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Abstract

An intracellular plant pathogen ‘Candidatus Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium
meliloti, Bradyrhizobium japonicum, nitrogen fixing endosymbionts, Agrobacterium tumefaciens, a plant pathogen, and
Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 50 clusters of
conserved orthologous genes found on the chromosomes of all five metabolically diverse species. The intracellular
pathogens ‘Ca. Liberibacter asiaticus’ and Bartonella henselae have genomes drastically reduced in gene content and size as
well as a relatively low content of guanine and cytosine. Codon and amino acid preferences that emphasize low guanosine
and cytosine usage are globally employed in these genomes, including within regions of microsynteny and within signature
sequences of orthologous proteins. The length of orthologous proteins is generally conserved, but not their isoelectric
points, consistent with extensive amino acid substitutions to accommodate selection for low GC content. The ‘Ca.
Liberibacter asiaticus’ genome apparently has all of the genes required for DNA replication present in Sinorhizobium meliloti
except it has only two, rather than three RNaseH genes. The gene set required for DNA repair has only one rather than ten
DNA ligases found in Sinorhizobium meliloti, and the DNA PolI of ‘Ca. Liberibacter asiaticus’ lacks domains needed for
excision repair. Thus the ability of ‘Ca. Liberibacter asiaticus’ to repair mutations in its genome may be impaired. Both ‘Ca.
Liberibacter asiaticus and Bartonella henselae lack enzymes needed for the metabolism of purines and pyrimidines, which
must therefore be obtained from the host. The ‘Ca. Liberibacter asiaticus’ genome also has a greatly reduced set of sigma
factors used to control transcription, and lacks sigma factors 24, 28 and 38. The ‘Ca. Liberibacter asiaticus’ genome has all of
the hallmarks of a reduced genome of a pathogen adapted to an intracellular lifestyle.
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Introduction

Huanglongbing (HLB), arguably the most serious disease of

citrus worldwide [1,2], originated in South Asia [3,4] and recently

became epidemic in Brazil [5] and in Florida [6] homes of the

largest orange juice industries in the world. ‘Candidatus Liberibacter

asiaticus’ is consistently associated with HLB disease. Using

electron microscopy, researchers observed the pathogen within

sieve cells of phloem vessels of infected plant hosts [7,8] or in the

salivary glands of citrus psyllids, natural vectors of the pathogen

[9]. The pathogen can also be readily detected by PCR-based

tests, most based on the 16S rRNA gene [10,11]. Placement of ‘Ca.

Liberibacter asiaticus’ within the a-2 subdivision of the Proteo-

bacteria class [12] was confirmed by sequence analysis of the 16S–

23S RNA gene region [13–15]. In spite of many efforts [16–19],

‘Ca. Liberibacter asiaticus’ has not been artificially cultured. Thus

the bacterium seems to have an obligate intracellular lifestyle in

either plant or insect hosts.

In their landmark paper, Duan et al. provided a complete

genomic sequence of ‘Ca. Liberibacter asiaticus’ strain Psy62 [20].

The sequence was obtained by deep sequencing of DNA obtained

from an individual psyllid containing at least 86108 copies of the

‘Ca. Liberibacter asiaticus’ genome, based on q-PCR of its 16S

rRNA gene. This genomic sequence data was confirmed by an

independent group who also employed deep sequencing of the

contents of phloem cells from infected trees obtained by laser

micro dissection [21]. The genome is composed of a circular

chromosome of 1.23 MB with no extra chromosomal elements.

Analysis of the full genomic sequence enabled Duan et al. (2009) to

place ‘Ca. Liberibacter asiaticus,’ within the Rhizobiaceae family

of the order Rhizobiales [22–23] of the class a-Proteobacteria.

The intracellular bacterium ‘Ca. Liberibacter asiaticus’ and

other intracellular members of the a-Proteobacteria, such as

members of the genera Rickettsia and Bartonella, have reduced

genome size when compared to free-living related bacteria [20,

24]. Intracellular bacteria also typically have genomes with

remarkably low mol% G+C content [25], but there are also

examples of free-living bacteria with larger genomes but equally

low mol% G+C in their genomic sequence [26]. Forces that drive

the reduction in genome size and the decrease in mol% G+C

content remain obscure but are likely to result ultimately from

intense selection for managing scarce resources and the lower

energy costs associated with AT vs GC base pairs [27].

Intracellular organisms may have an enhanced rate of genomic
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evolution [28], and indeed ‘Ca. Liberibacter asiaticus’ occupies by

far the longest branch in a phylogram of members of the

Rhizobiales [20]. Other generalizations made about characteristics

of reduced genomes include the reduction of ribosomal gene

operons, the loss of some genes encoding enzymes needed for

DNA repair, the loss of sigma factors needed to regulate

transcription, and the loss or retention of different sets of genes

that tend to be either dispensable or indispensable [29,30].

When chromosomes are compared, phylogenetically-related

bacteria typically share clusters of orthologous genes (COGs). We

propose the term MOG (Microsyntenous Orthologous Genes) to

avoid confusion with proteins described in the COG database

meaning clusters of orthologous groups of proteins. We compared

MOGs in ‘Ca. Liberibacter asiaticus’ with those in Sinorhizobium

meliloti, Bradyrhizobium japonicum and Agrobacterium tumefaciens. These

bacteria, capable of free-living, symbiotic nitrogen fixing, and

pathogenic lifestyles are highly adaptable and thus have large

genomes particularly when compared to the reduced genome of

‘Ca. Liberibacter asiaticus’. We therefore also compared the

genome of ‘Ca. Liberibacter asiaticus’ to that of Bartonella henselae, a

flea-vectored pathogen of cats and, opportunistically, of humans.

