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Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive
oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as
factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce
pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can
ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying
these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of
antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the
ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or
depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to
pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive
disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more
antioxidant therapy in humans has to been performed.

1. Background

Reactive oxygen species (ROS) are formed during normal
metabolism of oxygen and are produced as by-products of
aerobic metabolism. A certain amount of ROS production
is necessary for gene expression [1], cell signalling [2, 3],
and redox homeostasis. Scavenging antioxidant systems are
indispensable for maintaining an adequate amount of ROS.
The balance between the generation and elimination of
ROS is a key factor required for almost every metabolic func-
tion in mammals. Maintenance of this balance is an impor-
tant constitutive process and has a particular influence on
cell proliferation, differentiation, apoptosis, and death [4].
When ROS production overwhelms the scavenging ability
of antioxidants, oxidative stress (OS) occurs. Unfortunately,
disruption of this balance can easily result from either an
increase in the concentration of ROS or a decrease in
scavenging ability. Excessive ROS levels are harmful to

the human body and can result in accumulation of oxidative
damage in distinct subcellular compartments that exert very
toxic effects on DNA, proteins, and lipids. ROS-mediated
damage can ultimately influence physiological functions,
such as cell signalling pathways and redox-sensitive signal-
ling pathways, and lead to pathological conditions [5].

Regarding the female reproductive system, ROS and anti-
oxidants have been recognized as key factors involved in
ovarian physiological metabolism. Many studies have inves-
tigated the presence of antioxidants and their transcripts in
the female reproductive tract [6–8]. Previous studies have
reported that the balance between ROS and antioxidants
greatly influences the reproductive activities in female mam-
malian animals, such as endometrial changes in different
luteal phases, folliculogenesis, ovulation, fertilization, placen-
tal growth, embryogenesis, and implantation [9]. However,
under OS conditions, compromised reproduction and fertil-
ity may be induced, including impaired ovarian functions,
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deteriorated oocyte quantity, embryonic development disor-
ders, gynaecological disease, and infertility [10–13]. Thus,
antioxidants are critical for maintaining the redox balance
in the ovaries to support normal ovarian function. However,
their exact molecular mechanisms and roles have not been
fully elucidated. Previous studies have primarily focused on
ROS functions in the ovaries. Thus, in this context, a system-
atic understanding of antioxidant expression, regulation, and
molecular mechanisms involved in ovarian function is
required. Reproductive diseases caused by reduced antioxi-
dant system capacity are also described, and for this reason,
future investigations of possible antioxidant supplementa-
tion to protect against these diseases are necessary.

2. Metabolic Mechanism of ROS
and Antioxidants

2.1. Reactive Oxygen Species. Reactive oxygen species include
radical species, for example, the superoxide anion radical
(O2

•−). Although hydrogen peroxide (H2O2) does not contain
unpaired electrons and is therefore not a radical, it is still
considered as a form of ROS. The hydroxyl radical (•OH) is
the most highly reactive and toxic form of oxygen [14]. In
addition to ROS, reactive nitrogen species (RNS) have similar
effects on cells. RNS include radical species, such as primary
nitric oxide (•NO) [15].

The redox state of cells is maintained by multiple
enzymes and factors. O2

•− production is normally the initial
step of ROS production and propagation, and thus, O2

•− is
considered the precursor of other ROS and functions as a
regulator in oxidative chain reactions. After O2

•− dismutation,
H2O2, which is relatively stable and able to pass through cell
membranes, is formed [16]. In the presence of O2

•−, H2O2 and
iron, the Haber-Weiss reaction will occur, which generates
•OH [17, 18]. In addition, NO and peroxynitrite (ONOO−)
are very important radical species in cells. NO is a well-
known key factor for many cellular events and acts as an
inhibitor for cell apoptosis and death in a wide range of
mammalian cells [19–21]. NO is usually generated from L-
arginine via NO synthase (NOS) activity [15] in mitochon-
dria because NOS is located in mitochondria [22, 23]. As a
reactive nitrogen intermediate, ONOO− exerts pro-oxidant
actions more often than NO itself [24].

2.2. Antioxidant Systems. Antioxidant mechanisms exist in
all organisms, which enable them to cope with oxidative
environments and help cells repair the damage caused by
ROS [25]. These mechanisms can be divided into nonenzy-
matic and enzymatic mechanisms. Enzymatic antioxidants
include catalase, SOD, glutathione peroxidase (GPX), gluta-
thione reductase (GR), and glutathione oxidase (GPX).
SOD, catalase, and GPX are the three most common enzy-
matic antioxidants, and they play critical roles in removing
the harmful oxygen products produced by superoxide dis-
mutase [26]. Glutathione (GSH) is considered the major rep-
resentative of nonenzymatic antioxidants present in oocytes
and embryos [27]; other types of nonenzymatic antioxidants
include vitamin C, vitamin E, selenium, Zn, carotene, and
beta-carotene [28].

