1864–1873. [CrossRef] [PubMed]

4. George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretic, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandezcuesta, L.;
Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [CrossRef]
[PubMed]

5. Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.R.; Chmielecki, J.; Beer, D.G.; Cope, L.;
Creighton, C.J.; Danilova, L.V.; et al. The Cancer Genome Atlas Network A: Comprehensive molecular
profiling of lung adenocarcinoma. Nature 2014, 511, 543–550.

6. Bhattacharjee, A.; Richards, W.G.; Staunton, J.; Li, C.; Monti, S.; Vasa, P.; Ladd, C.; Beheshti, J.; Bueno, R.;
Gillette, M.A.; et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct
adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 2001, 98, 13790–13795. [CrossRef] [PubMed]

7. Hammerman, P.S.; Voet, D.; Lawrence, M.S.; Voet, D.; Jing, R.; Cibulskis, K.; Sivachenko, A.; Stojanov, P.;
Mckenna, A.; Lander, E.S.; et al. Comprehensive genomic characterization of squamous cell lung cancers.
Nature 2012, 489, 519–525.

8. Karlsson, A.; Brunnstrom, H.; Micke, P.; Veerla, S.; Mattsson, J.S.M.; la Fleur, L.; Botling, J.; Jonsson, M.;
Reutersward, C.; Planck, M.; et al. Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional
Phenotypes to the New Histological WHO 2015 Classification. J. Thorac. Oncol. 2017, 12, 1257–1267.
[CrossRef]

9. Travis, W.D.; Burke, A.P.; Marx, A.; Nicholson, A.G. (Eds.) WHO Classification of Tumours of the Lung, Pleura,
Thymus and Heart, 4th ed.; IARC Press: Lyon, France, 2015.

10. Rekhtman, N.; Pietanza, M.C.; Hellmann, M.D.; Naidoo, J.; Arora, A.; Won, H.H.; Halpenny, D.; Wang, H.;
Tian, S.K.; Litvak, A.; et al. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma
Reveals Small Cell Carcinoma-like and Non-Small Cell Carcinoma-like Subsets. Clin. Cancer Res. 2016, 22,
3618–3629. [CrossRef]

11. George, J.; Walter, V.; Peifer, M.; Alexandrov, L.B.; Seidel, D.; Leenders, F.; Maas, L.; Muller, C.; Dahmen, I.;
Delhomme, T.M.; et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct
subtypes of high-grade neuroendocrine lung tumors. Nat. Commun. 2018, 9, 1048. [CrossRef]

12. Rossi, G.; Cavazza, A.; Marchioni, A.; Longo, L.; Migaldi, M.; Sartori, G.; Bigiani, N.; Schirosi, L.; Casali, C.;
Morandi, U.; et al. Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta,
and Met in large-cell neuroendocrine carcinoma of the lung. J. Clin. Oncol. 2005, 23, 8774–8785. [CrossRef]

13. Semenova, E.A.; Nagel, R.; Berns, A. Origins, genetic landscape, and emerging therapies of small cell lung
cancer. Genes Dev. 2015, 29, 1447–1462. [CrossRef] [PubMed]

http://dx.doi.org/10.1097/JTO.0b013e3181f7c6d4
http://dx.doi.org/10.1200/JCO.2007.15.0375
http://www.ncbi.nlm.nih.gov/pubmed/18506025
http://dx.doi.org/10.1056/NEJMra1504688
http://www.ncbi.nlm.nih.gov/pubmed/27168435
http://dx.doi.org/10.1038/nature14664
http://www.ncbi.nlm.nih.gov/pubmed/26168399
http://dx.doi.org/10.1073/pnas.191502998
http://www.ncbi.nlm.nih.gov/pubmed/11707567
http://dx.doi.org/10.1016/j.jtho.2017.05.008
http://dx.doi.org/10.1158/1078-0432.CCR-15-2946
http://dx.doi.org/10.1038/s41467-018-03099-x
http://dx.doi.org/10.1200/JCO.2005.02.8233
http://dx.doi.org/10.1101/gad.263145.115
http://www.ncbi.nlm.nih.gov/pubmed/26220992