Although B. henselae can be artificially cultured, it has complex

nutritional requirements and thus it can be considered a semi-

obligate intracellular pathogen of cats, reproducing in erythrocytes

[31]. It possesses a severely reduced genome, not much larger than

that of ‘Ca. Liberibacter asiaticus’ [31,32].

We have studied these genomes in detail, within regions of

conserved microsynteny between reduced and large genomes, and

within signature regions of orthologous proteins. We have also

performed global comparisons of gene sets whose members are

often reduced in the genomes of intracellular pathogens. This

analysis provides insight into the remarkable evolutionary pathway

leading to a reduced genome in ‘Ca. Liberibacter asiaticus’ as

compared to the larger genomes of other members of the

Rhizobiales with free-living and plant-associated lifestyles.

Results and Discussion

Length and isoelectric point of orthologous proteins
We identified orthologous protein pairs, and hence, conserved

orthologous genes, based on BlastP e values of less than 10215, a

relatively conservative criterion. Manual curation of the resulting

datasets increased the size of conserved clusters of genes by 10–

15%. We compared orthologous protein pairs encoded by

corresponding genes from microsyntenous orthologous groups.

Isoelectric points (pIs) and the number of amino acids predicted

for orthologous protein pairs were plotted for ‘Ca. Liberibacter

asiaticus’ vs S. meliloti, B. japonicum, A. tumefaciens, and B. henselae.

Although there seems to be a general tendency for the pIs of

orthologous protein pairs to correlate, the correlation was weak

and substantial variation was observed (Fig. 1). Nonetheless, we

observed generally higher pI’s for proteins of ‘Ca. Liberibacter

asiaticus’ as compared to their orthologs in the free living

Rhizobiales. For example, the mean pI for 552 orthologous

proteins for ‘Ca. Liberibacter asiaticus vs S. meliloti was 7.90 vs

6.91. Similar results were found for 426 orthologous proteins from

‘Ca. Liberibacter asiaticus’ vs A. tumefaciens. However, when 362

orthologous proteins from the intracellular pathogens were

compared, the pIs were nearly the same, 8.02 for ‘Ca. Liberibacter

asiaticus’ and 7.90 for B. henselae.

We also plotted the number of amino acids in orthologous

protein pairs in microsyntenous orthologous groups and found that

the correlation in length of orthologous protein pairs was much

stronger (Fig. 2). Amino acid plots of orthologous protein pairs

shared between S. meliloti and ‘Ca. Liberibacter asiaticus’ and

orthologous protein pairs shared between B. japonicum and ‘Ca.

Liberibacter asiaticus’ revealed several proteins pairs well

separated from the diagonal. For the most part, these fell above

the diagonal, indicating that the orthologous protein in ‘Ca.

Liberibacter asiaticus’ was shorter in length than the correspond-

ing protein in S. meliloti or B. japonicum. In contrast, the correlation

between the lengths of each member of orthologous protein pairs

was very high for ‘Ca. Liberibacter asiaticus’ and B. henselae, the

two bacteria with similar intracellular parasitic lifestyles and

reduced genomes (Fig. 2).

The relatively high mean isoelectric points of proteins from ‘Ca.

Liberibacter asiaticus’ as compared to their orthologs from free living

bacteria, is similar to other intracellular pathogens [33]. The mean of

the isoelectric points of proteins from ‘Ca. Liberibacter asiaticus’ were

not different from that of orthologs in B. henselae, consistent with both

bacteria being intracellular pathogens with reduced genomes. The

isoelectric points (pIs) of orthologous protein pairs are not under

stringent selection since conservative substitutions of amino acids can

retain function while changing the pI [34,35].

When the pIs of orthologous protein pairs from the closely related

S. meliloti and A. tumefaciens were individually compared graphically

[34], a great deal of dispersion away from the diagonal was observed

and subsets of protein pairs were considered to be differentially

grouped away from the diagonal [34]. Such grouping of protein

pairs away from the diagonal was not observed in any of the

graphical comparisons made here between ‘Ca. Liberibacter

asiaticus’ and the other members of the Rhizobiales; instead the

dispersion from the diagonal was continuous but was noticeably less

when B. henselae and ‘Ca. Liberibacter asiaticus’ were compared.

The lack of correlation of pIs between orthologous proteins of ‘Ca.

Liberibacter asiaticus’ when compared to those of other members of

the Rhizobiales is consistent with phylogenetic distance [20] and the

extreme shift in codon usage between ‘Ca. Liberibacter asiaticus’

and free-living members of the Rhizobiales. However, the relative

lengths of orthologous proteins was well conserved despite a

consistent trend toward overall reduction in the obligate intracel-

lular microorganism, extending data from other systems [34,35] to

intracellular pathogens with extremely reduced genomes.

GC content in microsyntenous orthologous groups of
paired genomes

Ninety-one microsyntenous orthologous groups, (MOGs), were

identified when the genomes of ‘Ca. Liberibacter asiaticus’ and S.

meliloti were compared. The mol% GC content of the micro-

syntenous MOG regions in S. meliloti was 25.562.1 percent greater

than the corresponding regions of ‘Ca. Liberibacter asiaticus (Fig. 3).

The MOGs of B. japonicum had 27.862.1 mol% higher GC content

than their orthologous MOGs in ‘Ca. Liberibacter asiaticus’ (Fig. 3).

In contrast, when the GC content of 66 MOGs conserved between

‘Ca. Liberibacter asiaticus and B. henselae were compared, the

differences in mol% GC content were small, only 1.560.2

percentage points. These data are consistent with the overall GC

content of the respective genomes, and the fact the B. henselae, like

‘Ca. Liberibacter asiaticus’ has a highly reduced genome.

To determine if the preference for AT-rich codons held in the

functionally and structurally conserved motifs of the encoded

proteins, five arbitrarily selected sets of MOGs from ‘Ca.

