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Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a

poor long-term prognosis. While women are at increased risk for developing PAH, they

exhibit superior right heart function and higher survival rates than men. Susceptibility to

disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to

potential pathological influences of estrogen in patients, studies of animal models reveal

estrogen demonstrates protective effects in PAH. Consistent with this latter observation,

an ovariectomy in female rats appears to aggravate the condition. This discrepancy

between observations from patients and animal models is often called the “estrogen

paradox.” Further, the tissue-specific interactions between estrogen, its metabolites

and receptors in PAH and right heart function remain complex; nonetheless, these

relationships are essential to characterize to better understand PAH pathophysiology and

to potentially develop novel therapeutic and curative targets. In this review, we explore

estrogen-mediated mechanisms that may further explain this paradox by summarizing

published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity

and functions of the various estrogen receptors; (3) the multiple modalities of estrogen

signaling in cells; and (4) the role of estrogen and its diverse metabolites on the

susceptibility to, and progression of, PAH as well as their impact on right heart function.

Keywords: pulmonary arterial hypertension, estrogen paradox, estrogen metabolism, estrogen receptors,

pulmonary hypertension

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a complex and devastating disease characterized by a
progressive increase in pulmonary vascular resistance (PVR) and subsequent, right heart failure,
considered the most common cause of death in patients (1). The updated hemodynamic criteria
define pulmonary hypertension (PH) using a threshold for mean pulmonary artery pressure
(mPAP) > 20mm Hg, pulmonary artery wedge pressure (PAWP) ≤ 15mm Hg, and PVR ≥ 3
Wood units (WU) (2) during a resting right heart catheterization (RHC). Obliterative pulmonary
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arterial (PA) remodeling, sustained vasoconstriction, reduced
wall elasticity, in-situ thrombosis in small pulmonary arterioles,
and formation of plexiform lesions (PXL) (3) are hallmarks of
PAH pathology and contribute to the rise in PVR.

Evidence of sexual dimorphism is a distinguishing feature of
developing PAH. The World Health Organization describes sex
as a biologically determined characteristic, whereas gender is
used to describe a characteristic that is socially constructed (4).
Therefore, the term sex is used in this review to discriminate
differences between male and female subjects. Furthermore,
while the proportion of womenwith PAH is greater, their survival
rate is higher than that of men (5–10). Based on these clinical
observations, a significant amount of research has been carried
out to investigate the potential roles of estrogen signaling in
PAH. Specifically, the identification of protective or pathogenic
roles of estrogen signaling provide a complex molecular model
to decipher the contrasting clinical observations in both sexes.
In some circumstances, published research on estrogen signaling
from conventional animal models of PAH appear to directly
contradict observations from human disease, often termed
the “estrogen paradox.” Female rodents, for example, are less
susceptible than male rodents to the development of PAH (11,
12). Indeed, these observations along with other findings provide
more credence to the notion that established animal models do
not fully mimic PAH in patients (11). Indeed, these contradictory
findings from animal models emphasize the need for caution
in interpreting the translatability as well as the importance of
choosing the appropriate animal models when studying the
sexual dimorphism of PAH. This review will summarize our
most up to date knowledge regarding the sex differences in
existing pre-clinical models of PAH, including data from novel
transgenic models (13–15), that provide novel insights into the
sex differences related to estrogen signaling in PAH. In the
process, we will highlight the importance of selecting suitable
animal models for PAH research.

Estrogen signaling is complex and requires the evaluation of
both the hormone itself and its metabolites. As a sex steroid
hormone, estrogen is produced through multiple reactions and
has intricate catabolic pathways in vivo. Some of its metabolites
have been reported to promote the development of PAH, while
others have been shown to attenuate PAH development. A
careful inventory of each metabolite and its function is critical
to better understanding the estrogen paradox. Moreover, both
PAH status and progression, themselves affect the synthesis and
catabolism of estrogen. This latter observation is based on prior
studies (16–18) that reported changes in estrogen-metabolizing
enzymes and the proportion of estrogen metabolites during
PAH development. The relationship between estrogen and
PAH, therefore, appears bidirectional in terms of cause and
effect. Further, beyond circulating levels, local concentrations of
estrogen signaling mediators also appear to be important in PAH.
For example, estrogen-metabolizing enzymes are tissue-specific,
raising questions about possible discrepancies between the levels
of estrogen (and its metabolites) in the circulation vs. in the
heart and lungs. Whether the presence of PAH or its progression
leads to changes in the local metabolism of estrogen in the
heart and lungs also deserves more attention. In addition, the

relationship between estrogen and gene expression is complex.
Signal transduction of estrogen is influenced by various factors
including, age, sex, receptor type, cell type, disease status, etc.
Indeed, the three known estrogen receptors (ERs-ERα, ERβ,
and GPER) exhibit different roles in regulating gene expression.
Moreover, dimers formed by ERα and ERβ may manifest as
hetero- or homodimers and function via individual or dimer
forms, further complicating estrogen signaling (19). This review
will further discuss estrogen signaling in the context of the
relative content of ERs, ERs’ different position (membrane or
nucleus) in cells, and varying modifications of ERs, to give a
full picture of the sex-specific differences and the need for the
development of sex-specific treatments in PAH.

In order to better understand the estrogen paradox, this review
will summarize available evidence and discuss the following: (1)
potential origins of sex differences; (2) mechanisms involving
estrogen anabolism and catabolism; (3) the diverse cellular roles
of ERs; (4) multiple modes of estrogen signaling; (5) direct
and indirect effects of estrogen hormone and its metabolites.
These discussions will also shed insight into the impact of both
the presence and severity of PAH on estrogen anabolism and
catabolism, ERs, and estrogen metabolites.

SEX DIFFERENCES IN PAH

Sex Differences in Patients With PAH
As early as the 1950s, a predilection was observed for female
patients in PAH (20, 21), a finding that has since been confirmed
by multiple studies (7–9, 22). In 1987, National Institutes of
Health (NIH) registry reported the ratio of male to female
patients in primary PH was 1–1.7. This data, however, did
not break down PH into the current sub-group classifications
(5). The findings of the French National Registry of PH also
suggested that women account for a greater proportion of
patients with most PAH subtypes, such as idiopathic, familial,
anorexia, connective tissue disease and congenital heart diseases
associated PAH (6). In hereditary PAH, the incidence of PAH
among carriers of bone morphogenic protein receptor type
II (BMPR2) mutations also varies by sex−42% for women
and 14% for men (7). Sexual dimorphism is also reflected
in surveys across geographical regions and nationalities. Data
from the Japan PH Registry (JAPHR) showed that 76.2% of
Japanese patients with PAH were female (8). The Registry to
EValuate Early And Long-term pulmonary arterial hypertension
disease management (REVEAL Registry) shows a greater number
of women with the disease in the US (9, 22). These and
other registries, composed of mostly adult patients, consistently
show a female predilection (Table 1). Differences in exact rates
across these registries may reflect different inclusion/exclusion
criteria, drug exposure history, lifestyle differences, among other
confounders. Notably, hemodynamic criteria for PAH in these
registries were based on older definitions: mPAP ≥ 25mm
Hg at rest; these data did not include any patients whose
mPAP was between 20 and 24mm Hg based on the new
definition of PAH with a lower threshold of mPAP (≥20mm
Hg). Interestingly, Hoeper et al. re-analyzed the results of the
Comparative Prospective Registry of Newly Initiated Therapies
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TABLE 1 | Proportion of female patients in major PAH registries.