Cancers 2020, 12, 2003 16 of 17

14. Karlsson, A.K.; Jonsson, M.; Lauss, M.; Brunnstrom, H.; Jonsson, P.; Borg, A.; Jonsson, G.; Ringner, M.;
Planck, M.; Staaf, J. Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine
and four adenocarcinoma epitypes associated with patient outcome. Clin. Cancer Res. 2014, 20, 6127–6140.
[CrossRef] [PubMed]

15. Sandoval, J.; Mendezgonzalez, J.; Nadal, E.; Chen, G.; Carmona, F.J.; Sayols, S.; Moran, S.; Heyn, H.;
Vizoso, M.; Gomez, A.; et al. A Prognostic DNA Methylation Signature for Stage I Non-Small-Cell Lung
Cancer. J. Clin. Oncol. 2013, 31, 4140–4147. [CrossRef] [PubMed]

16. Chen, F.; Zhang, Y.; Parra, E.R.; Rodriguez, J.; Behrens, C.; Akbani, R.; Lu, Y.S.; Kurie, J.M.; Gibbons, D.L.;
Mills, G.B.; et al. Multiplatform-based molecular subtypes of non-small-cell lung cancer. Oncogene 2017, 36,
1384–1393. [CrossRef] [PubMed]

17. Duruisseaux, M.; Esteller, M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol.
2017, 51, 116–128. [CrossRef]

18. Corces, M.R.; Granja, J.M.; Shams, S.; Louie, B.H.; Seoane, J.A.; Zhou, W.; Silva, T.C.; Groeneveld, C.S.;
Wong, C.K.; Cho, S.W.; et al. The chromatin accessibility landscape of primary human cancers. Science 2018,
362. [CrossRef] [PubMed]

19. Djureinovic, D.; Hallstrom, B.M.; Horie, M.; Mattsson, J.S.M.; la Fleur, L.; Fagerberg, L.; Brunnstrom, H.;
Lindskog, C.; Madjar, K.; Rahnenfuhrer, J.; et al. Profiling cancer testis antigens in non-small-cell lung cancer.
JCI Insight 2016, 1, e86837. [CrossRef]

20. Karlsson, A.; Cirenajwis, H.; Ericsonlindquist, K.; Brunnstrom, H.; Reutersward, C.; Jonsson, M.;
Ortizvillalon, C.; Hussein, A.; Bergman, B.; Vikstrom, A.; et al. A combined gene expression tool for
parallel histological prediction and gene fusion detection in non-small cell lung cancer. Sci. Rep. 2019, 9,
5207. [CrossRef] [PubMed]

21. Hermans, B.C.M.; Derks, J.L.; Thunnissen, E.; van Suylen, R.J.; den Bakker, M.A.; Groen, H.J.M.; Smit, E.F.;
Damhuis, R.A.; van den Broek, E.C.; Ruland, A.; et al. DLL3 expression in large cell neuroendocrine
carcinoma (LCNEC) and association with molecular subtypes and neuroendocrine profile. Lung Cancer 2019,
138, 102–108. [CrossRef]

22. Staaf, J.; Isaksson, S.; Karlsson, A.; Jonsson, M.; Johansson, L.I.; Jonsson, P.; Botling, J.; Micke, P.; Baldetorp, B.;
Planck, M. Landscape of somatic allelic imbalances and copy number alterations in human lung carcinoma.
Int. J. Cancer 2012, 1, 2020–2031. [CrossRef] [PubMed]

23. Henke, R.M.; Meredith, D.; Borromeo, M.D.; Savage, T.K.; Johnson, J.E. Ascl1 and Neurog2 form novel
complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev. Biol. 2009, 328, 529–540.
[CrossRef] [PubMed]