Liberibacter asiaticus’ and S. meliloti were chosen for comparative

study. The percentage of GC base pairs in the genomic sequences

encoding the functional domains of the proteins was consistent with

the overall GC usage for each genome, with ‘Ca. Liberibacter

asiaticus’ and S. meliloti having GC content of 35–40% and 60–65%

respectively in the functional domains of these orthologous proteins.

Adaptations of the Liberibacter Genome
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Orthologous proteins have been retained in ‘Ca. Liberibacter

asiaticus’ without conservation of the coding sequences, but with a

low GC bias for the genome as a whole. This low G+C codon bias

is often observed in intracellular bacteria, and mathematical

analysis has shown that such synonymous codon usage bias is

dominated by selection at the third codon position [36] . The

evolutionary driver of the low GC bias may very likely be related

to the higher energy cost to synthesize a GC base pair relative to

an AT base pair in the genome [27], as a part of a larger

competition for limited metabolic resources from the host. In

addition to the energy saved in the synthesis of AT vs GC base

pairs, the thermodynamic stability of AT rich sequences is lower

than that of GC rich sequences. DNA helicase consumes ATP in

order to separate DNA strands [37]. Therefore we hypothesize

that replication and transcription of an AT rich genome will be

less energetically expensive than that of a GC rich genome, based

on a lower ATP cost for strand separation. This contributes to the

evolution of AT rich genomes in intracellular parasites where

competition for resources with the host is intense.

Codon preference and amino acid usage in proteins of
‘Ca. Liberibacter asiaticus’ vs other members of the
Rhizobiales

Amino acid codon usage by ‘Ca. Liberibacter asiaticus’ was

distinctly different from that of A. tumefaciens, B. japonicum and S.

meliloti, consistent with an overall drastic reduction in GC content

of the genome (Table S1). For example, across the entire

ORFeome, ‘Ca. Liberibacter asiaticus’ the codon ‘CAA’ for

glutamine was used 73% of the time while A. tumefaciens, B.

japonicum and S. meliloti used the codon ‘CAG’ for glutamine more

than 80% of the time. ‘Ca. Liberibacter asiaticus’ ‘preferred’ the

codon ‘TGT’ for cysteine (75%) while A. tumefaciens, B. japonicum

and S. meliloti used the codon ‘TGC’ for cysteine more than 80%

of the time. Similarly, codons ‘TTA’, ‘CTA’, or ‘CTT’ were used

by ‘Ca. Liberibacter asiaticus’ to encode leucine 65% of the time

but were used only about 15% of the time by A. tumefaciens, B.

japonicum and S. meliloti. These bacteria instead used codons ‘CTG,’

‘TTG’ or ‘CTC’ about 88% of the time. Reduced usage of G and

C nucleotides in triplet codons determining a given amino acid

incorporated into protein is consistent throughout the ‘Ca.

Liberibacter asiaticus’ genome. B. henselae shared the strong

preference for AT-rich amino acid codons in the ORFeome with

‘Ca. Liberibacter asiaticus’ (Table S1). The preference for A or T

codons at the third position of amino acid codons in intracellular

bacteria has been observed previously [36]. This is consistent with

rapid evolution of genes in bacterial endosymbionts relative to

those of free living bacteria, a phenomenon reflected in amino acid

sequences of proteins [28].

Genome-wide comparisons also showed that usage of the amino

acids proline, arginine, valine, glycine and alanine was lower in B.

Figure 1. Isoelectric points of orthologous protein pairs. Orthologous proteins from ‘Ca. Liberibacter asiaticus’ and Sinorhizobium meliloti (A),
Agrobacterium tumefaciens (B), Bradyrhizobium japonicum (C) and Bartonella henselae (D).
doi:10.1371/journal.pone.0023289.g001

Adaptations of the Liberibacter Genome
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henselae and ‘Ca. Liberibacter asiaticus’ than in the free-living

Rhizobiales. Usage of the amino acids phenylalanine, serine,

cysteine, glutamine, isoleucine, asparagine, lysine was higher in B.

henselae and ‘Ca. Liberibacter asiaticus’ as compared with that of

the free-living Rhizobiales (Table S2). The tRNA synthetases

corresponding to these amino acids are present in the proteome.

Thus, the differences in usage are not likely to be due to an

inability of ‘Ca. Liberibacter asiaticus’ to synthesize amino acids de

novo due to loss of metabolic capability with the reduced genome.

Instead, we observe that there is a strong correlation between the

AT content of the codons for amino acids and the frequency of

occurrence of the amino acids in the ‘Ca. Liberibacter asiaticus’

and B. henselae genomes (Table S2).

Purine and pyrimidine metabolism
‘Ca. Liberibacter asiaticus’ is markedly deficient in its ability to

carry out purine and pyrimidine metabolism as compared to S.

meliloti (Figures S1 and S2). ‘Ca. Liberibacter asiaticus’ retains only

47 genes annotated for purine metabolism compared with the 95

genes annotated for purine metabolism in the genome of S. meliloti.

Although it can produce the nucleotides GTP and ATP from their

respective nucleoside diphosphates, ‘Ca. Liberibacter asiaticus’

does not appear able to synthesize guanine, xanthine, hypoxan-

thine or adenine. Likewise, ‘Ca. Liberibacter asiaticus’ retains only

38 genes for pyrimidine metabolism compared with the 60 genes

for pyrimidine metabolism in the genome of S. meliloti. Although

‘Ca. Liberibacter asiaticus’ can produce UTP and CTP from their

respective nucleoside diphosphates it does not appear to be able to

produce uracil, cytosine or thymine.

‘Ca. Liberibacter asiaticus,’ likely has lost the ability to syn-

thesize and metabolize both purines and pyrimidines, and these

may have to be obtained from the host as di- or tri-nucleosides.