Registry Median age, yrs Female, % Study design and time period No. of patients (female) References

PAH IPAH PAH IPAH

USA NIH – 36 – 63% 1981–1985 187 (5, 23)

China – 36 – 71% 1999–2004 72 (51) (23)

UK/Ireland – 50 – 70% 2001–2009 482 (337) (24)

COMPERA – 65 – 60% 2007–2011 587 (25)

USA PHC 48 – 77% – 1982–2006 578 (26)

Czech Republic 52 – 65% – 2000–2010 191 (27)

USA REVEAL 50 – 80% – 2006–2007 2,525 (22)

COMPERA 68 – 64% – 2007–2013 1,283 (819) (28)

JAPHR 44 – 76% – 2008–2013 189 (144) (8)

Scotland SMR 51 49 70% 62% 1986–2001 374 (261) (29)

Mayo 52 52 75% 76% 1995–2004 484 (30)

Spanish 45 46 71% 73% 1998–2006; 2007–2008 866 (31)

France 50 52 65% 62% 2002–2003 674 (6, 32)

for Pulmonary Hypertension (COMPERA) registry and stratified
patients into two categories: old (>65 years old) and young (18–
65 years old), they reported a sex difference was apparent in
young but not older subjects (25).

While female patients are more susceptible, mortality data
consistently show that they exhibit better survival outcomes
than males. For example, in the Spanish Registry of Pulmonary
Arterial Hypertension, male sex is an independent predictor
of death, associated with an increased risk of death (31). The
REVEAL registry also reported a worse prognosis for men
than women (33) and the French registry showed female sex
was an independent predictor of survival (34). Data from
the COMPERA registry showed similar survival benefits for
female patients (28). These observations cumulatively establish
significant differences between male and female patients with
PAH including disease risk and outcomes.

Sex Differences in Animal Models of PH
To better understand sex differences in patients with PAH,
several animal models have been studied. Interestingly, while sex
differences are also found in animal models of PH, not all are
consistent with those observed in patient studies. We summarize
sex differences in four conventional animal models of PH:
Sugen/Hypoxia induced rodent PH (SuHx-PH), monocrotaline-
induced rodent PH (MCT-PH), chronic hypoxia-induced PH
(HPH), and genetically modified animal models of PH.

Female rats manifest a milder form of disease severity than
male rats when exposed to HPH or MCT-PH. Ovariectomy
(OVX) further exacerbates PH in female rats, and exposure to
OVX-treated animals with 17β-estradiol (E2) alleviates PH in
these animal models (11, 12, 35). Apart from improved right
heart function and survival advantages, female mice have less
PA remodeling than male mice in HPH (13). Moreover, vascular
occlusion and PXL are not observed in the HPH model (11).
These findings appear to be inconsistent with the suspected
pathogenic role of estrogen in pulmonary blood vessels of
patients. It is also worth noting that the MCT is biologically

activated in the liver by cytochrome P-450 (CYP-450) into MCT
pyrrole (MCTP) (36), which can damage the lung endothelium
and leads to the development of PH. Studies have shown a sex-
specific role for CYP-450 involvement in the metabolism of MCT
in the liver (36), which may partly explain sex discrepancies
between animal MCT-PH models and patients.

In the SuHx-PH model, although female rats exhibit more
pronounced smooth muscle thickening of the pulmonary
vasculature, they display better cardiac function and a better
ability to cope with increased afterload caused by acute exercise
challenge than male rats (37). The survival rate of female rats is
also higher than inmales. OVX treatment exacerbates the severity
of SuHx-PH in female rats, and supplementing with exogenous
E2 after OVX, improves right heart function and PA remodeling.
The increased severity in vascular remodeling, improved right
ventricular (RV) adaptability, and superior survival rate of female
rats in the SuHx-PH model better mimic those observed in PAH
patients. Comparing these features from HPH and MCT-PH
models, SuHx-PH may represent a more suitable model to study
sex differences in PAH.

Select transgenic models have also successfully imitated
the increased susceptibility in women observed in patients
with PAH and may be leveraged to investigate the role of
a targeted pathway in PAH-related sexual dimorphism. For
example, in signal transducers and activators of transcription 5
heterozygous (Stat5+/−) or homozygous (Stat5−/−) mice, female
mice exhibited more severe PH than males after exposure to
hypoxia (13). In addition, in mice over-expressing the calcium-
binding protein S100A4/Mts1, right ventricle systolic pressure
(RVSP) and pulmonary vascular remodeling were increased in
female mice, while male mice were unaffected (14). In mice over-
expressing serotonin transporter (SERT+), female mice showed
increased RVSP and PVR, while male mice were unaffected.
Moreover, OVX eliminates the effect of SERT+ in females.
Also, long-term administration of E2 re-established the PAH
phenotype after OVX in both normoxic and hypoxic SERT+

mice (15).
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The Estrogen Paradox in PAH—Lessons
From Animal Models
Although PAH is considered a disease of the pulmonary
vasculature, the ability of the right heart to adapt to the increased
PVR determines the survival rate in patients with PAH (32–
34, 38). Registries of PAH show that female patients with PAH
have more favorable hemodynamic characteristics and better RV
function than male patients (39, 40), including higher cardiac
index (CI) and lower RVSP, lower average PA pressure and PVR
(41, 42). Subsequent animal studies have also shown that estrogen
mainly exhibits protective effects on the RV, while in pulmonary
blood vessels, its role is relatively complex. In the pulmonary
vasculature of animal models, the pathogenic effect of estrogen
may be greater than the protective effect, but these findings
remain unclear. Nonetheless, these animal model observations
may partly explain why women are more susceptible to disease
risk but have a lower mortality rate in PAH.

ESTROGEN SYNTHESIS AND
METABOLISM

To dissect the underpinnings of the sexual dimorphism and the
estrogen paradox, significant attention has been paid to estrogen
synthesis, signaling, and metabolism and their contribution to
the development of PAH. Given the diversity of estrogen, its
metabolites, as well as some estrogen analogs, it is important
to discuss evidence of their involvement and potential as
therapeutic targets in PAH.

The basic metabolic pathways of estrogen synthesis are

important to briefly summarize when considering their role in

PAH. The initial step in the synthesis of sex hormones (Figure 1)
is the conversion of cholesterol to pregnenolone under the
action of cytochrome P450 (CYP) enzymes (43). Pregnenolone is
converted to progesterone by 3β-hydroxysteroid dehydrogenase
(3β-HSD). Pregnenolone and progesterone are oxidized to

FIGURE 1 | Estrogen synthesis and metabolism. Cholesterol is catalyzed by the cytochrome P450 enzyme and undergoes several conversions to become DHEA.

