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Background: The immune microenvironment of tumors provides information on
prognosis and prediction. A prior validation of the immunoscore for breast cancer (ISBC)
was made on the basis of a systematic assessment of immune landscapes extrapolated
from a large number of neoplastic transcripts. Our goal was to develop a non-invasive
radiomics-based ISBC predictive factor.

Methods: Immunocell fractions of 22 different categories were evaluated using
CIBERSORT on the basis of a large, open breast cancer cohort derived from
comprehensive information on gene expression. The ISBC was constructed using the
LASSO Cox regression model derived from the Immunocell type scores, with 479
quantified features in the intratumoral and peritumoral regions as observed from DCE-
MRI. A radiomics signature [radiomics ImmunoScore (RIS)] was developed for the
prediction of ISBC using a random forest machine-learning algorithm, and we further
evaluated its relationship with prognosis.

Results: An ISBC consisting of seven different immune cells was established through the
use of a LASSO model. Multivariate analyses showed that the ISBC was an independent
risk factor in prognosis (HR=2.42, with a 95% CI of 1.49–3.93; P<0.01). A radiomic
signature of 21 features of the ISBC was then exploited and validated (the areas under the
curve [AUC] were 0.899 and 0.815). We uncovered statistical associations between the
RIS signature with recurrence-free and overall survival rates (both P<0.05).

Conclusions: The RIS is a valuable instrument with which to assess the immunoscore,
and offers important implications for the prognosis of breast cancer.

Keywords: radiomics, breast cancer, DCE-MRI, immune microenvironment, immunoscore
INTRODUCTION

The tumor immune microenvironment (TIME) displays key actions in tumor development,
metastasis, and the response to therapy (1, 2). Many researchers have confirmed the prognosis
and potentially predictive importance of the infiltration of immune cells into tumors (3–6).
Currently, the assessment of immune infiltration, such as immunoscore testing, usually requires
org January 2022 | Volume 12 | Article 7735811
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post-surgically acquired tissue samples. Due to the dynamic
character of the immune reaction (7), assessment of TIME
through non-invasive methods would be helpful and allow for
a longitudinal evaluation regarding the immune infiltrate across
the entire therapeutic course.

Radiography entails a wealth of knowledge comprising tumor
phenotypes (8) that are not only controlled by the inherent
biology of tumor cells but also regulated by the tumor
microenvironment (TME). Analysis of radiologic images by
quantified radiomics methods can reveal associations between
particular images with molecular phenotypes (9). And some
investigators have already begun exploring the relationships
between imaging features and tumor-infiltrating lymphocytes
(10–13).

Breast cancer continues to be the commonest cancer
worldwide, and the second leading cause of cancer-related
deaths (14). Clinicopathologic risk factors cannot currently be
used to precisely predict outcome, and more accurate risk
stratification is thus required for the appropriate timing of
surgery and the implementation of chemotherapeutic
regimens (15).

We are currently developing an ImmunoScore for breast
cancer (ISBC) based upon patient RNA sequencing information,
and then validating the ISBC as a reliable and independent
prognostic predictor. We thereby assume that radiomics will
permit a non-invasive assessment of TIME. A two-fold aim of
our study was (a) to establish a radiomic signature of the ISBC, and
(b) to evaluate the capability of the ISBC in predicting survival.
PATIENTS AND METHODS

Collection of Data Cohorts
The image datasets were gathered from The Cancer Imaging
Archive (TCIA) open-access dataset, and the respective gene-
expression profiles were acquired through The Cancer Genome
Atlas (TCGA). Motivated by prior studies (16–18) that indicated
that TIME is correlated with the prediction of breast cancer, we
created and verified the association of imaging phenotypes with
TIME by using three datasets. There was zero patient overlap
across the three datasets, and descriptive and clinical statistics of
all three cohorts are shown below in Table 1.

The first dataset, called the TCGA cohort, consists of the data
from 335 individual cases gathered from the TCGA database,
together with RNA sequencing data from cancer specimens as
well as Recurrence-free survival (RFS) and overall survival (OS);
however, there are no data with respect to imaging. This cohort
was then randomly partitioned into a training set (~70%) and a
validation set (~30%).