The loss of these pathways would be consistent with a general bias

towards deletion of genes in the process leading to reduced

genomes if the gene products become redundant in the

intracellular environment [38]. The incorporation of uracil into

DNA by either replication error or cytosine to uracil deamination

has been proposed as a driver towards the low GC/high AT

genome, particularly if DNA repair if ineffective [33], as is likely to

be the case here. In this context it is notable that E.C. 3.5.4.1, used

to interconvert cytosine and uracil, is missing in ‘Ca. Liberibacter

asiaticus’. This defect has been noted previously in Ureaplasma

urealyticum, another intracellular bacterium [25]. A caveat is

necessary here. The lack of annotated orthologous proteins to

perform a particular task in ‘Ca. Liberibacter asiaticus’ does not

mean that the organism cannot perform that task. Several

examples have been described in Mycoplasma spp. where relaxed

substrate specificity for enzymes compensated for loss of function

[39]. Examples of enzymes with relaxed specificities included

kinases [40] and malate/lactate dehydrogenase [41]. Still, the

apparent loss of metabolic capability is striking.

Figure 2. Number of amino acids in orthologous protein pairs. Orthologous proteins from ‘Ca. Liberibacter asiaticus’ and Sinorhizobium
meliloti (A), Agrobacterium tumefaciens (B), Bradyrhizobium japonicum (C) and Bartonella henselae (D).
doi:10.1371/journal.pone.0023289.g002

Adaptations of the Liberibacter Genome
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DNA replication and repair
Atypical and reduced DNA replication complements are

typically observed in reduced genomes [30]. Two critical

components of the DNA polymerase III complex, the alpha and

gamma/tau subunits, were annotated as pseudogenes in the

original description of the ‘Ca. Liberibacter asiaticus’ genome [20].

We have conducted a complete bioinformatic analysis of the DNA

replication complex in ‘Ca. Liberibacter asiaticus’ (Table 1). The

DNA polymerase III alpha subunit (COG0587) is located between

genes CLIBASIA_03630 and CLIBASIA_03645 in the Liberi-

bacter genome and thus occurs between positions (797277–

801416). The protein length is 1000+ amino acids long and is

characteristic of other DNA polymerase III alpha subunits.

SMART analysis reveals a pFAM DNA_pol3_alpha domain.

There is an open reading frame using a triplet codon encoding

leucine as the starting amino acid (797696–800797) with a strong

blast hit to Rhizobium etli DNA polymerase III alpha subunit

(YP_001977851.1, E-value 0.0). This protein is thus presumed to

be functional. DNA polymerase III subunit gamma/tau

(COG2812) is located between genes CLIBASIA_03275 and

CLIBASIA_03260 in the Liberibacter genome. The protein is 370

amino acids long, shorter than other DNA Pol III gamma/tau

subunits. However Smart analysis shows an ATPase domain and

there is an open reading frame from nucleotide position 499568 to

500677. This protein has an e-value of 9.0E-151 when compared

to its ortholog in S. meliloti, and the domains of the ‘Ca.

Liberibacter asiaticus’ and S. meliloti proteins show similar e-values

when compared to the pFAM models (Table 1). The rest of the

DNA replication complex is also present with low e-values values

to both orthologs in S. meliloti and functional domains in pFAM.

The major difference between S. meliloti and ‘Ca. Liberibacter

asiaticus’ in the DNA replication complex is that S. meliloti encodes

three RNase H orthologs but ‘Ca. Liberibacter asiaticus’ encodes

only two orthologs of RNase H (Table 1).

The process leading to genome reduction such as has occurred in

‘Ca. Liberibacter asiaticus’ is thought to be facilitated by deficient

DNA repair capability [29,33]. We therefore searched the ‘Ca.

Liberibacter asiaticus’ genome for the suite of enzymes active in

DNA repair by comparison with the suite of DNA repair enzymes

present in S. meliloti. Most such enzymes present in S. meliloti were

also present in ‘Ca. Liberibacter asiaticus’, and are likely to be in

functional condition based on the e-values between orthologs in S.

meliloti and ‘Ca. Liberibacter asiaticus. We also found similar

matches of functional domains of the proteins from these two

bacteria to the pFAM database (Table S3). The noteworthy

exceptions were for DNA PolI and DNA ligase. In the case of DNA

PolI, the ortholog in ‘Ca. Liberibacter asiaticus’ was lacking domains

53EXOc and 35EXOc, which are expected to be particularly

important in DNA excision repair. Both bacteria had three DNA

ligase enzymes annotated on their chromosome, but two of these

proteins were apparently not functional in ‘Ca. Liberibacter

asiaticus’, as the e-values to S. meliloti orthologs were poor and

there was no match at all to the model proteins in pFAM. It is

important to note that we found an additional eight ligases encoded

on pSymA and pSymB of S. meliloti, and 2 ligases encoded on the A.

tumefaciens chromosome as well as five more ligases encoded on the

Figure 3. Differences in GC content in microsyntenous orthologous groups. The GC content of microsyntenous orthologous groups of ‘Ca.
Liberibacter asiaticus’ compared with other members of the Rhizobiales. The dark bar and red lines denote the mean and one standard deviation of
the mean.
doi:10.1371/journal.pone.0023289.g003
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linear chromosome and the At and Ti plasmids. B. japonicum has 10

ligases encoded on its chromosome (Table S4).

The accelerated rate of evolution observed within obligate

intracellular bacteria [20,28] may be facilitated by inefficient

repair of mutations caused by loss of genes encoding DNA repair

enzymes. ‘Ca. Liberibacter asiaticus’ is likely to be deficient in

DNA repair as compared to S. meliloti. DNA ligase participates in

all three DNA repair pathways, and so having only one ligase

rather than eleven ligases as found in S. meliloti or 10 ligases as

found in B. japonicum very likely limits the efficiency of DNA repair

processes. Likewise, the lack of the EXO53 and EXO35 domains

in the DNA PolI enzyme of ‘Ca. Liberibacter asiaticus’ is very

likely to impede the excision repair process, and is also an example

of an enzyme evolving relaxed substrate specificity concurrent with

genome reduction [39,40].