DHEA is converted to testosterone under the catalysis of different β-HSDs. Androstenedione and testosterone are converted into estrone and E2 by CYP19A1,

respectively. E2 is oxidized on carbon at multiple positions, including oxidation at the C17 position by 17β-HSD responsible for the reversible conversion between E1

and E2. Other oxidation sites include those at C2, C4, and C16 positions and produce different metabolites via varying cytochrome P450 enzyme. E1, E2, estrogen

precursors and some metabolites can be combined with sulfonate groups by SULT to convert them into sulfuric steroids. Sulfation of steroids can be converted into

active forms by STS.
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dehydroepiandrosterone (DHEA) and androstenedione under
the action of CYP17A1, respectively. They are transformed
into testosterone under the action of different β-hydroxysteroid
dehydrogenase 1 (β-HSD1). The final step in the production of
estrogen is the conversion of androstenedione or testosterone
into estrone (E1) or E2 under the action of aromatase
(CYP19A1), respectively. Notably, aromatase is increased in the
lungs of female patients with PAH (16), suggesting that PAH
development is associated with increased estrogen production.
Estrogens produced by the human body include E1, E2, and
estriol (E3). Among them, E2 is the most abundant estrogen with
the strongest biological activity, and it is one of the main female
hormones produced by the ovaries. E1 and E3 are weak estrogens.
E1 is increased in post-menopausal females. E3 is the degradation
product of E2 and is increased during pregnancy.

E2 is oxidized at multiple carbon positions. Oxidation at
the C17 position is required for the conversion between two
estrogens, E1 and E2 by 17β-HSD; specifically, E1 converts to
E2 via 17β-HSD1 while E2 converts back to E1 via 17β-HSD2.
This process is reversible, but the rate of conversion from E1 to
E2 is slower. Other sites of oxidation of E2 predominantly occur
at C2, C4, and C16 positions which results in the production of
different metabolites. These estrogen metabolites have previously
been shown to exert diverse biological effects in PAH (44–46).

E2 Catabolism at Position C2
Hydroxylation at the C2 position represents one of several
available pathways for E2 metabolism (47). The metabolites
produced from this pathway have minimal to no estrogen
activity, thereby, rapidly reducing the amount of active
estrogen. CYP450 isomers CYP1A1, 1A2, 3A4, 3A5, etc. catalyze
conversion of E2 to form 2-hydroxyestradiol (2-OHE2) (47). 2-
OHE2 has low estrogen activity and is further converted into
2-methoxyestradiol (2-ME2) via catechol-O-methyltransferase
(COMT). 2-ME2 has no detectable estrogenic activity (48,
49). Hydroxylation of E1 at this C2 position generates 2-
hydroxyestrone (2-OHE1), which has a higher ability to bind
ERα than ERβ (50). Conversion of both E1 and E2 into other
metabolites predominantly occurs in the liver. Cardiovascular
tissues also facilitate conversion of E2 into 2-OHE2 and 2-ME2,
such as cardiac fibroblasts (51), vascular endothelial cells (EC)
(52), and smooth muscle cells (SMC) (53).

E2 Catabolism at Position C4
While hydroxylation at the C4 position accounts for only a
small portion of E2 hydroxylation, the resulting metabolite, 4-
hydroxyestradiol (4-OHE2), has high estrogenic activity. These
C4 reactions are catalyzed by enzymes such as CYP1A1, 1A2,
3A4, 3A5, and 1B1. The latter, CYP1B1, catalyzes the reaction of
C4 for the most part, while the other enzymes primarily catalyze
the reaction at C2, followed by the reaction at C4 (47). Notably,
4-OHE2 reportedly exhibits reduced binding affinity with ERs, is
reactive oxygen species (ROS)-dependent and has carcinogenic
effects (54). Furthermore, similar to the metabolic reaction at
the C2 position, 4-OHE2 is converted into 4-methoxyestradiol
(4-ME) via catechol-O-methyl transferase (COMT) or into 4-
hydroxyestrogen (4-OHE1) via 17β-HSD.

E2 Catabolism at Position C16
Hydroxylation of E2 at the C16 position is also one of the main
mechanisms for the formation of highly estrogenic metabolites.
The enzymes involved include CYP1A1, 1A2, 3A4, 3A7, and
1B1 (55). Among them, CYP3A7 has high catalytic activity
for 16α-hydroxylation of E1, but not for E2 (56). E1 and
E2 are metabolized to 16α-hydroxyestrone (16α-OHE1) and
16α-hydroxyestradiol (E3, estriol), respectively (47). E3 is only
produced in large amounts during pregnancy. Although the
estrogenic activity of E3 is weak, it can be catalyzed by 17β-
HSD2 to produce 16α-OHE1. 16α-OHE1 is a highly estrogenic
metabolite, more potent than the highly abundant E2, and has
a slightly higher affinity for ERβ than for ERα (50). Moreover,
16α-OHE1 also prolongs ER activation (57, 58). In patients and
various experimental PAH models, the expression of CYP1B1
is also increased, especially in the pulmonary vasculature (17,
46, 59). CYP1B1 catalyzes the catabolism of estrone to 16α-
OHE1 in extrahepatic tissues. Austin et al. compared the
levels of estrogen metabolites in female subjects with BMPR2
mutations, and found that 2-OHE: 16α-OHE1 ratio of affected
mutation carriers was 2.3 times lower than that of unaffected
mutation carriers (18). The accumulation of 16α-OHE1 and
16α-OHE2 has been independently validated in idiopathic PAH
patients (60). Broadly, these studies indicate dysregulation of
estrogen catabolism in PAH. Dexfenfluramine (Dfen)-induced
PH (59), HPH, and SuHx-induced PH (46) are all attenuated in
CYP1B1 knockout (KO) mice. The selective CYP1B1 inhibitor,
2,3

′

,4,5
′

-tetramethoxystilbene (TMS), attenuates Dfen-induced
PH, primarily by inhibiting estrogen-induced proliferation
of human PASMCs (46). Therefore, PAH development may
predispose estrogen catabolism toward 16α-OHE1 generation.
By increasing 16α-OHE1, a series of PAH-promoting estrogen
effects are potentially amplified. However, this hypothesis
requires further validation.

Enzymes Involved in Estrogen Synthesis
and Metabolism
Estrogen metabolism and catabolism are well-known but its
characteristics across tissue-types remain poorly studied. In
PAH, emerging data indicate parallel complexity and specificity
based on disease-relevant tissues including EC, SMC, and
cardiomyocytes. There are two obvious changes in estrogen
metabolism in PAH. Aromatase is increased in the lungs of
female patients (16) while CYP1B1 is increased in patients and
various experimental PAH models, which in turn increases the
16α-OHE (17, 46, 59, 60). The enzymes responsible for estradiol
synthesis are expressed in the liver as well as in vascular SMCs
(61), cardiac fibroblasts and cardiomyocytes (62). Moreover,
the CYP subtypes involved in the oxidative metabolism of
estrogen have different levels of catalytic activity and unique
regioselectivity (47). For example, estrogen catabolism in
liver tissue is mainly mediated by CYP1A2 and 3A4, while
in extrahepatic tissue, it is catalyzed by CYP1B1 and 1A1
(55). CYP1B1, 1A1, as well as COMT were all observed in
cardiovascular tissues (51, 62–64). These finding demonstrate
that estrogen can be locally synthesized and metabolized
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in the blood vessels of heart and lungs, tissues where the
effects of estrogen and its metabolites likely target during
PAH pathogenesis.