The most harmful ROS, O2
•−, is removed by SOD in a dis-

mutation reaction, which is considered the initial and first
vital step for regulating intracellular O2

•− production. The
products of this reaction include molecular oxygen (O2)
and hydrogen peroxide (H2O2) [16]. To date, three different
widely expressed types of SOD have been recognized in
organisms. Cu/Zn-SOD (SOD1) is located in cytoplasm and
nuclear compartments, while Mn-SOD (SOD2) is expressed
in the mitochondria [29]. SOD1 and SOD2 are dimeric and
homotetrameric proteins, respectively. EC-SOD (SOD3) is
a tetrameric glycoprotein located in the extracellular space
[30, 31]. Following the dismutation reaction, hydrogen per-
oxide can be catalysed by either GPX or catalase into H2O.
GPX is present in both the mitochondria and cytoplasm
[32], while catalase is detected only in peroxisomes [33].
After converting H2O2 into H2O, reduced GSH is oxidized
to GSSG (oxidized glutathione) in a peroxidase reaction.
Within cells, GSSG is reduced by NADPH. NADPH then
regenerates GSH through the enzymatic activity of GR [33].
This entire process is called “GSH recycling,” and it is of fun-
damental importance for the oxidant scavenging ability of
cells. Glutathione transferase (GST) is an enzyme that
belongs to a family of multifunctional enzymes. GST plays
a vital role in detoxifying reactive metabolites by catalysing
their conjugation with GSH. Some of these reactive metabo-
lites are different types of electrophilic alkylating com-
pounds, which are the products generated from OS in
macromolecules or biological membranes [34]. GST can
transfer the reactive compounds to subcellular sites for fur-
ther excretion and/or transformation [35]. Figure 1 illustrates
a portion of the ROS and antioxidant metabolic pathways.

In addition to the endogenous antioxidants mentioned
above, vitamins, for example, vitamin C and vitamin E,
among other dietary antioxidants, can also directly scavenge
ROS with very high efficiency. Through this scavenging
activity, vitamin C and vitamin E provide another major
source of protection from ROS-induced damage in cells
[19, 36, 37]. Trace elements are also vital antioxidants
because they can provide an active site in cells necessary
for antioxidants to function properly or participate in the
regulation of antioxidant enzymes as cofactors [38, 39].
Polyphenols are ubiquitous in a healthy diet, found in fruits
and vegetables, and act as “ROS cleaners” or natural antioxi-
dants. Hence, polyphenols are particularly important for the
human body [40].

3. A Brief Overview of the Physiological Roles of
ROS in the Ovaries

ROS exert both negative and positive effects in mammalian
ovaries [41]. From oocyte maturation to fertilization, ROS
affect multiple physiological and pathological activities in
the ovaries.

Different markers of OS have been examined in cycling
ovaries [42, 43]. Macrophages, leukocytes, and cytokines,
which are major sources of ROS, are all present in the follic-
ular fluid microenvironment. ROS in the follicular fluid are
involved in follicular growth, oocyte maturation, and ovarian
steroid biosynthesis [44]. Angiogenesis is a critical process
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for ovarian folliculogenesis, dominant follicle selection, cor-
pus luteum formation, and embryo formation [45, 46].
Angiogenesis is promoted by oestrogens with some cellular
factors, such as VEGF [47]. ROS produced from NADP(H)
oxidase were reported to be critical for angiogenesis in vivo
and VEGF signalling in vitro [48]. Accordingly, ROS are
involved in follicular growth in part by regulating angiogen-
esis. The development of follicles from the primordial stage
to antral follicles is accompanied by a marked increase in
the metabolic function of granulosa cells, especially a large
increase in cytochrome P450 activity with steroid biosynthe-
sis [49]. Large amounts of ROS are produced during electron
transport, indicating that functional granulosa cells are
related to the pro-oxidant state in the follicles. When the pre-
ovulatory follicle is formed, ovulation occurs under luteiniz-
ing hormone (LH) stimulation [50]. A certain amount of
ROS is required for ovulation [41], and inhibition of ROS
has been confirmed to hinder ovulation [41, 51]. In preovu-
latory follicles, excessive antioxidants impair LH-stimulated
progesterone secretion and ovulation-related gene expres-
sion [41]. ROS are induced in preovulatory follicles with
oscillation of prostaglandins, cytokines, proteolytic enzymes,
and steroids, resulting in blood flow alterations and eventual
follicle rupture [52]. The ovulation process is compared with
an acute inflammatory reaction because many genes and
reagents related to inflammation are induced in the preovu-
latory follicles by the LH surge during ovulation [53, 54].
ROS function as critical modulators during the inflammatory
reactions involved in follicular rupture [55]. With the excep-
tion of dominant follicles, which are released for fertilization,
the other growing follicles will all undergo apoptosis, and this
process is promoted by ROS. In parallel, FSH-induced oes-
trogen synthesis and upregulation of catalase and GSH in
growing follicles counteract the apoptotic process to main-
tain the balance during normal ovarian function [56]. During
the luteal phase, a large amount of progesterone is produced
to maintain the early stage of pregnancy. If pregnancy does