Sigma factors
The genome of ‘Ca. Liberibacter asiaticus’ encodes only three

sigma subunit factors, which enable differential transcription of

genes by RNA polymerase (Table 2). These include one sigma 70

for genes expressed during exponential growth, one sigma 54 for

genes involved in nitrogen metabolism and one sigma 32, involved

in the heat shock or other stress responses. In contrast, the S.

meliloti encodes 11 sigma factors, including three sigma 54 subunits

and four sigma 24 subunits which enable expression of factors

needed for the heat shock response as well as for factors exported

from the cell. S. meliloti also has a special sigma factor, FecI for the

expression of genes needed for the uptake of iron.

It is notable that ‘Ca. Liberibacter asiaticus’ has no recognizable

sigma factors 24 or 38, which in E. coli are used for the expression

proteins intended for export or for expression in the stationary

phase of growth, respectively [42]. Neither S. meliloti nor ‘Ca.

Liberibacter asiaticus’ encodes a sigma factor 28 which is required

for expression of flagellar genes in E. coli [42]. S. meliloti produces

flagellae so one of the other sigma subunits is apparently

responsible for this activity in S. meliloti. Flagellae have not been

observed in ‘Ca. Liberibacter asiaticus’, though an extensive set of

flagellar genes is present [20].

The early workers who created the proposed genus ‘Candidatus

Liberibacter’ placed it within the a-subdivision of the Proteobac-

teria based on sequence analysis of the 16S rRNA gene [12,14].

Duan et al. [20] created a phylogenetic tree of the a-Proteobacteria

based on concatenated sequence alignments of 94 proteins. Their

overall alignment of the a-Proteobacteria was as previously

demonstrated [43], with the addition of ‘Ca. Liberibacter asiaticus’

firmly within the Rhizobiales as an ‘‘early branching member’’ of

the Rhizobiaceae. We took advantage of the relationship of ‘Ca.

Liberibacter asiaticus’ with other members of the Rhizobiales to

design the experiments described herein. Although the large regions

of synteny previously observed in other similar comparisons [34] has

been largely obscured by the process of genomic reduction, we have

identified numerous microsyntenous orthologous groups of proteins

that are conserved across all five species studied (Kuykendall et al.,

in preparation). The existence of so many MOGs in these inter

specific genomic comparisons reflects the underlying evolutionary

relationships among these species.

Table 1. Proteins involved in the DNA Polymerase III replication complex in ‘Ca. Liberibacter asiaticus’ and Sinorhizobium meliloti.

ANNOTATION Protein in Protein in E value to L. asiaticus L. asiaticus S. meliloti S. meliloti

L. asiaticus S.meliloti L. asiaticus to pFAM E-value to pFAM E-value to

S. meliloti Domains pFAM model Domains pFAM model

Epsilon ACT57291 CAC41392 6.00E-67 EXO III 5.91E-39 EXO III 9.44E-47

Alpha N/Aa CAC45868 0 DNA Pol 3 a 3.40E-267 DNA Pol 3 a 8.20E-302

Pol IIIAc 1.15E-18 Pol IIIAc 4.60E-18

Gamma/Tau N/Ab CAC41667 9.00E-151 AAA 1.54E-08 AAA 3.52E-12

Delta’ ACT56690 CAC46182 2.00E-78 Nonec None None None

Beta ACT56927 CAC41772 2.00E-99 Pol 3Bc 8.67E-87 Pol3Bc 1.76E-119

Chi ACT56864 CAC45735 5.00E-21 DNA Pol3 chi 4.60E-08 DNA Pol3 chi 2.50E-43

Delta ACT57277 CAC47912 4.00E-45 DNA Pol3 d 3.60E-04 DNA Pol3 d 3.30E-05

DNAB ACT56805 CAC45710 0 DNAB 9.30E-35 DNAB 1.40E-32

DNAG ACT57307 CAC46897 3.00E-164 ZnF CHCC 3.34E-23 ZnF CHCC 2.76E-24

Toprim N 1.90E-57 Toprim N 1.20E-61

SSB ACT56656 CAC46137 3.00E-46 SSB 3.60E-32 SSB 1.90E-31

RNaseH ACT57269 CAC45486 5.00E-49 RNase H 3.00E-47 RNase H 8.40E-58

ACT56750 CAC45411 2.00E-53 RNase HII 4.20E-63 RNase HII 2.60E-62

------------ CAC45163 ----------- ---------- ---------- RNase H 5.50E-40

DNA Pol I CAC41562 0 53EXOc 7.69E-111 53EXOc 2.40E-121

HhH2 4.15E-11 HhH2 1.10E-15

POLAc 2.19E-106 POLAc 2.91E-120

Ligase ACT57645 CAC46743 0 LIGANc 9.68E-172 LIGANc 1.30E-227

aProtein list compiles from the Kyoto Encyclopedia of Genomes and Genes.
bThese proteins were originally annotated as pseudogenes and so a protein designation is not available.
cThis protein does not match any pFAM domain.
doi:10.1371/journal.pone.0023289.t001
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The ‘Ca. Liberibacter asiaticus’ genome is typical of reduced

genomes adapted for the niche of intracellular parasitism [24,29–

30,39] and in this regard is very similar to the genome of Bartonella

henselae [32]. Orthologous protein pairs were identified and plotted

against each other based on size and isoelectric points. The lengths

of proteins in orthologous pairs, as well as the isoelectric points of

the orthologous proteins, were very well correlated between the

two intracellular pathogens. This is consistent with the greatly

reduced genome sizes of ‘Ca. Liberibacter asiaticus’ and Bartonella

henselae as compared with the other species. Both bacteria use a

specialized genetic code and the amino acid composition in

proteins is altered to minimize the occurrence of guanine and

cytosine in their genomes, presumably because guanine and

cytosine are more energetically expensive to make than are

adenine and thymidine [27]. We further suggest that because the

unwinding of the double helix to allow replication or transcription

is done at the expense of ATP [37] , a genome rich in AT base

pairs should be relatively less costly to replicate because of the

lower thermodynamic stability of AT as compared with GC base

pairs.