Sulfation Pathway
Combining sulfonate groups, sulfotransferase (SULT) converts
E1, E2, estrogen precursors and metabolites (DHEA, 2-ME, etc.)
into sulfuric acid E1, sulfuric acid E2, sulfuric acid 2-ME, etc.
These sulfated steroids are considered inactive, cannot activate
ERs, and also hydrophilic, which makes them easier to excrete
through the kidney (65). In various cancer cell lines, increased
SULT activity is related to the weakening of the anti-mitotic
effect of 2-ME2 (66). Specifically, the level of activity of these
steroids are reduced by sulfation. Sulfation of steroids, however,
can further be converted into active forms by sulfatase (STS).
Therefore, SULT and STS regulate the content of biologically
active estrogen, its precursors and metabolites depending on
whether they are sulfated.

ESTROGEN RECEPTORS

Estrogen exerts most of its biological functions through ERs.
ERs are composed of a DNA-binding domain, a ligand binding
domain, and an amino terminal transcription control domain
(AF-1). ERs interact with regulatory binding proteins through
AF-1, a region with significant differences between ERα and
ERβ (67). GPER, a 7-pass transmembrane G protein-coupled
ER that is predominantly localized in the endoplasmic reticulum
(68), binds estrogen with high affinity to activate several
cellular signaling cascades (69). GPER is an orphan receptor
unrelated to nuclear ERs (nERs), which mimics the binding and
signaling characteristics of membrane ERs (mERs) (70). There
are three receptors expressed in lung (71–74) and heart tissue
(75, 76). While both, ERα and ERβ, are expressed in PAECs
(77) and PASMCs (78), ERβ is primarily expressed in PAECs
(79). GPER is seen in the intima and media of the aorta by
immunohistochemical staining (75), and its abundance is similar
in males and females. Studies on the roles and expression of ERs
in the pulmonary vasculature have not been as exhaustive as those
in the systemic vasculature, and much of our knowledge is still
derived from animal studies.

Regulation of ERs Activity
The content and ratio of ERα and ERβ influence estrogen effects
on gene expression. ER levels appear to be different in men than
in women, and in women, before and after menopause. Gavin
et al. described that early follicular ERα expression was 30%
lower than that of late follicles in vascular ECs of premenopausal
women, and ERα levels were 33% lower than that of late follicles
in postmenopausal women (80). In addition, although Grohe
et al. did not observe any sex differences in the expression of
ERβ in cardiomyocytes, a significant change in ERα expression by
sex was observed (71). GPER is also affected by sex and age. The
expression of GPER in the mesenteric artery of men and elderly
women is reduced by ∼50% compared with young women (81).
The abundance of ERα and ERβ in different tissues and cells may
vary (82). In the lung, ERβ is reportedly more abundant than
ERα (83, 84). The relative function of a specific ER may further

depend on the clinical context, for example, men or women,
premenopausal women or postmenopausal women.

In addition to age and sex, disease factors also influence ER
expression levels in the cardiovascular system. Cardiac pressure
load, for example, increases both, ERα and ERβ, in the human
heart (85), while heart failure increases ERα (86). ERα expression
is reduced in the RV of SuHx-PH when they are subject to OVX
and this recovers after E2 supplementation (87). The expression
of ERα in the RV is negatively correlated with RVSP and right
ventricular hypertrophy (RVH) (87). Similarly, Pinzone et al.
found that estrogen positively regulates ER levels (88). Ihionkhan
et al. reported that chronic use of exogenous estrogen modifies
transcription of ERα gene in the endothelium through ERα or
ERβ, such that the expression of ERα is increased while ERβ is
decreased (89). Further, increased expression of ERα in female
PAH patients correlates in increased PASMC proliferation and
remodeling (79) viamultiple pathways including MAPK and Akt
signaling. In contrast, in hypoxic male rats, increased ERβ, but
not ERα, expression is observed in pulmonary vessels (90). Also,
the expression of ERβ mRNA in male blood vessels is increased
after vessel injury (91). Moreover, the biological functions of ERβ

may depend on the presence of ERα in certain cell types and
tissues (92). Therefore, when discussing the role of ERs activity
in PAH, it is necessary to pay attention to the effect of PAH on
ERs in the heart and lungs.

Modification events also influences ER activity. For example,
the methylation of the ER promoter reduces ER expression
(93) while acetylation increases the transcriptional activity of
ERα (94) and enhances the activity of ERα-dependent gene
regulation (95). In addition, the phosphorylation of ER exerts
ER ligand-independent regulation, enhancing ER signaling (96).
NO-mediated S-nitrosylation of ER has also been shown to
occur at the two major DNA-binding zinc-finger domains of ER
and this leads attenuated binding to specific estrogen response
elements (EREs) and may potentially favor activation of non-
genomic signaling pathways (97).

Differences Across ERs and Their Roles in
Regulating Gene Expression
As mentioned above, ERs perform different functions according
to both the recruited co-regulators and the bound transcription
factors (TFs). Studies have also shown that ERα and ERβ may
have opposing effects in the same tissue (98). For example, in
vascular SMCs, ERβ up-regulates the expression of inducible
nitric oxide synthase (iNOS) while ERα causes down-regulation
(99). In addition, ERα has been shown tomostly up-regulate gene
expression in the mouse aorta while 90% of estrogen-mediated
genes were downregulated in an ERβ-dependent manner (82).
Conversely, in the hearts of female mice, 122 genes were up-
regulated and only 23 genes were down-regulated by ERβ.
The gene ontology “muscle contraction” was down-regulated
after using an ERβ-selective agonist, diarylpropionitrile (DNP),
whereas ERβ upregulated immune/chemokine genes and genes
involved in regulating cell death (100). Together these findings
demonstrate that ERα and ERβ have divergent effects, not
only in their abundance and functions, but also in the types
of genes they regulate downstream as well as across different
tissues. Importantly, the effect of ERs on gene expression may
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also be time-dependent (101). Schnoes et al. reported that
estrogen recruits specific TFs in vascular tissues in a fast and
temporary manner (102). Recent studies showed that the method
of administering estrogen or ER agonists can be divided into
acute (ranging from several minutes to several hours) or chronic
(ranging from 1 week to several weeks), which may work through
different estrogen signaling pathways.

The complexity of ER-mediated gene regulation may
represent a significant reason underlying the “estrogen paradox”
in PAH. The lack of comparative studies on the distribution and
proportion of ER subtypes in and between humans and animal
models further compound the assumptions in translation.
Specifically, they raise the question of reliability of using animal
models to mirror estrogen signaling in humans. In addition,
the signal transduction of ERs requires the participation of co-
regulators. The type, level and post-translational modification of
co-regulators will affect the signal transduction of ERs. Research
on these aspects remains scarce, and subsequent studies will need
to define the impact of these factors on PAH development.