24. Jiang, T.; Collins, B.J.; Jin, N.; Watkins, D.N.; Brock, M.V.; Matsui, W.; Nelkin, B.D.; Ball, D.W. Achaete-scute
complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res. 2009,
69, 845–854. [CrossRef] [PubMed]

25. Kunnimalaiyaan, M.; Chen, H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors.
Oncologist 2007, 12, 535–542. [CrossRef]

26. Mizuno, Y.; Maemura, K.; Tanaka, Y.; Hirata, A.; Futaki, S.; Hamamoto, H.; Taniguchi, K.; Hayashi, M.;
Uchiyama, K.; Shibata, M.; et al. Expression of delta-like 3 is downregulated by aberrant DNA methylation
and histone modification in hepatocellular carcinoma. Oncol. Rep. 2018, 39, 2209–2216. [CrossRef]

27. Maemura, K.; Yoshikawa, H.; Yokoyama, K.; Ueno, T.; Kurose, H.; Uchiyama, K.; Otsuki, Y. Delta-like 3 is
silenced by methylation and induces apoptosis in human hepatocellular carcinoma. Int. J. Oncol. 2013, 42,
817–822. [CrossRef]

28. Staaf, O.; Tran, L.; Soderlund, L.; Nodin, B.; Jirstrom, K.; Vidarsdottir, H.; Planck, M.; Mattsson, J.S.M.;
Botling, J.; Micke, P.; et al. Diagnostic Value of Insulinoma-Associated Protein 1 (INSM1) and Comparison
With Established Neuroendocrine Markers in Pulmonary Cancers: A Comprehensive Study and Review of
the Literature. Arch. Pathol. Lab. Med. 2020. [CrossRef]

29. Kempfer, R.; Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 2020, 21,
207–226. [CrossRef]

30. Mohammad, H.P.; Smitheman, K.N.; Kamat, C.D.; Soong, D.; Federowicz, K.; van Aller, G.S.; Schneck, J.;
Carson, J.D.; Liu, Y.; Butticello, M.; et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of
LSD1 Inhibitors in SCLC. Cancer Cell 2015, 28, 57–69. [CrossRef]

http://dx.doi.org/10.1158/1078-0432.CCR-14-1087
http://www.ncbi.nlm.nih.gov/pubmed/25278450
http://dx.doi.org/10.1200/JCO.2012.48.5516
http://www.ncbi.nlm.nih.gov/pubmed/24081945
http://dx.doi.org/10.1038/onc.2016.303
http://www.ncbi.nlm.nih.gov/pubmed/27775076
http://dx.doi.org/10.1016/j.semcancer.2017.09.005
http://dx.doi.org/10.1126/science.aav1898
http://www.ncbi.nlm.nih.gov/pubmed/30361341
http://dx.doi.org/10.1172/jci.insight.86837
http://dx.doi.org/10.1038/s41598-019-41585-4
http://www.ncbi.nlm.nih.gov/pubmed/30914778
http://dx.doi.org/10.1016/j.lungcan.2019.10.010
http://dx.doi.org/10.1002/ijc.27879
http://www.ncbi.nlm.nih.gov/pubmed/23023297
http://dx.doi.org/10.1016/j.ydbio.2009.01.007
http://www.ncbi.nlm.nih.gov/pubmed/19389376
http://dx.doi.org/10.1158/0008-5472.CAN-08-2762
http://www.ncbi.nlm.nih.gov/pubmed/19176379
http://dx.doi.org/10.1634/theoncologist.12-5-535
http://dx.doi.org/10.3892/or.2018.6293
http://dx.doi.org/10.3892/ijo.2013.1778
http://dx.doi.org/10.5858/arpa.2019-0250-OA
http://dx.doi.org/10.1038/s41576-019-0195-2
http://dx.doi.org/10.1016/j.ccell.2015.06.002