The GC content of the chromosomal DNA of ‘Ca. Liberibacter

asiaticus’ and B. henselae is 26–27 mol% less than that of the other

members of the Rhizobiales, consistent with other obligate

intracellular pathogens with reduced genomes [24]. We show that

the low GC content is achieved by a global and systematic

reordering of the transcription process to favor AT vs GC rich

codons for amino acids, such as phenylalanine and proline, when

such a choice is available in the universal code. This AT

preference extends to the preferred usage of TAA as the ‘stop’

codon over TGA in the other Rhizobiales. In any case GC content

ought not to be a taxonomic criterion, as members of the well

accepted order Rhizobiales within the a-Proteobacteria are shown

here to have widely divergent GC content.

Although the DNA replication machinery appears to be intact

in ‘Ca. Liberibacter asiaticus’, the relative efficiencies of orthologs

from ‘Ca. Liberibacter asiaticus’ and S. meliloti have not been

compared, so the relative efficiency of DNA replication between

the two bacteria can not be accurately estimated.

The complete and uniform revision of the genome to favor AT

rich codons over GC rich codons requires a massive accumulation

of mutations. The capacity of ‘Ca. Liberibacter asiaticus’ to repair

DNA appears to be limited, which would likely contribute to the

rapid evolution of the genomic sequence observed [20,28]. DNA

PolI of ‘Ca. Liberibacter asiaticus’ lacks both of the exonuclease

domains used for excision repair, and ‘Ca. Liberibacter asiaticus’

has only one ligase enzyme used more generally in DNA repair.

The lack of capacity for DNA repair may represent a potential

vulnerability for ‘Ca. Liberibacter asiaticus.

Likewise the lack of endogenous metabolic capability of ‘Ca.

Liberibacter asiaticus’, as shown by its apparent inability to synthesize

purines or pyrimidines may also represent vulnerabilities to ‘Ca.

Liberibacter asiaticus’. The repertoire of sigma subunit factors is also

greatly reduced in ‘Ca. Liberibacter asiaticus’ as compared to S.

meliloti. Loss of sigma subunits is common in reduced genomes of

bacteria adapted to an intracellular lifestyle [30]. Because of the

relative richness of sigma factor subunits encoded by the S. meliloti

genome, gene expression in S. meliloti is apparently under much more

nuanced control than is the case with ‘Ca. Liberibacter asiaticus’,

which is adapted to a stable host cell environment requiring few sigma

factors. The apparent lack of nuanced control of genetic expression

may present another weakness for ‘Ca. Liberibacter asiaticus’. We

have noted a number of reductions in the ‘Ca. Liberibacter asiaticus’

genome that lead to a markedly reduced metabolic capability as well

as reduced capabilities for DNA repair and fine control of genetic

expression. Nonetheless, this reduced genome provides ‘Ca. Liberi-

bacter asiaticus’ with the means to successfully infect and multiply to

high levels in several plant species [7,44] as well as within the insect

vector Diaphorina citri [20] with whom it is also highly adapted. Thus

the reduced genome is very subtly adapted to the intracellular

environment, which is perhaps surprisingly similar between plant and

insect hosts.

Materials and Methods

Orthologous protein pairs were identified by P-BLAST

alignments from genomic sequence data using a cut off e-value

Table 2. Sigma factors present in the genomes of Sinorhizobium meliloti and ‘Ca. Liberibacter asiaticus.’

Sinorhizobium Liberibacter Identification E. coli Liberibacter vs Function

Protein Protein gene Sinorhizobium

E value

CAC46893 ACT56762 sigma 70 rpoD 0 Exponential growth

CAC47374 ACT57389 sigma 54 rpoN 9.00 E-80 Nitrogen metabolism

CAC41817 N/A sigma 54 rpoN ___________ Nitrogen metabolism

CAC41818 N/A sigma 54 rpoN ___________ Nitrogen metabolism

N/A N/A sigma 38 rpoS ___________ stationary phase

CAC47305 ACT57084 sigma 32 rpoH 6.00 E-124 heat shock

CAC47835 N/A sigma 32 rpoH ___________ heat shock

N/A N/A sigma 28 rpoF ___________ flagella

CAC46681 N/A sigma 24 rpoE ___________ heat shock and export

CAC47413 N/A sigma 24 rpoE ___________ heat shock and export

CAC46954 N/A sigma 24 rpoE ___________ heat shock and export

CAC47014 N/A sigma 24 rpoE ___________ heat shock and export

CAC46610 N/A FecI FecI ___________ Iron uptake

doi:10.1371/journal.pone.0023289.t002

Adaptations of the Liberibacter Genome

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23289



of less than 10215. Microsyntenous regions that are conserved

between the ‘Ca. Liberibacter asiaticus’ chromosome and those of

four other members of the Rhizobiales were identified by using

criteria that included (1) at least three orthologous genes in

succession, (2) in the same order and (3) with predicted protein

products that shared Blast alignment e values of less than 10215

(Kuykendall et al., in preparation).

Identification of orthologous proteins in microsyntenous
orthologous groups

To identify orthologous genes and characterize them in some

detail, amino acid sequences (‘Ca. Liberibacter asiaticus’ strain psy62,

CP001677; Bartonella henselae strain Houston-1, BX897699; Sinorhizo-

bium meliloti strain 1021, AL591688; Bradyrhizobium japonicum strain

USDA 110, BA000040 and Agrobacterium tumefaciens strain C58,

AE007869) were downloaded from NCBI and used with the author’s

original annotation. ‘Ca. Liberibacter asiaticus’ strain psy62 does not

have plasmid DNA, and extra chromosomal DNA sequences were

not included in this study except as noted. Using default BLAST

parameters, each amino acid sequence from a chromosome of this

group of strains was blasted against the amino acid sequences of the

other chromosomes of this group of phylogenetically related strains.