Differences in the Roles of ERs in Disease
ERα and ERβ show contrasting effects during disease states
through the regulation of different genes. Overall, ERβ appears
to exhibit a protective role in cardiopulmonary diseases, and has
shown to exert anti-fibrotic (103), anti-hypertrophic (104), anti-
inflammatory (12) and vaso-dilatory properties (105). ERβ has
been shown to promote the production of various angiogenic
factors to regulate angiogenesis, and NO, exerting vasodilator
properties, mediating protective effects of estrogen in PAH. ERβ

agonists have also been used to treat PAH (12). Further, studies
support an important role for ERα during E2 signaling in PAH.
These include data demonstrating that ERα mainly mediates the
effect of E2 on cardiopulmonary hemodynamic parameters in
HPH (90), that there are minimal to no effects of estrogen on
vascular injury in ERα KO mice that underwent OVX (106)
and that ERα in ECs plays a key role in E2-mediated vascular
endothelialization (107). GPER has been shown to mediate
cardioprotection through the activation of the PI3K/Akt pathway
(75). GPER agonist, G1, inhibits the proliferation of cardiac
fibroblasts in a dose-dependent manner (76), and alleviates
cardiac remodeling and diastolic dysfunction in rats (108). G1
also improves the function and reduces myocardial inflammation
during ischemia/reperfusion (109). The stimulation of GPER
prevents changes in intracellular calcium concentration and
vascular tone caused by vasoconstrictor and inhibits the
proliferation of human vascular SMC (74). Conversely, the
deletion of the GPER gene in mice eliminates the vascular effects
of GPER activation (74). Based on these differential responses,
selective activation of specific ER subtypes may help elucidate
the effects of estrogen signaling on cardiopulmonary function
in PAH.

ESTROGEN SIGNALING PATHWAYS IN PAH

The role of estrogen signaling in regulating gene expression is
well-characterized (110). Multiple modes of signaling have been
previously described (19, 96, 110). Two of these pathways are

considered “genomic signaling” due to the direct involvement
of DNA binding (19, 96), While a third type of non-genomic
signaling cascade also has been described, typically via protein
kinases (110).

Genomic Signaling Pathway
Binding of estrogen (and its metabolites) to ERs can directly
regulate gene expression and is often referred to as the classical
pathway. Specifically, this pathway is initiated when estrogen
enters the cytoplasm and binds with nERs to form an estrogen-ER
complex (Figure 2). The combination of estrogen-ER complex
leads to dimerization [either homodimer or heterodimer (19)]
leading to DNA binding in two ways. First, the estrogen-ER
complex can directly bind to EREs and acts as a TF complex,
resulting in either up- or down-regulation of gene expression
according to the types of recruited co-regulators (co-activators or
co-suppressors). Second, on genes without EREs, the estrogen-
ER complex indirectly binds to DNA through other TFs to
regulate gene expression. This specific mechanism is often
referred to as transcriptional crosstalk. For example, estrogen
interacts with other promoter binding proteins to activate or
inhibit AP-1 dependent transcription (111). Notably, many
estrogen-responsive genes that lack full ERE sequences contain
either partial ERE sequences or the binding site of SFRE, a
response element with orphan nuclear hormone receptor (SF-1)
that serves as a direct ER binding site (112). To our knowledge,
only ERα has been observed to bind to SFRE (113). Importantly,
about one-third of human genes are estimated to be targets for
ER binding indirectly through intermediate TFs (112).

ERs can also independently interact with DNA without
binding to estrogen and regulate gene expression, called ligand-
independent transcriptional regulation. Thismechanism requires
ERs to be phosphorylated at specific serine sites (96). The
phosphorylated ER directly combines with EREs or indirectly
binds to DNA through TFs, similar to estrogen-ER complexes.
This mode of ER ligand-independent transcriptional regulation
also requires phosphorylation of growth factor-dependent
coactivators. For example, Carascossa et al. demonstrated that
although protein kinase A (PKA) is not required to participate
in the direct phosphorylation of ERα, PKA assists in the
phosphorylation of activator-related arginine methyltransferase
1 (CARM1), which is necessary for ERα ligand-independent
transcriptional regulation (114).

Non-genomic Signaling Pathway
The non-genomic pathway is also a common form of signal
transduction of steroid hormones, generally through the
activation of various protein kinase cascades (110). Both, ERα

and ERβ, present on the cell membrane (115), as well as
the estrogen receptor, GPER (also known as GPR30) (116),
can mediate non-genomic estrogen signaling. E2 binds to the
membrane-bound receptor and leads to the activation of G-
protein directly coupled to the receptor, indicating that GPER is
a G protein-coupled receptor. The activity of adenylate cyclase
is also increased in this mode of signaling (70). Estrogen binds
to the above receptors and then activates kinases or secondary
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FIGURE 2 | Estrogen signaling. Estrogen enters the cell nucleus and binds with nuclear ERs to form an estrogen-ER complex. The combination of the two

estrogen-ER complexes typically lead to dimerization, then bind to DNA in two ways: (1) The estrogen-ER complex directly binds to the ERE sites on DNA and acts as

a transcription factor, up- or down-regulating gene expression based on the types of recruited co-regulators; (2) In genes with absent EREs, ER indirectly binds to DNA

through other TFs to influence gene expression. Phosphorylated ERs directly binds to ERE or indirectly binds to DNA through TFs, similar to estrogen-ER complexes.

Estrogen binds to membrane ERα, Erβ, and GPER to mediate non-genomic (acute) estrogen signaling through the activation of various protein kinase cascades.

messengers, including phosphoinositide 3-kinase (PI3K) (115),
mitogen-activated protein kinase (MAPK) (117), etc.

Based on prior work, cardiovascular protection derived
from estrogen is mediated, in part, by the activation of
non-genomic effects (74, 118, 119). ERα and ERβ both
have been shown to induce Akt-dependent activation of
endothelial NOS (eNOS) in vascular ECs through a non-genomic
mechanism, thereby, rapidly causing vasodilation (115, 118, 120–
124). ERα also mediates the activation of eNOS through a
MAPK-dependent mechanism (121). MAPK activation plays an
important role in mediating the above non-genomic ER effects.
The phosphorylation of ERα and ERβ is also mediated by the
MAPK signaling pathway. Therefore, the non-genomic pathway
can enhance genomic pathways by phosphorylation of ER. GPER
activation also shows cardioprotection in both male and female
rats (75), The GPER selective agonist, G1, effectively reverses PH-
induced RV dysfunction, structural abnormalities and exercise
intolerance in male rats (125).

Non-genomic pathways of estrogen conduction may
indirectly affect gene expression by activating other signal
transduction pathways that can act on target TFs. While the
genomic effect takes several hours to manifest, non-genomic

pathway is typically considered “acute” and characterized to
manifest in a few seconds to minutes.

EFFECT OF ESTROGEN AND ITS
METABOLITES ON PAH

Cardioprotection
In PAH, mortality is closely related to sex and RV hemodynamic
function (32, 39). Even though medical therapy reduces PVR, the
prognosis of PAH patients remains poor from RV failure (38).
RV ejection fraction (RVEF), assessed by magnetic resonance
imaging, is an important determinant of the prognosis of patients
with PAH. Increased RVEF indicates a higher survival rate (126).
Male patients with PAH display lower RVEF than those of female
patients (40). The response of males to heart pressure overload,
cardiac contractility, and heart adaptability are also not as strong
as females. Among females treated with estrogen, higher E2 levels
were also associated with better RV contractile function (41, 42,
127), suggesting that estrogen may have cardioprotective effects.