not occur, the corpus luteum regresses [56]. A rapid reduc-
tion in progesterone is required for adequate follicular matu-
ration in the next reproductive cycle. ROS are generated in
the corpus luteum and are involved in functional luteolysis.
ROS and antioxidants are related to progesterone synthesis
in the luteal phase [27]. Steroidogenesis is a major source of
ROS production, and progesterone synthesis is restricted in
the corpus luteum with ROS [57]. During pregnancy,
decreased SOD1 induces an increase in ROS production,
resulting in progesterone inhibition, and thus, scavenging
of ROS by antioxidants may contribute to the maintenance
of luteal cell integrity and extend the life span of the corpus
luteum [58].

4. Antioxidants in the Ovaries

As described in Background, as the defence system for main-
taining the redox balance under physiological conditions,
antioxidants have a large influence on reproductive activities
[9]. Historically, scientists have emphasized the function of
ROS in female reproduction rather than that of antioxidants,
and most papers are related to reproductive activities that
occur after ovulation, while the follicular growth process is
rarely discussed. Thus, we have reviewed antioxidants and
their relative roles in almost all ovarian activities. Among
all the antioxidants, we chose to discuss the most significant
antioxidants, including catalase and SOD, and the antiox-
idants involved in GSH recycling. Their regulation during
the ovarian cycle and follicular maturation are systemati-
cally reviewed. In addition, relevant literature is listed and
discussed with regard to the roles of antioxidants in oocyte
maturation, ovulation, corpus luteum function, and steroido-
genesis. The possible regulatory function of gonadotropins
on antioxidants is also addressed here.

4.1. Catalase. Catalase plays a critical role in ROS metabo-
lism. For this reason, catalase has been intensely studied in

O2

H2O2

H2O
O2 GS-SG +

GR

NADPH, H+

GSH

Catalase GPX

GST

Nontoxic and more soluble compounds

O2·−

SOD

NADP+ +

+
GSH

1 2

G
SH

 re
cy

cl
in

g

O2 + e−

O2 OH· OH−+ +
O2·−, Fe++

Oxidative damage to
DANN, RNA, protein,
and lipids

ONOO−+ NO

H2O

Figure 1: Schematic representation of reactive oxygen species (ROS) generation and important cellular enzymatic antioxidant pathways. The
formation of •O2 is the initial step in a cascade that results in the formation of other ROS. Mammalian cells contain a variety of antioxidant
mechanisms to maintain ROS at a certain concentration. The major antioxidant enzymes include SOD, catalase, GSH, GPX, GR, and GST.
These enzymes work together to form a defence system against ROS damage.
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recent years. However, very limited evidence has been found
regarding catalase regulation in follicular development and
differentiation. Catalase is predominantly found in peroxi-
somes. In the ovaries, catalase was first detected in 1975 by
immunohistochemistry [59]. Catalase expression in oocytes
is low compared with other cell types in the follicles [60,
61]. In the oocyte nucleus, chromosomal defects such as
chromosome misalignment and DNA damage can be
induced after inhibition of catalase, and during meiotic mat-
uration in mouse oocytes, catalase has been shown to protect
the genome from oxidative damage [60].