The second dataset, referred to as the Radiogenomic Cohort,
originally consisted of 137 cases of patients who had usable DCE-
MRI images of TCGA-BRCA, along with the appropriate gene
expression information in the TCGA dataset. One patient with
no usable gene expression data, seven without usable clinical
details, and nine whose imaging was not complete were deleted
from the study. The finalized dataset consisted of 120 patients,
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and these were allocated to training and validation sets in a ratio
of 8:2.

We enrolled a validation cohort consisting of 222 breast
cancer cases (from the I-SPY 1 TRIAL in the TCIA database),
together with usable DCE-MRI and appropriate RFS and OS
information. We eliminated 26 cases of patients who had
incomplete image sequences, 10 patients without measurable
neoplasms, and 31 manifesting poor image quality. The resulting
dataset thus encompassed a panel of 155 breast cancer patients.

Data in the TCGA and TCIA databases are open access, and
our study adhered to the data- accessibility policies and release
guidance with respect to both databases, and therefore did not
require approval from the local ethics committee.

Outline of the Framework
As Figure 1 illustrates, the framework of our research consisted
of two blocks: (i) calculation of an immunoscore based on RNA
sequencing information, and (ii) development of a radiomic
feature (radiomics ImmunoScore [RIS]) for non-invasive
assessment of the cancer immunoscore, and evaluation of the
capability of the RIS to predict survival.

Calculation of Immunoscore
We used the CIBERSORT algorithm to calculate the patient’s
immunoscore as previously described, the procedure of which
can be found in Supplementary Material (19–21). This method
is designed to work effectively and is already proven on gene
expression spectra as measured with microarrays. In the present
study, scores of 22 immune cell categories were assessed using
CIBERSORT on a series of breast cancer gene expression profiles
according to clinical notes. The imputed scores of immune cell
groups generated from CIBERSORT were deemed to be exact
under a threshold of P < 0.050. A patient was therefore deemed
qualified to undergo further analysis only if CIBERSORT
P <0.050. The immunoscore was then created using a Least
Absolute Shrinkage and Selection Operator(LASSO) Cox
regression analysis.

Image Collection and Tumor Segmentation
MR images were downloaded from the TCIA database (for MR
acquisition parameters, see Supplementary Material). Two
diagnostic imaging physicians (XR and WT, with 5 and 9 years
of diagnostic breast MRI experience, respectively) manually
displayed the primary neoplasm on MRI images with ITK-
SNAP software. In order to obtain infiltrative-margin data, a
ring was formed around the primary neoplasm, with the tumor
margin automatically expanded outward by 2 mm and the tumor
margin contracted inward by 1 mm to form a ring of 3 mm
thickness. The macrovasculature, neighboring organs, and air
spaces were excluded (Figure S1).

Feature Extraction
Radiomics features were defined based on the PyRadiomics
Python package, version 1.2.0 (22), and analyzed using the
recommended set of defaults. We extracted 479 quantified
features of a patient’s MR images separately in each of the
regions of interest, i.e., peritumoral and intratumoral regions,
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TABLE 1 | Characteristics of patients in the TCGA, radiogenomic, and validation cohorts.