Perl scripts and Excel spreadsheets were created to easily identify hits

between genomes with low, negative e-values.

Calculation of GC content and amino acid and codon
usage

A perl script was written to calculate the GC content of each

gene in each syntenic block. The GC composition of syntenic

blocks were compared between the genome of ‘Ca. Liberibacter

asiaticus’ and the other members of the Rhizobiales and

summarized graphically. Another perl script was written calculat-

ing codon usage for each gene in all 5 genomes. The percentage of

occurrence of each amino acid and each amino acid codon were

also calculated for each genome. The amino acid sequences of

signature domains of proteins in selected syntenic blocks were

determined using the SMART program (http://smart.embl-

heidelberg.de/). The nucleotide sequence encoding these domains

was extracted and the codon usage and GC content was

calculated.

We also calculated the isoelectric points and the number of

amino acids of orthologous proteins encoded in microsyntenous

blocks of each genome. Isoelectric points of each protein in each

syntenic block were calculated with the mw iep program (http://

gchelpdesk.ualberta.ca/). The isoelectric points and number of

amino acids in orthologous protein pairs in microsyntenous

regions identified in the ‘Ca. Liberibacter asiaticus’ proteome as

compared to the other members of the Rhizobiales were plotted

against each other (Sigma Plot 11, Systat, San Jose, CA).

The functional capabilities of proteins involved in DNA repair

and DNA replication pathways were estimated by comparing the

proteins from ‘Ca. Liberibacter asiaticus to orthologous proteins

from S. meliloti. Comparisons included e-values of the proteins to

each other as well as e values of each protein to the pFAM models

for each protein. Sigma factors were identified by reciprocal

searches of the genomes of S. meliloti and ‘Ca. Liberibacter

asiaticus’. The purine and pyrimidine metabolic networks were

taken from the Kyoto Encyclopedia of Genomes and Genes.

Orthologous genes in S. meliloti and ‘Ca. Liberibacter asiaticus’

were mapped on to these networks.

Supporting Information

Figure S1 Purine metabolism in Sinorhizobium meliloti
and ‘Ca. Liberibacter asiaticus’. Enzymes annotated as

present in both ‘Ca. Liberibacter asiaticus’ and S. meliloti are

colored green. Enzymes annotated as present in S. meliloti but not

in ‘Ca. Liberibacter asiaticus are colored orange. The metabolic

pathway is from the Kyoto Encyclopedia of Genomes and Genes.

(TIF)

Figure S2 Pyrimidine metabolism in Sinorhizobium
meliloti and ‘Ca. Liberibacter asiaticus’. Enzymes anno-

tated as present in both ‘Ca. Liberibacter asiaticus’ and S. meliloti

are colored green. Enzymes annotated as present in S. meliloti but

not in ‘Ca. Liberibacter asiaticus are colored orange. The

metabolic pathway is from the Kyoto Encyclopedia of Genomes

and Genes.

(TIF)

Table S1 Frequency (%) of usage of amino acid codons
in genomes of intracellular and free living members of
the Rhizobiales.
(RTF)

Table S2 Amino acids over- and under-represented in
the ‘Ca. Liberibacter asiaticus’ and Bartonella henselae
proteomes as compared to the proteomes of free-living
members of the Rhizobiales.
(RTF)

Table S3 Proteins involved in DNA repair pathways in
‘Ca. Liberibacter asiaticus and Sinorhizobium meliloti.
(RTF)

Table S4 Proteins that contain Ligase domains anno-
tated on chromosomal and extra chromosomal elements
of ‘Ca. Liberibacter asiaticus’ and other members of the
Rhizobiales.
(RTF)

Acknowledgments

We thank Larissa Higginbotham and Felicia Davenport for outstanding

technical support.

Author Contributions

Conceived and designed the experiments: JSH JS LDK. Performed the

experiments: JS. Analyzed the data: JSH JS LDK. Wrote the paper: JSH

LDK.

References

1. da Graça J, Korsten L (2004) Citrus Huanglongbing: Review, present status and

future strategies. In: Naqvi SAMH, ed. Diseases of Fruits and Vegetables Vol. I.
Kluwer, The Netherlands, . pp 229–245.
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10. Jagoueix S, Bové JM, Garnier M (1996) PCR detection of the two ‘Candidatus’
liberobacter species associated with greening disease of citrus. Molecular and

Cellular Probes 10: 43–50.

11. Li W, Hartung JS, Levy LE (2006) Quantitative real time PCR for detection and
identification of Candidatus Liberibacter species associated with citrus huan-

glongbing. J Microbiological Methods 66: 104–115.
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14. Jagoueix S, Bové JM, Garnier M (1997) Comparison of the 16S/23S Ribosomal
Intergenic Regions of ‘‘Candidatus Liberobacter asiaticum’’ and ‘‘Candidatus

Liberobacter africanum’’, the Two Species Associated with Citrus Huanglongb-

ing (Greening) Disease. Int J Syst Bacteriol 47: 224–227.
15. Subandiyah S, Iwanami T, Kondo Y, Kobayashi M, Tsuyumu S, et al. (2000)

Comparison of 16S rDNA and 16S/23S Intergenic Region Sequences Among
Citrus Greening Organisms in Asia: Plant Disease 84: 15–18.

16. Ghosh SK, Raychaudhuri SP, Varma A, Nariani TK (1971) Isolation and
culture of mycoplasma associated with citrus greening disease. Current Science

40: 299–300.