Regarding catalase regulation in follicular growth, the
activity of catalase in granulosa cells from large follicles
has been observed to be several times higher than that in
small and medium follicles in various mammals, such as
pigs [62], goats [63], and rats [64]. In rat ovarian granu-
losa and theca cells, increased catalase activity can be
observed during ovarian development and luteinisation
[65, 66]. Except in folliculogenesis, catalase content has
also been found to be distributed throughout different oes-
trous phases. Singh and Pandey observed that catalase
activity in total ovary homogenate was highest in the met-
estrus phase, declined in the oestrous and pro-oestrous
stages, and reached the lowest levels in the diestrus phase
[67]. Nevertheless, catalase concentration in follicular fluid
is not significantly different among follicles of different
sizes [68, 69].

The distribution and oscillation of catalase during
different ovarian cycles are suggested to be related to
gonadotropin regulation. Gonadotropins such as FSH have
well-known functions that are primarily important for fol-
licular maturation, differentiation, and steroidogenesis [70].
Interestingly, catalase activity has been reported to be sig-
nificantly enhanced through gonadotropin stimulation in
different mammals [63, 71–73]. Behl and Pandey further
investigated whether catalase and oestradiol activities in
ovarian granulosa cells in different follicle stages were
related to FSH levels. They found that not only oestradiol
secretion but also catalase activity increased after FSH
stimulation, and the degree of this increase was greater
in large follicles than in medium or small follicles [63].
As it is well known that oestrogen reaches its highest con-
centration in dominant follicles, the concomitant increase
in catalase and oestradiol in response to FSH may suggest
a role of catalase in follicle selection and prevention of
apoptosis. After ovulation was blocked, catalase activity
increases significantly in the entire follicle as well as in
the thecal cells [64]. Furthermore, the activity of catalase
in both rat and pig ovaries has been shown to be positively
correlated with the amount of ferredoxin and cytochrome
P450scc, which are two constituents of the steroidogenic
electron transport chain [74]. In steroidogenic biogenesis,
oxygen free radicals such as superoxide are produced
[75–78] and then catalysed by SOD to H2O2 [16, 79].
Accordingly, catalase acts as a protective factor to neutral-
ize H2O2 to maintain ROS balance and normal steroid
levels. These studies show that catalase contributes to follicu-
lar development, the oestrous cycle, and steroidogenic events
in the ovaries.

4.2. SOD. SOD enzyme families are present inmultiple tissues
and ovaries of different mammals. The location of SOD in the
human body was first determined by Shiotani et al. [80] and
Tamate et al. [43] using immunohistochemistry. Neither
SOD1 nor SOD2 has been observed in primordial and pri-
mary follicles. SOD2 has been detected in secondary follicles,
while SOD1 begins to appear in theca cells after the formation
of the antral cavity. SOD1 cannot be detected in granulosa
cells until follicles enter the dominant follicle stage. High
expression levels of both SOD1 and SOD2 have been detected
in luteinized granulosa and theca cells.

Biochemically, a peak of collective SOD activity appears
during the pro-oestrus phase, which involves the lowest level
of superoxide radicals compared with other oestrous stages
[81, 82]. Both the amount and activity of the three SOD iso-
forms in follicular fluid are greater in small and medium fol-
licles than in large antral follicles, and these findings have
been assessed and verified in different animals [68, 69, 83,
84]. Interestingly, compared with follicular fluid, no changes
in SOD have been observed in granulosa cells with regard to
the size of the follicles [83]. Furthermore, high SOD activity
in follicular fluid was correlated with low fertilization rates
in humans by comparing SOD activity in follicular fluid from
patients whose oocytes did not become fertilized with those
whose oocytes did become fertilized [85]. According to the
above evidence, relatively decreased SOD activity in large fol-
licular fluid is necessary to ensure that ROS levels reach a
threshold value that is required for ovulation. However,
excessive ROS production in preovulatory follicles may exert
harmful effects to oocytes. An oocyte in the preovulatory fol-
licle acquires developmental competence and a very active
metabolism, and during this process, a large amount of
ROS can be generated; thus, SOD1 is required to neutralize
O2
•− in the cytoplasm of oocytes [86], and therefore, SOD

must be maintained at a certain concentration and activity
level within the follicles to guarantee a balance between O2

•−

and H2O2 for normal cellular function [87]. Conclusively, a
certain amount of SOD not only ensures a functional concen-
tration of ROS for ovulation but also protects oocytes from
OS. After ovulation, SODs are very active in the corpus
luteum, because corpus luteum function is related to proges-
terone levels and ROS. Interestingly, progesterone fluctua-
tion in the luteal phase is positively correlated with SOD1
activity. Reduction in SOD1 during corpus luteum regression
is accompanied by increased ROS levels. In contrast to SOD1,
SOD2 concentration in the corpus luteum is enhanced in the
regression phase to clear the excess ROS produced in mito-
chondria by cytokines and inflammatory reactions. Thus,
SOD1 activity in the corpus luteum is closely correlated with
progesterone secretion, while SOD2 is primarily targeted to
protect the luteal cells from oxidative damage caused by
inflammation [27].