Variables TCGA cohort Radiogenomic Cohort Validation cohort

n = 335 n = 120 n = 155

N % N % N %

Age (years)
18-60 194 57.9 80 66.7 137 88.4
>60 141 42.1 40 33.3 18 11.6
Laterality
Left 165 49.3 61 50.8 77 49.7
Right 170 50.7 59 49.2 78 50.3
Race
White 216 64.5 97 80.8 143 92.3
Black or African American 70 20.9 22 18.3 4 2.6
Asian 21 6.3 1 0.8 8 5.2
Other 28 8.4 / / / /
Status
Alive 286 85.4 117 97.5 132 85.2
Dead 49 14.6 3 0.5 21 13.5
Lost 0 0 0 0 2 1.3
OS(years)
≤1 50 14.9 6 5.0 5 3.2
>1 ≤3 151 45.1 50 41.7 21 13.6
>3 ≤5 58 17.3 31 25.8 102 65.8
>5years 70 20.9 30 25.0 27 17.4
Unknown 6 1.8 3 2.5 0 0
Depth of invasion
pT1 70 20.9 48 40.0 / /
pT2 220 65.7 66 55.0 / /
pT3 33 9.9 6 5.0 / /
pT4 12 3.6 0 0 / /
Lymph node metastasis
pN0 166 49.6 63 52.5 / /
pN1 107 31.9 41 34.2 / /
pN2 36 10.7 9 7.5 / /
pN3 21 6.3 6 5.0 / /
pNx 5 1.5 1 0.8 / /
Metastasis
pM0 277 82.7 94 78.3 / /
pM1 6 1.8 0 0 / /
pMx 52 15.5 26 21.7 / /
Stage
I 49 14.6 28 23.3 / /
II 206 61.5 76 63.4 / /
III 69 20.6 16 13.3 / /
IV 6 1.8 0 0 / /
Unknown 5 1.5 0 0 / /
Estrogen receptor status
Positive 206 61.5 99 82.5 88 56.8
Negative 116 34.6 21 17.5 65 41.9
Indeterminate 0 0 0 0 0 0
Unknown 13 3.9 0 0 2 1.3
Progesterone receptor status
Positive 173 51.6 88 73.3 74 47.7
Negative 148 44.2 32 26.7 79 51.0
Indeterminate 1 0.3 0 0 0 0
Unknown 13 3.9 0 0 2 1.3
Human epidermal growth factor receptor 2 status
Positive 60 17.9 13 10.8 47 30.3
Negative 184 54.9 62 51.7 105 67.7
Indeterminate 46 13.7 26 21.7 0 0
Unknown 45 13.4 19 15.8 3 2.0
Neoadjuvant chemotherapy
YES 316 94.3 1 0.8 153 98.7
NO 0 0 119 99.2 2 1.3
Unknown 19 5.7 0 0 0 0
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and evaluated them by calculating the AUC (Figure S2). The
extracted features included 90 first-order features, 14 shaped
features, as well as 375 second- and higher-order textural
features. The four textured features we studied were based on
wavelet decomposition of the grayscale co-occurrence matrix,
grayscale run-length matrix, grayscale size-region matrix—as
well as the neighborhood grayscale-difference matrix. Image
features with various spatial scales were derived by rotating the
filter parameters (2.0, 2.5, 3.0, and 3.5) between 2.0 and 3.5 using
a Gaussian spatial bandpass filter (∇2G).
Frontiers in Immunology | www.frontiersin.org 4
Feature Selection
Inter-observer and intra-observer consistency was performed by
analyzing all radiomics features extracted based on intra and
interclass correlation coefficients (ICCs). Thirty patients were
randomly selected, features of which were extracted by
radiologists XR and WT. The same steps were also repeated
for two weeks by radiologist XR. ICC > 0.8 suggested
good agreement.

Recursive feature elimination was employed for selecting the
most helpful prediction features among the primary dataset.
FIGURE 1 | Design of the study in which a breast cancer ImmunoScore was developed and used to validate the radiomic signature.
January 2022 | Volume 12 | Article 773581
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Construction of a Radiomics
Immunoscore
Using the training set of Radiogenomic Cohort, we built a
random forest model to predict the RNA-Seq-based
immunoscore [radiomics ImmunoScore (RIS)], which was
selected as the optimal model by a five-fold cross-validation.
This model was executed on the validation set, with an optimal
threshold for the RIS using the Youden index, which optimized
the total sensitivity and specificity.

Statistical Analyses
Comparisons between the two groups were made by Student’s t-
test for continuous variables and either Chi-squared or Fisher
exact-probability tests for categorical variables. Kaplan-Meier
method-based survival curves were produced and compared
using log-rank tests. We used Cox proportional risk models for
univariate and multivariate analyses. LASSO-Cox regression
analysis was performed for constructing the immunoscore for
breast cancer. A random forest classifier model was used to
classify the immunoscore. Model accuracy was evaluated with
the AUC. Inter-observer and intra-observer consistency was
performed by ICCs. Error detection rates were computed to
obtain corrected P-values in multiple comparisons. We
employed R 3.4.0 and SPSS 22.0 for statistics, and bilateral P-
values <0.05 were regarded as significant.
RESULTS

Demographic Characteristics
The selected protocols for the TCGA cohort patients are
presented in Figure S3. Following application of the data-
screening criterion, overall survival data from 335 clinically
annotated breast cancer specimens were accessible for
additional analyses. Details of the patient demographics are
shown in Table 1.