17. Garnett HM (1984) Isolation of the greening organism. Symposium of citrus
greening. Nelspruit, South Africa. pp 4–6.

18. Davis MJ, Mondal SN, Chen H, Rogers ME, Brlansky RH (2008) Co-cultivation
of ‘Candidatus Liberibacter asiaticus’ with actinobacteria from citrus with

huanglongbing. Plant Disease 92: 1547–1550.

19. Sechler A, Schuenzel EL, Cooke P, Donnua S, Thaveechai N, et al. (2009)
Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L.

americanus’ associated with Huanglongbing. Phytopathology 99: 480–486.
20. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, et al. (2009) Complete

genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter
asiaticus’ obtained through metagenomics. Molecular Plant-Microbe Interac-

tions 22: 1011–1020.

21. Tyler HL, Roesch LFW, Gowda S, Dawson WO, Triplett EW (2009)
Confirmation of the sequence of ‘Candidatus Liberibacter asiaticus’ and

assessment of microbial diversity in Huanglongbing-infected citrus phloem
using a metagenomic approach. Molecular Plant-Microbe Interactions 22:

1624–1634.

22. Kuykendall LD (2005) Order Rhizobiales, Type Family Rhizobiaceae Genus
Rhizobium. In Brenner DJ, Kreig NR, Staley JT, Garrity GM, eds. Bergey’s

Manual of Systematic Bacteriology, 2nd. Edition, Vol. II. The Proteobacteria. New
York: Springer. 324 p.

23. Kuykendall LD (2006) List of new names and new combinations previously
effectively, but not validly, published. Validation List no. 107. Int J of Syst and

Evol Microbiol 56: 1–6.

24. Sallstrom B, Andersson SGE (2005) Genome reductionin the alpha-proteobac-
teria. Curr Opinion in Microbiol 8: 579–585.

25. Glass JL, Lefkowitz EJ, Glass JS, Hlener CR, Chen EY, et al. (2000) The
complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:

757–762.

26. Miller WG, Parker CT, Rubenfield M, Mendz GL, Wosten MM (2007) The

complete genome sequence and analysis of the epsilon proteobacterium Arcobacter

butzleri: PLoS One 2: e1358.

27. Rocha EPC, Danchin A (2002) Base composition bias might result from

competition for metabolic resources: TRENDS in Genetics 18: 291–294.

28. Itoh T, Martin W, Nei M (2002) Acceleration of genomic evolution caused by

enhanced mutation rate in endocellular symbionts. PNAS USA 99:

12944–12948.

29. Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D (2009) Massive

comparative genomic analysis reveals convergent evoluiton of specialized

bacteria: Biology Direct 4: 13. doi:10.1186/1745-6150-4-13.

30. Moran NA (2002) Microbial minimalism: Genome reduction in bacterial

pathogens. Cell 108: 583–586.

31. Alsmark CM, Frank AC, Karlberg EO, Legault B-A, Ardell DH, et al. (2004)

The louse-borne human pathogen Bartonella quintana is a genomic derivative of

the zoonotic agent Bartonella henselae. PNAS USA 101: 9716–9721.

32. Engel P, Dehio C (2009) Genomicsof host-restricted pathogens of the genus

Bartonella. In de Reuse H, Bereswill S, eds. Microbial Pathogenomics: Genome

Dynamics: Karger, Basel. pp 158–169.

33. Carbajal D, Morano KA, Morano LD (2004) Indirect immunofluorescence

microscopy for direct detection of Xylella fastidiosa in xylem sap. Current

Microbiology 49: 372–375.

34. Guerrero G, Peralta H, Aguilar A, Diaz R, Villalobos MA, et al. (2005)

Evolutionary, structural and functional relationships revealed by comparative

analysis of syntenic genes in Rhizobiales. BMC Evolutionary Biology 5: 55.

doi:10.1186/1471-2148-5-55.

35. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, et al. (2007)

The relationships between the isoelectric point and: length of proteins, taxonomy

and ecology of organisms: BMC Genomics 8: 163. doi:10.1186/1471-2164-8-

163.

36. Wan X-F, Xu D, Kleinhofs A, Zhou J (2004) Quantitative relationship between

synonymous codon usage bias and GC composition across unicellular genomes.

BMC Evolutionary Biology 4: 19. doi:10.1186/1471-2148/4/19.

37. Dillingham MS, Soultanos P, Wigley DB (1999) Site-directed mutagenesis of

motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand

separation. Nucleic Acids Research 27: 3310–3317.

38. Andersson JOA, Andersson SGE (2001) Molecular Biology and Evolution 18:

829–839.

39. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, et al. (2006)

Essential genes of a minimal bacterium, PNASUSA 103: 425–430.

40. Pollack JD, Myers MA, Dandekar T, Herrmann R (2002) Suspected Utility of

Enzymes with Multiple Activities in the Small Genome Mycoplasma Species:

The Replacement of the Missing ‘‘Household’’ Nucleoside Diphosphate Kinase

Gene and Activity by Glycolytic Kinases. OMICS 6: 247–258.

41. Cordwell SJ, Basseal DJ, Pollack JD, Humphery-Smith I (1997) Malate/lactate

dehydrogenase in mollicutes: evidence for a multienzyme protein. Gene 197:

113–120.

42. Jishage M, Iwata A, Ueda S, Ishihama A (1996) Regulation of RNA Polymerase

sigma subunit synthesis in Escherichia coli: Intracellular levels of four species of

sigma subunit under various growth conditions. J Bacteriol 178: 5447–5451.

43. Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the

Alpha proteobacteria: J Bacteriol 189: 4578–4586.

44. Li W, Levy L, Hartung JS (2009) Quantitative distribution of ‘Candidatus

Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathol-

ogy 99: 139–144.

Adaptations of the Liberibacter Genome

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23289