Successful cultivation of cumulus cell-oocyte complexes
(COCs) in vitro has made it possible to analyse the function
of the SOD isoforms in oocytes. SOD1 and SOD3 are
expressed in the oocyte nucleus, and SOD3 is the only SOD
isoform that can be detected in the zona pellucida. The level
of SOD1 in the oocyte nucleus is enhanced in small and
medium-sized follicles [83]. Interestingly, SOD3 can be
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translocated from cumulus cells into oocytes under certain
conditions [88]. This evidence may demonstrate that SOD1
and SOD3 potentially contribute to the protection of
DNA or transcription regulation of redox-sensitive genes.
Mammalian oocytes contain many a large number of mito-
chondria, and SOD2, which is specifically localized to the
mitochondria and is the principle scavenger of mitochondrial
superoxide [89, 90]. The extracellular matrix, which is an
important component of COCs, is dynamically regulated,
and SOD3 was shown to be one of the critical regulators
[91]. When ovulation occurs, there is a surge in ROS produc-
tion in COCs, and OS is greatly enhanced [44]. Conse-
quently, COCs may stockpile the various SOD isoforms for
upcoming events, such as ovulation, fertilization, and early
embryonic development.

Matzuk et al. generated SOD1 null mice with reduced
fertility as evidenced by a decreased number of preovulatory
follicles and corpora lutea; primary and small antral follicles
but few corpora lutea were found in these mice under histo-
logical analysis [92]. Another group created a copper chaper-
one for superoxide dismutase (CCS)-null mice that induced
marked reductions in SOD1 activity. CCS (−/−) mice
showed abnormal development of the antral follicles and
no corpus luteum [93]. Furthermore, SOD1 is reportedly
involved in antral follicle development. Matzuk et al. also
examined SOD2-deficient mice, and they found that
SOD2-deficient mice die within three weeks of birth. After
the authors completed transplantation of ovaries from the
postnatal SOD2-deficient mice to bursa wild-type hosts,
all follicle stages were detected, and viable offspring were
obtained, which suggest a less important role for SOD2
than for SOD1 in ovarian functions [92].

To investigate SOD regulation in relation to steroids, oes-
tradiol and SOD were measured in the follicular fluid of
patients who underwent in vitro fertilization (IVF). Interest-
ingly, researchers found a strong positive correlation between
SOD enzyme activity and intrafollicular oestradiol levels,
which are related to oocyte quality [94]. In contrast, SOD
was shown to have inhibitory effects on oestrogen synthesis
by inhibiting FSH-induced aromatase activity in cultured
granulosa cells, and this inhibition was found to occur at
one or more post-FSH receptor sites in rat granulosa cells
in vitro [95]. LH is a gonadotropic hormone secreted from
the anterior pituitary gland [96]. An LH peak triggers ovula-
tion, and LH later stimulates the development of the corpus
luteum [96]. Kawaguchi et al. found that LH can increase the
mRNA and protein levels of SOD1, SOD2, and catalase as
well as SOD activity in the bovine corpora lutea. SOD1,
SOD2, and catalase mRNA levels varied in different luteal
phases and reached the highest expression in the midluteal
phase. In addition, the authors suggested that the LH-
induced upregulation of antioxidant enzymes increased cell
viability and maintained corpus luteum function during
the luteal phase [97]. Conversely, corpus luteum-derived
SOD2 was found to serve as an LH-release inhibitory factor
in sheep [98].

4.3. GSH Recycling. GSH is a low molecular weight thiol that
is predominantly expressed in mammalian cells. GSH

maintains cells in a reduced state and functions as an electron
donor for some antioxidant enzymes [99, 100]. GSH is
involved in many cellular functions, including cell prolifera-
tion, differentiation, and apoptosis [101]. GSH can be synthe-
sized de novo from glutamate, cysteine, and glycine via
catalysis by glutamate cysteine ligase and glutathione synthe-
tase. Another predominant enzymatic system for maintain-
ing GSH in most tissues is the reduction of GSSG to GSH
via GR with NADPH consumption [99]. GSH can then be
oxidized back to GSSG. In the ovary, the strongest GR activ-
ity is found in oocytes [102].