E2 protection in the heart has been reported to signal through
various pathways (Figure 3). In one study, the conversion of
cardiac fibroblasts to myofibroblasts is inhibited by estrogen
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FIGURE 3 | Role of estrogen and its metabolites in PAH. E2 protects the heart through various pathways. Estrogen can promote blood vessel remodeling. E2

improves cardiac structure and function via augmentation of angiogenesis. Estrogen can improve pulmonary hemodynamics. Estrogen and 2-ME appear to suppress

inflammation in PAH, while 4-OHE and 16α-OHE1 have significant pro-inflammatory effects.

through ERβ, thereby preventing myocardial fibrosis (103). The
expression of fibrosis markers and metalloproteinases in cardiac
fibroblasts were directly inhibited by E2. Reversing fibrosis and
up-regulating the expression of new extracellular matrix enzymes
such as ADAM15, ADAM17 and OPN was associated with E2’s
ability to reverse the adverse RV remodeling associated with
PH. These effects also may be mediated by ERβ (128). ERβ

not only weakens fibrosis, but also inhibits the development
of apoptosis, thereby slowing the progression of heart failure,
which was more obvious in females (129). In addition, estrogen
exhibits an inhibitory effect on the hypertrophic response caused
by stress overload through the ERβ genomic effects (104, 130,
131). Estrogen also protects the heart through ERβ-mediated
cardioprotective protein S-nitrosation (SNO), which requires
the involvement of NOS (132, 133). Umar et al. found that
recovery after removing estrogen still improves the structure
and function of RV in MCT rats and rescues the original
severity of PH. The beneficial effects of estrogen in PH appear to
come predominantly from its protection of the heart, including
stimulation of cardiopulmonary neovascularization, inhibition of
fibrosis, RVH (12) and stimulating RV contractility (134).

The protective effects of estrogen on the heart are considered
to be partly mediated by ERβ (12). Many protective genes such
as GADD45β and COX-2 are up-regulated by ERβ selective
agonist, DPN (100). ERβ-mediated PI3K/Akt signal transduction
was shown to improve myocardial function (135). Calcineurin-
related hypertrophy is also inhibited by ERβ (130). Furthermore,
activating ERβ reduces cardiac hypertrophy and fibrosis caused
by AngII signaling (104). This finding was confirmed in ERβ

KO mice (136). However, ER-α-mediated acute myocardial
protection in female has also been reported, and differential

activation ofMAPKmaymediate this protection (137). GPER has
also shown cardioprotective effects in both male and female rats
(75, 109, 138).

Vascular Remodeling
Vascular remodeling in PAH leads to occlusion of the lumen
and a resulting rise in PVR. Abnormal proliferation of PASMCs
plays a pivotal role in this remodeling (139). Estrogen and
its metabolites have key roles in the pathological process.
E2 promotes PA remodeling (Figure 3). In PASMCs, E2
induces increased expression of the calcium binding protein,
S100A4/Mts1, and activates its endogenous receptor (receptor
for advanced glycosylation end products; RAGE), thereby
stimulating cell proliferation (14). Serotonin-induced human
PASMC proliferation is mediated by SERT and 5-HT1B receptors
(140, 141), and E2 mediates the upregulation of SERT and
5-HT1B receptors (15). Increased SERT expression causes
increased 5-hydroxytryptamine (5-HT) in cells, and both E2 and
5-HT increase CYP1B1 expression in PAH-derived PASMCs (59).
Thus, the vascular remodeling in PAH may be associated with
dysregulation of estrogen metabolic pathways through increased
CYP1B1 activity and the formation of pathogenic metabolites
that promote PASMC proliferation. E2 also promotes PASMC
hyperproliferation by inhibiting BMPR2 expression (142–144).
Even in normal subjects, the expression and activity of BMPR2
is sex-specific. In PASMCs, the mRNA and protein expression of
BMPR2 in females was observed to be lower than that of males
in control subjects, and in mice (142), which may contribute to
the proliferation phenotype of female PASMCs, and may partly
explain why women are more susceptible to PAH (145). BMPR2
signal transduction is reduced in the lungs of SuHx-PH rats.
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Inhibition of estrogen synthesis with aromatase inhibitors not
only reverses SuHx-PH in female rats, but also restores BMPR2
signaling (16), indicating that endogenous estrogen has an
inhibitory effect on BMPR2 signaling. Moreover, there is direct
binding of ERα to EREs on the promoter of the BMPR2 gene,
resulting in estrogen-mediated reductions in BMPR2 expression
(142). In addition, changes in oxygen concentration can alter E2
effects on BMP signaling in human PAECs (146).

Metabolites of estrogen also play a significant role in
the abnormal proliferation of PASMCs. The highly estrogenic
metabolite, 16α-OHE1, induces the proliferation of human
PASMCs isolated from PAH patients (18, 46). 16α-OHE1 has
also been shown to stimulate nicotinamide adenine dinucleotide
phosphate oxidase (NOX)-induced ROS generation and cause
abnormal proliferation, via Erα, in human PASMCs (44). In
vivo, chronic 16α-OHE1 exposure in BMPR2 mutant male mice
doubles the prevalence of PAH and decreased cardiac output.
In the whole lungs of control mice, 16α-OHE1 inhibits BMPR2
protein and BMP signaling, but not in BMPR2 mutant mice,
indicating a role for BMPR2 inhibition in 16α-OHE1-mediated
proliferative effects.

2-ME2 has been shown to significantly reduce angiogenesis
and remodeling. Using COMT KO mice, Lefteris et al.
demonstrated the vascular anti-mitotic effects of E2 derived
from catabolism to 2-ME2, which was ER-independent (147).
SMC mitosis is inhibited by 2-ME2 through inhibition of key
cell cycle regulatory proteins, up-regulating COX-2, reducing
HIF protein expression, interfering with the polymerization of
tubulin and disrupting the microtubule network (45, 148–150).
The synthetic analog of 2-ME, 2-ethoxyestradiol (2-EE), can
also inhibit vascular remodeling in PH in a dose-dependent
manner. Moderate concentrations inhibit the growth of human
PASMCs in vitro, and have a biphasic effect on the growth of
ECs (low stimulation and high concentration inhibitory effect)
(151). Furthermore, in primary rat aortic SMCs (152) and rat
liver epithelial cell lines (153), the expression of angiotensin type
1 receptor (AT1R) was down-regulated by 2-ME2, a response
mediated by GPER. Up-regulation of AT1R expression and signal
transduction has been shown to be important in pulmonary
vascular remodeling in PAH (154). Notably, E2 protection
in HPH does not require conversion of E2 to downstream
metabolites such as 2-ME2. E2 also directly reduces the secretion
of vascular endothelial growth factor (VEGF) in hypoxic rat
PAECs in an ER-dependent manner. E2 can inhibit the cell cycle,
and reduce vascular remodeling and hemodynamic parameters
in HPH through direct antiproliferative effects (90). As 2-ME2
does not appear to interact with nuclear ERα and ERβ in the
cardiovascular system the anti-mitotic effects of 2-ME2 may be
ER-independent (64).

The effects of E2 on vascular remodeling may be influenced by
several factors. Oxygen concentrations can impact E2 signaling
and there is a dichotomous effect of E2 in cultured PAECs,
with E2 inhibiting hyperplasia pathways during hypoxia but
promoting cell proliferation under normal oxygen levels (90).
It should be noted that studies that have observed estrogen-
promoting effects on angiogenesis and remodeling have all been
conducted during normal oxygen levels. Dose-dependence is also

important in E2 signaling (151, 155). Metabolite specificity also
drives directionality in estrogen signaling. E2 metabolites exert
both, proliferative and anti-proliferative, actions. For example,
2-ME is known to have anti-proliferative effects on cells, while
16α-OHE1 stimulates cell proliferation (156). Tissue specificity
can influence estrogen signaling. ERα has pro-proliferative
properties in some tissues and cancers, while ERβ has anti-
proliferative effects (157). The activity of each ER subtype in
tissues may also influence the relationship between estrogen and
vascular remodeling.