Cancers 2020, 12, 2003 17 of 17

31. Bibikova, M.; Barnes, B.; Tsan, C.; Ho, V.T.; Klotzle, B.; Le, J.M.; Delano, D.; Zhang, L.; Schroth, G.P.;
Gunderson, K.L.; et al. High density DNA methylation array with single CpG site resolution. Genomics 2011,
98, 288–295. [CrossRef]

32. Holm, K.; Staaf, J.; Lauss, M.; Aine, M.; Lindgren, D.; Bendahl, P.; Vallonchristersson, J.; Barkardottir, R.B.;
Hoglund, M.; Borg, A.; et al. An integrated genomics analysis of epigenetic subtypes in human breast tumors
links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res. 2016, 18,
27. [CrossRef] [PubMed]

33. Andersson, R.; Gebhard, C.; Miguelescalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.;
Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. Nature 2014,
507, 455–461. [CrossRef] [PubMed]

34. Lawrence, M.F.; Huber, W.; Pages, H.; Aboyoun, P.; Carlson, M.R.J.; Gentleman, R.; Morgan, M.T.; Carey, V.J.
Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013, 9, e1003118. [CrossRef]
[PubMed]

35. The R Project for Statistical Computing. Available online: www.r-project.org (accessed on 1 January 2016).
36. Mclendon, R.E.; Friedman, A.H.; Bigner, D.D.; van Meir, E.G.; Brat, D.J.; Mastrogianakis, G.M.; Olson, J.J.;

Mikkelsen, T.; Lehman, N.L.; Aldape, K.; et al. Comprehensive genomic characterization defines human
glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068.

37. Bergh, J.C. Gene amplification in human lung cancer. The myc family genes and other proto-oncogenes and
growth factor genes. Am. Rev. Respir. Dis. 1990, 142, S20–S26. [CrossRef]

38. Corces, M.R.; Trevino, A.E.; Hamilton, E.G.; Greenside, P.; Sinnottarmstrong, N.A.; Vesuna, S.; Satpathy, A.T.;
Rubin, A.J.; Montine, K.S.; Wu, B.; et al. An improved ATAC-seq protocol reduces background and enables
interrogation of frozen tissues. Nat. Methods 2017, 14, 959–962. [CrossRef]

39. Saal, L.H.; Vallonchristersson, J.; Hakkinen, J.; Hegardt, C.; Grabau, D.; Winter, C.; Brueffer, C.; Tang, M.E.;
Reutersward, C.; Schulz, R.; et al. The Sweden Cancerome Analysis Network—Breast (SCAN-B) Initiative:
A large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the
clinical routine. Genome Med. 2015, 7, 20. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ygeno.2011.07.007
http://dx.doi.org/10.1186/s13058-016-0685-5
http://www.ncbi.nlm.nih.gov/pubmed/26923702
http://dx.doi.org/10.1038/nature12787
http://www.ncbi.nlm.nih.gov/pubmed/24670763
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://www.ncbi.nlm.nih.gov/pubmed/23950696
www.r-project.org
http://dx.doi.org/10.1164/ajrccm/142.6_Pt_2.S20
http://dx.doi.org/10.1038/nmeth.4396
http://dx.doi.org/10.1186/s13073-015-0131-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Differentially Methylated Regions in Neuroendocrine Lung Cancer Correlated with Gene Expression 
	NE-DMR Genes Expression in Normal Tissues Defines Six Transcriptional Programs 
	Characterization of the Six GTEx Modules in Lung Cancer Gene Expression Data 
	Assay for Transposase-Accessible Chromatin Sequencing (ATAC-Seq) Identifies Regions of Open Chromatin Associated with NE Histology 
	ATAC-Seq Supports Epigenetic Regulation of NE-DMR Genes 
	Assessing the Regulatory Potential of Tumor Derived NE-DMRs in ATAC-Seq Data 

	Discussion 
	Materials and Methods 
	Patient Cohorts 
	DNA Methylation Analyses 
	Gene Expression Analyses 
	ATAC- and RNA-Seq of NSCLC and NE Cell Lines 
	Data Sharing 

	Conclusions 
	References