Studies of ovarian functions have demonstrated that the
GSH concentration in follicular fluid in large follicles is sig-
nificantly higher than that in small follicles during the luteal
phase [68]. Luderer et al. reported that the GSH content in
the ovaries increased from the oestrous to metestrus phase
compared with the diestrus to pro-oestrus phase in adult rats
[103]. Accordingly, the highest GR activity was detected in
the metestrus phase [102]. Surprisingly, Lee et al. discovered
that ovarian alpha-class GST expression levels were much
higher in the pro-oestrus phase than in the diestrus phase
in total ovary homogenates [104]. These results suggest that
different enzymes involved in GSH recycling are sensitive
to the changes that occur during the oestrous cycle, with
different regulation mechanisms and various effects among
different follicle sizes. However, the regulatory mechanism
of these antioxidants during the ovarian cycle and follicu-
lar growth is poorly characterized.

According to the literature, GSH increases gamete via-
bility and fertilization. GSH content was reported to be
decreased by approximately 10-fold in unfertilized mouse
oocytes [105]. In addition, researchers have described
GSH contribution to spindle formation in bovine oocytes
via depletion of GSH in oocytes; after GSH depletion, the
spindle poles became wider, and the spindle area increased
significantly [106]. Furthermore, high GSH content in
oocytes during follicular development is related to improved
development competence of the follicle [107–109]. In addi-
tion to GSH, GPX has been reported to play significant roles
in gametogenesis and in vitro fertilization. The activity of
GPX in the follicular fluid of follicles that were subsequently
fertilized was higher than that in fluid from nonfertilized fol-
licles [110]. During the GSH cycle, GR, which cycles GSSG
back to GSH, may also play a pivotal role in ovarian function
by maintaining GSH at reduced levels [102].

Both in vivo and in vitro studies have shown that the
oocyte GSH concentration is modulated by gonadotropin
signalling during the preovulatory period. In vivo studies
revealed that FSH stimulation enhanced ovarian GSH con-
tent [103, 111]. In addition, the GSH content in cumulus cells
was gradually increased during oocyte maturation in pigs
[112, 113], cattle [114], and horses [115]. One research group
has shown that GSH content was increased in porcine
oocytes and cumulus cells under FSH treatment in pigs via
modulation of glutamate cysteine ligase (GCL) subunit
mRNA [116]. GCL is the rate-limiting enzyme in GSH syn-
thesis. In contrast, another research group observed a reduc-
tion in GSH and transcript levels encoding GSH in the
presence of FSH alone in COCs of cattle [117], but this
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phenomenon was rescued by combined treatment with bone
morphogenetic protein 15 (BMP15) [117], which is an
important factor in ovarian maturation [118, 119]. FSH and
BMP15 cotreatment promoted development competence in
oocytes by distributing metabolism equally throughout the
oocyte. FSH promoted glucose metabolism, while BMP15
accelerated glutathione recycling to protect against cellular
OS via increased NADPH production [117].

Gene knock-out mice were created to analyse gene
function in the ovaries and during fertilization. Ho et al.
created Gpx1-null mice and observed that the mice exhib-
ited normal fertility [120]. Deletion of the entire Gpx4
gene can lead to embryonic death [121]. In comparison,
deletion of the mitochondrial form [122] or nuclear form
[123] has no effect on female fertility. The fertility of mice
with an inactivating mutation in the GR gene was also
unaffected [124–126]. Nonetheless, these studies did not
investigate the effect of these mutations and deletions on
ovarian function. C-Glutamyl transpeptidase 1 (Ggt1) is an
enzyme that participates in glutathione synthesis. Ggt1-null
mice demonstrated growth retardation and a severe female
reproductive phenotype, which included no large antral
follicles or corpus luteum in the ovaries and a lack of
response of the follicles to exogenous gonadotropin stimu-
lation. All female Ggt1-null mice were completely infertile
[127–129], but GSH concentrations were not significantly
altered in these mice compared with wild-type mice. Con-
sistent with the Ggt1 mutant phenotype, high-performance
liquid chromatography (HPLC) analysis of adult ovaries
showed that the intracellular cysteine levels were largely
reduced, but interestingly, the female reproductive pheno-
type was completely rescued by cysteine replacement [127].
GCL is composed of a modifier (GCLM) and a catalytic
(GCLC) subunit. GCLM-null mice can survive and repro-
duce, whereas GCLC-null mice die at the early embryonic
stage [130–133]. Oocyte GSH concentrations in GCLM-null
mice were less than 20% than those in oocytes of GCLM
wild-type mice. Additionally, fertility was markedly reduced
due to decreased progression to both the pronucleus and
blastocyst stages [134].