The diverse array of E2 metabolites and their varying
biological activities as well as signaling pathways combined may
contribute to the diverging effects of estrogen (158). They may
explain some of the opposing actions of estrogen metabolites
on angiogenesis and remodeling across different studies. Equally
important, disruption in the balance of estrogen metabolites may
also explain the differential effects of estrogen in animal models
of PH (15).

Angiogenesis
Loss of pulmonary microvessels and impaired regeneration
leads to the progression of PAH. The loss of RV myocardial
microvessels causes RV ischemia, which is directly related
to RV dysfunction (159). Promoting the regeneration of
“lost” distal vasculature is considered to be an important
future treatment direction (160). Experimental studies have
shown that estrogen plays a role in these phenotypes. For
example, in MCT-PH, “loss” or pruning of blood vessels
can be reversed by E2 treatment. E2 also stimulates the
growth of new capillaries in healthy control rats beyond
normal levels (12). Furthermore, E2 enhances EC activity
during neovascularization (161), enhances EC motility through
ERα (162), and promotes functional endothelial recovery after
traumatic de-endothelialization injury (163). Tumor necrosis
factor-α (TNF-α)-induced EC apoptosis is also inhibited by E2
in a dose-dependent (155). E2 enhances RhoA/ROCK signaling
through ERs and increases protein expression related to the
cell cycle, promoting EC migration and proliferation (164). The
effect of E2 on RV capillary vascularization and RV ERK1/2
activation is only weakened in non-selective ER retardation,
and is not effective in ERα or ERβ selective arrest (90).
Estrogen binds to EREs by forming an estrogen-ER complex
and regulates VEGF gene transcription (165). E2 enhances
the mobilization of endothelial progenitor cells from bone
matrix, and promotes its entry into sites of neovascularization
through eNOS-mediated matrix metalloproteinase-9 expression
enhancement in the bone matrix (166). Therefore, E2 may lead
to improvements in cardiopulmonary structure and function
by increasing myocardial blood vessels and angiogenesis, which
may represent an additional mechanism to alleviate PH. This
is supported by data showing that E2 cannot rescue PH in the
presence of the angiogenesis inhibitor, TNP (12).

Vasodilation
Exogenous E2 rapidly reduces PA vascular reactivity and acute
hypoxic pulmonary vasoconstriction (HPV) in a dose-dependent
fashion (167). Changes in endogenous E2 abundance in females
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can also affect the vasoconstrictor response (168). Recent
research suggests that low levels of NO in PAH may not be solely
due to reduced NOS expression, but rather, may be influenced
by factors that regulate NOS activity (169). The beneficial effects
of estrogen in PAH partly reflect its effects on eNOS induction
via both expression and activation, resulting in NO production,
improved pulmonary hemodynamics and vascular remodeling.
Although this is likely and predominantly mediated by ERs at
the level of gene transcription, estrogen also appears to have
non-genomic effects on ERα-mediated eNOS activity in ECs.
The combination of these genomic and non-genomic pathways
is critical to the vascular protective properties of estrogen (121,
170).

Lahm et al. showed that even physiological changes in
endogenous estrogen, such as the menstrual cycle, can affect
pulmonary artery vasoreactivity and pulmonary vasoconstriction
during acute hypoxia (168). Chronic E2 treatment in vivo
increases the expression of eNOS, resulting in enhanced
endothelium-dependent dilation in aorta and lungs (171). Long-
term E2 infusion causes abnormal vasodilation patterns in
the lungs of fetal sheep (172). The pulsatile load of the
mechanical proximal PA is reduced after E2 supplementation,
thereby improving ventricular-vascular coupling (173). High-
dose exogenous E2 acutely attenuates PA vasoreactivity and
acute HPV in a rapid and dose-dependent manner (167). This
immediate effect suggests the role of non-genomic estrogen
mechanisms. E2 also rapidly activates eNOS through Src kinase
in human EC, inducing the formation of a complex containing
ERs, c-Src and p85 (the regulatory subunit of PI3K). The
formation of this complex leads to the continuous activation
of PI3K, Akt, and eNOS, thereby enhancing the release of
NO via eNOS (174). NO induced post-translational protein
modification protects blood vessels through S-nitrosated cell
proteins (175, 176). Indeed, physiologically relevant doses of E2
has been shown to increase protein S-nitrosation in vascular EC
through ERα and eNOS. Although both ERα and ERβ specific
agonists increase the expression of eNOS protein, only ERα

specific agonists activate eNOS through phosphorylation (177).
To sum up, E2 increases the protein level of eNOS through the
genomic pathway, and activates eNOS in a rapid non-genomic
manner in vascular. A similar effect of estrogen on eNOS was
also observed in the heart. E2 stimulated the expression of
iNOS and eNOS in cardiomyocytes (178). Both, ERα and ERβ,
reduce PA vasoconstriction, and the contribution of specific
ERs seems to be stimulus specific. ERα appears to mainly
regulate phenylephrine-induced vasoconstriction, while ERβ was
shown to inhibits HPV (123). ERα also affects women’s vascular
endothelial function by affecting protein levels and activating
eNOS (80). While the anti-atherosclerotic effect of estrogen
may be partially mediated by ERα-induced up-regulation of
eNOS gene expression and maintenance of EC function and
integrity (179).

Immunomodulation
A large body of evidence shows that inflammation and
autoimmunity play important roles in the pathogenesis of PAH.
At the beginning of the disease, the inflammatory response,

caused by injured small pulmonary vascular endothelium, is
believed to protect the body. However, as the disease progresses,
Dorfmüller proposed that severe PH results in immune system
disorders (180). This ineffective immune regulation (immune
imbalance) may be related to the pathology and biology of
PAH and leads to aggravation of the disease (181). In and
around the reconstructed lung resistance vessel wall and near
the plexiform lesions of PAH patients and PH animal models,
varying degrees of perivascular inflammatory infiltration have
been found, including T lymphocytes and B lymphocytes,
macrophages, dendritic cells and mast cells (182), and elevated
levels of proinflammatory cytokines (such as IL-1β and IL-6) in
serum (183). Perivascular inflammation plays an important role
in the process of vascular remodeling (184). Pulmonary vascular
remodeling in HPH requires the recruitment of circulating
mesenchymal precursors of the monocyte/macrophage lineage
(185), which is essential for the late onset of HPH (186).
Studies investigating links between estrogen and inflammation
in other diseases have revealed that proinflammatory cytokines
such as TNFα, IL-1 and IL-6 stimulate the activity of fibroblast
aromatase and increase the level of estrogen (187, 188). Up-
regulation of CYP1B1 leads to increased estrogen catabolism
to 4-OHE and 16α-OHE1, which have significant angiogenic,
pro-inflammatory and mitogenic properties, and thus promote
the development of PAH (46). However, estrogen-induced PAH
recovery is related to the inhibition of inflammation, and E2
limits the infiltration of lung monocytes/macrophages associated
with PAH (12). E2 mediated inhibition of inflammation in
the mouse lung is associated with modified levels of vascular
cell adhesion molecules and proinflammatory mediators (189).
Further, E2 has been shown to regulate several genes involved
in inflammation during hypoxia in an ER-dependent manner.
The anti-inflammatory effect of E2 appears to be predominantly
mediated by ERβ (190, 191).