ROS are believed to be involved in the initiation of
apoptosis, as ROS levels increase prior to any other indica-
tor of apoptosis in follicles. After blocking the synthesis of
GSH with the inhibitor buthionine sulfoximine (BSO), a
statistically significant increase in atretic antral follicles
was observed in rat ovaries [135]. Prevention of apoptosis
initiation in antral follicles by FSH is commonly accepted
[136, 137]. Interestingly, FSH treatment can reportedly stim-
ulate GSH synthesis [138, 139]. The antiapoptotic effect of
FSH on granulosa cell apoptosis can be markedly inhibited
by blocking the synthesis of GSH with BSO in cultured folli-
cles [138]. In addition to GSH, catalase and SODs can also
protect against apoptosis in large antral follicles in rats [140].

5. Disturbance of Redox State under
Pathological Conditions and Ageing

Many physiological processes can be influenced by OS, which
can lead to negative effects or even cause pathological

conditions in reproductive systems [10–13, 141]. One
explanation for these pathological conditions may be, at
least in part, decreased scavenging capability of antioxidants,
which can lead to excessive ROS production. It has been
suggested that the pathological consequences of decreased
antioxidant defence systems include many reproductive
diseases, such as polycystic ovarian syndrome (PCOS),
endometriosis, and unexplained infertility, as well as com-
plications during pregnancy, such as early miscarriage,
abortion, recurrent pregnancy loss, and preeclampsia. Age-
related fertility decline is also reported to be related to
decreased antioxidant systems [8, 142–148].

PCOS is one of the most common gynaecological dis-
eases of reproductive-aged women. Clinical manifestations
of PCOS include menstrual disorders or skin disorders
and reduced fertilization rate. PCOS is characterized by
ovulation dysfunction, hyperandrogenism, and polycystic
ovaries [149]. Mitochondrial dysfunction, accompanied
by decreased GSH levels and O2 consumption, is found in
PCOS patients [150]. Insulin resistance is considered the
major aetiology of PCOS. Studies have indicated that antiox-
idants, including SOD, vitamin C, and vitamin E, are reduced
in PCOS patients, leading to an oxidative status that may fur-
ther cause an inflammatory environment, insulin resistance,
and an increase in androgens [151, 152].

Infertility is a disease that is defined as failure to achieve a
clinical pregnancy after 12 months or more of regular unpro-
tected sexual intercourse [153]. If the couple has been con-
firmed infertile without a known cause of infertility after
examination, a diagnosis of unexplained infertility is assigned
[154]. Approximately 15% of couples are affected by unex-
plained infertility. Although the pathophysiology is still
unclear, evidence has indicated that increased ROS and
decreased antioxidants may contribute to unexplained infer-
tility [155–157]. A reduction in antioxidants, including GSH
and vitamin E, was reported in patients with idiopathic infer-
tility [158]. Excessive ROS production caused by pathological
conditions, environmental changes, or drug therapy may
overwhelm antioxidant defence ability and lead to the deteri-
oration of oocyte quality by inducing apoptosis [87, 159–
161]. Evidence has further confirmed that ROS-induced
granulosa cell degeneration leads to decreased oestrogen
levels and compromised oocyte quality and ovulation rate
[162]. Chaube et al. revealed that nutrition and growth fac-
tors for follicular maturation were affected when granulosa-
oocyte communication was reduced under OS, which led to
impaired quality of preovulatory follicles [163]. Even after
fertilization, excessive ROS production may lead to implanta-
tion failure, embryo fragmentation, impaired placentation,
and abortion [164]. During pregnancy, the endometrium
contributes to the support of embryo development, and this
process may be prevented by ROS overproduction [165].
The corpus luteum is critical for maintaining pregnancy in
the early stage, and OS may accelerate luteal regression and
inhibit steroid production by the corpus luteum [12].

With an increase in reproductive age, the antioxidant
levels within the follicular fluid may gradually diminish.
Human studies have shown that the levels of catalase and
SOD in the follicular fluid of older women were lower than
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those in younger women, and older women exhibited lower
fertilization rates and reduced blastocyst development
[166]. Lim et al. showed that the mRNA levels of mitochon-
drial antioxidants Prdx3 and Txn2 and cytosolic antioxidants
Glrx1 and Gstm2 in mouse ovaries were decreased with
increased age, which may influence age-related oxidative
damage on ovarian function [167]. Thus, we conclude that
the ROS scavenging ability of antioxidants is related to
fertilization outcomes.