Another metabolite of estrogen, 2-ME2, also suppresses
inflammation in PAH. 2-ME has significant anti-inflammatory
and immunomodulatory effects (192). In several cardiovascular
and kidney injury models, this effect is manifested by inhibiting
macrophage influx/activation (193). Moreover, contrary to 16α-
OHE1, 2-ME2 is found to inhibit the expression of inflammatory
cytokines (TNF-α, IL-6 and PGE2) in other disease models,
reducing local inflammation and preventing new angiogenesis
(192). By blocking inflammatory cytokines, 2-ME reduces its
stimulation of aromatase activity (194), which in turn may
reduce E2 levels in local tissues. E2 appears to regulate lung
inflammation in a sex-independent and age-restricted manner
via ERα (195). Although the specific effect of inflammation on
E2 metabolism in PAH is unclear, spontaneous inflammation is
known to increase the production and utilization of E2 and its
proinflammatory metabolites, which influences the pathology of
severe PAH.

ESTROGEN AND PREGNANCY IN PAH

Pregnancy further complicates this complex estrogen signaling
process. PAH is considered a significant risk factor during
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pregnancy (196). The levels of progesterone and estrogen
continue to increase significantly throughout pregnancy (197–
200). Other sex hormones such as DHEA and testosterone
also increase during pregnancy (198, 201). These hormones
mediate vasodilation (123, 167, 168, 202–204), considered a
major driver for the increase in plasma volume caused by
pregnancy (204, 205). In addition, elevated E2 and DHEA
during pregnancy are thought to have a beneficial effect on
RV function (206, 207). However, during pregnancy, especially
during the perinatal period, the increase in RV pressure caused
by hemodynamic changes and volume changes may far exceed
the protective effects mediated by E2 and DHEA, resulting in RV
failure. Moreover, while estrogen and some of its metabolites can
promote pulmonary vascular remodeling in PAH (14, 18, 46),
it remains uncertain whether the worsening of PAH observed
in patients after pregnancy is due to, in part, to the direct
impact of sex hormones on the cardiopulmonary system. Rapid
deterioration of PAH often occurs in the postpartum period
(208, 209), when levels of sex hormones drop sharply (210). The
protective effects of sex hormones on PAH are likely reduced
as their levels decrease, which at least partly contributes to
postpartum RV failure. Broadly, the increase in sex hormones
caused by pregnancy and their sharp decline during postpartum
have complex effects on the pulmonary vascular system and RV
in PAH. There are a paucity of studies in this field with significant
need to fill this gap.

CONCLUSION

Although significant progress has been made in our
understanding of estrogen synthesis and catabolism, earlier
research efforts primarily focused on circulating levels of
estrogen and/or its metabolism in the liver. Measuring
circulating estrogen concentration or its concentration in
urine, however, may not provide an adequate window into
comprehensively studying the role of estrogen biology in PAH.
A better understanding of the local concentrations of estrogen
and its metabolites in the heart and lungs, enzymes involved in
estrogen metabolism, and their activity, is required to further
clarify the role of estrogen in PAH.

Beyond estrogen, testosterone- as a precursor of estradiol-
also deserves consideration when discussing mechanisms of sex
differences. Studies show that testosterone, largely, has an anti-
inflammatory effect, resulting in more pronounced pulmonary
artery relaxation than estrogen (202, 203, 211). However,
observations from rodent PHmodels, where female rodents with
ovariectomy demonstrate greater severity of disease than male
rats with female rats considered the least severe, suggest that the
overall contribution of testosterone in the development of PAH
may not be as significant as estrogen. In contrast, E2 metabolism
in PAH has also begun to be better characterized. In general,
increased 16α-OHE1 appears to promote the development of
PAH, while 2-ME2 likely contributes to reversal of disease-
related phenotypes. E2 appears to be protective in the RV but
its role in the pulmonary circulation is less clear. Inhibition of
the major estrogen metabolizing enzymes, aromatase (estrogen

synthesizing enzyme) and CYP1B1 (catalyzes the catabolism
of estrogen to “PH-damaging” metabolites), represent novel
potential therapeutic targets in PAH. However, factors that
influence estrogen synthesis and catabolism remain poorly
characterized in PAH. For example, can increased production
of 2-ME2 promote a therapeutic role in PAH? Estrogen and
its metabolites play diverging roles in different cells, and in
particular cases the same cells. Comprehensive studies of their
activity in various cells related to PAH, remain essential for
increasing our understanding of the role of estrogen in PAH and
these are still lacking.

Finally, establishing reproducible and translatable
observations from animal models of PAH remains a top
priority. For studies that focus on understanding the “estrogen
paradox,” selecting an animal model that better mirrors features
of the human phenotype is critical. Importantly, recognizing
that the estrous cycle and hormone levels of commonly used
rats and mice are not similar to those of human patients is
equally as important. Moreover, there is a significant knowledge
gap in the changes across the full spectrum of estrogen
synthesis, catabolism and signaling in PAH animal models
during disease development, further highlighting limitations of
animal models. Although none of the animal models can fully
mimic the phenotype of patients with PAH, researchers should
methodically select animal model(s) that are most suitable for
the hypothesis and aims of the study.

Future studies will need to address a variety of topics in this
field including: (1) changes in estrogen and its metabolic activity
in patients and animal models during the progression of PAH; (2)
the role of estrogen and its metabolites in a tissue- and temporal-
specific manner in PAH; (3) defining the spectrum of estrogen
synthesis-enzymes and their contributions to the estrogen
content in the blood. (4) the distribution and ratio of ERα, ERβ,
and GPER in cardiopulmonary tissues and their function, as well
as changes in their expression and modifications with age and
PAH development; (5) transcriptional programming regulated
by ERα, ERβ, or/and GPER as well as estrogen metabolites; (6)
the bi-directional relationship between estrogen signaling and
the presence/progression of disease including elucidating any
potential positive or negative feedback loops.

In conclusion, estrogen influences cardiopulmonary function
in health and disease in several ways. Differences in estrogen-
related enzyme activity and estrogen signaling can be observed
in normal and PAH lungs, indicating that there is a correlation
between PAH and estrogen catabolism, metabolism and
signaling. The functions and activities of specific receptors,
the concentration and ratio of estrogen and its metabolites,
as well as their local concentration relative to the circulatory
system, the interaction between various sex hormones, age,
comorbidity, genetics, and other factors are involved in the
relationship between PAH and estrogen. By analyzing and
comparing existing studies, the joint contribution of specific
ERs or signaling pathways and specific metabolites may partially
clarify the controversy about the role of estrogen in PAH. The
knowledge gained from these future investigations will provide
the necessary understanding on mechanisms and better prepare
us to tackle the sex gap in PAH. Ultimately, it is hoped that these
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studies will fuel the discovery of novel therapeutic targets for this
uncurable and devastating disease.
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