6. Possible Antioxidant Therapy against ROS

Antioxidants are helpful for minimizing OS induced by
excessive ROS production by clearing free radicals and low-
ering ROS levels in the human body [13]. Both enzymatic
and nonenzymatic antioxidants can be useful for overcoming
OS caused by ROS [13]. Antioxidant supplementation has
been confirmed to have positive effects on mouse oocyte
quality by reducing the harmful effects of OS [168].

Melatonin has frequently been investigated in recent years.
Animal studies have shown that melatonin was able to pre-
vent OS-mediated deterioration of oocyte quality in rats
[161, 169]. Additionally, melatonin contributes to improved
reproductive outcomes by enhancing oocyte quality in
humans [170, 171]. Thus, melatonin is a very important
naturally produced antioxidant in mammals. In addition to
melatonin, resveratrol was shown to protect against the
reduction of fertility with reproductive ageing in mice by
enhancing the number and quality of oocytes [172]. Studies
have shown that women with endometriosis intake lower
daily amounts of vitamins A, C [173], and E [173, 174] than
other women. Daily supplementation with vitamins C and E
for four months was found to reduce the ODmarker in those
patients. However, it did not improve the fertilization rate
[174]. N-Acetyl-cysteine (NAC) has antioxidant properties,
as it is able to increase intracellular GSH concentrations
and/or directly scavenge free radicals [175, 176]. The preg-
nancy outcomes of patients with unexplained recurrent
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Figure 2: Schematic representation of antioxidant regulation in follicular development. The follicular development process is initiated with
primordial follicles to primary follicles, followed by secondary follicles and tertiary follicles. Preovulatory follicles are formed under the
stimulation of FSH, and finally, ovulation is triggered by a surge of luteinizing hormone (LH). All these consecutive and synchronized
events are accompanied by ROS production and scavenging. Antioxidants are strongly modulated during this process. Catalase and GSH
expression in the follicles is enhanced with follicular growth, while SOD activity is reduced in folliculogenesis. SOD was shown to have
inhibitory effects on oestrogen synthesis by inhibiting FSH-induced aromatase activity in cultured granulosa cells, while SOD enzyme
activity is positively correlated with oestradiol levels in the follicular fluid. A large amount of ROS can be produced during steroidogenesis,
especially during the conversion of cholesterol to pregnenolone via cytochrome P450scc. Gonadotropin induces the upregulation of
antioxidants such as catalase; GSH in the follicles protects oocytes from oxidative stress generated from physiological metabolic processes,
such as steroidogenesis, in the ovary.
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pregnancy loss were improved after taking a combination of
NAC and folic acid [177]. However, in some gynaecological
diseases such as preeclampsia and spontaneous abortion,
antioxidant supplementation was found to be ineffective
[178–181]. More studies are needed to investigate the effects
of antioxidant supplementation as a possible treatment
therapy for these patients. Daily intake of fresh green veg-
etables and fruits, antioxidant-rich legumes, and plant
products that contain high levels of antioxidants may be
beneficial for reducing OS [182].

7. Conclusion

Recently, there has been growing interest in the role of
antioxidants in female reproductive activities. Antioxidant
products and ROS balance have been shown to be closely
related to female subfertility or infertility. Substantial evi-
dence has indicated that some physiological processes, from
oocyte maturation to fertilization and embryo development,
are particularly sensitive to OS. These processes require anti-
oxidants for balanced function. In this review, we thoroughly
discussed the expression and regulation of some major anti-
oxidants involved in follicular development, oocyte matura-
tion, ovulation, corpus luteum function, steroidogenesis,
and fertilization. Among these reproductive activities, follic-
ular growth, which is reviewed here, has been previously
poorly addressed. The general regulation of antioxidants in
follicular development is illustrated in Figure 2. However,
the molecular mechanisms behind follicular development
have not been fully elucidated, and additional evidence for
the role of antioxidants in primordial and primary follicles
is needed.

The gynaecological diseases presented in this review may
result from changes in early ovarian stages due to dysfunc-
tion of antioxidant systems. Thus, it is necessary to empha-
size the role of antioxidants in the development and
survival process of follicles and in follicle responsiveness to
gonadotropins as well as in steroidogenesis. Elucidation of
the molecular mechanism underlying the involvement of
antioxidants in follicular growth, ovarian cycle, oocyte matu-
ration, and ovulation is essential for creating a better under-
standing of the possible protective effects of antioxidants and
for potentially treating female infertility with antioxidant
supplementation in vivo.
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