Detailed clinicopathologic features for individuals in the
Radiogenomic Cohort (n=120) and Validation Cohort (n=155)
are presented in Table 1. The median age (interquartile range) of
the 275 patients enrolled in this study was 51.0 (44.0–59.0) years.

Estimation of the Immunoscore
We employed the survminer software package on the TCGA
cohort training set (235 patients) for generating the best cutoff
values per immune cell fraction. A forest plot showing the
correlation between every immune cell sub-population and
overall survival is shown in Figure 2A. The immunoscore was
modeled on the training set using LASSO-Cox regression
analyses (Figures 2B, C) (see Supplementary Material for the
formula used to calculate the immunoscore). Time-dependent
ROC analyses were performed at the 2-, 3-, and 5-year time-
points to study the accuracy of the prognosis of the immunoscore
as a continuous variable in the training set (Figure 2D), and the
corresponding AUC values and calibration curve are shown in
Figures S4A, B. The cut-off (-0.115) derived by the survminer
package was then utilized to classify the patients in the training
Frontiers in Immunology | www.frontiersin.org 5
set into high and low immunoscore groups. The results of the
five-year survival analysis of different immunoscore groups,
different age groups, and different pathologic stages are shown
in Figure S5. The results of our multivariate Cox regression
analysis regarding the correlation between immunoscore and
overall survival are depicted in Table S1.

Validation of Immunoscore Prediction of
Survival in the TCGA Cohort-Validation Set
The identical equation was used in the validation data set of the
TCGA cohort in order to verify a similar prognostic value for the
constructed immunoscore model across populations. In
the validation set, the prognostic precision regarding the
immunoscore used as a continuous variable was also evaluated
via time-dependent ROC analyses (Figure 2E).

Construction and Validation of
Radiomics Immunoscore
Both intra- and inter-observer ICCs were greater than 0.8,
indicating good reproducibility of feature extraction.

A random forest was used to construct the classification for
the ISBC in the training set of the Radiogenomic Cohort. Select
the top 10 features in terms of feature importance and plot the
feature relative importance histogram (Figure S6). The resulting
radiomics signature (RIS) consisted of 21 predictors with six
marginal features and 15 intratumoral features (Table S2). In the
training set, the capability of the RIS to classify high ISBC and low
ISBC showed an AUC of 0.899 (95% confidence interval [CI],
0.832–0.966) (Figure 3A). The radiomics signature revealed a
similar accuracy in predicting the ISBC in the validation set with
an AUC of 0.815 (95% CI, 0.607–1.000) (Figure 3B). The RIS,
however, exhibited a higher AUC value than any single
radiomics feature (Figure S7). In addition, the AUC of the RIS
was compared with the volume and diameter of the core and
infiltration zones of the validation set (Figure S8). The optimal
cut-off for the RIS in the training set was 0.686 as defined by the
ROC curve (Figure 3A). Therefore, patients were classified into a
low-RIS group when their RIS was <0.686, and a high-RIS group
when their RIS was ≥0.686. The association between the RIS and
clinicopathologic characteristics is shown in Table S3.

Prognostic Value of Radiomics
ImmunoScore
The prognostic value of the RIS was then evaluated in our
validation cohort. The five-year RFS and OS in the low-RIS
group were 91.49% and 91.32%, respectively, and these survival
indices in the high-RIS group were 84.09% and 82.94%,
respectively (Figure 4), indicating that the prognoses for
patients who were stratified on the basis of the RIS were
significantly different.

We conducted multivariate Cox regression analyses and
adjusted for clinicopathologic variables. In the validation
cohort, the RIS continued to be a strong and independent
prognostic predictor of RFS and OS (Table 2). Finally, we
noted that the combined model-integrating radiomics and
January 2022 | Volume 12 | Article 773581
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A B

FIGURE 3 | ROC curves of the RIS predicted the ISBC in both the training (A) and validation sets (B).
A B C

D E

FIGURE 2 | Construction of the immunoscore model. (A) The forest plot shows the relationship of different subpopulations of immune cells to OS in the training set.
(B) Distribution of LASSO factors for 21 immune cell fractions. The dashed curve represents values selected via 10-fold crossover validation. (C) Crossover validation
of a 10-fold choice of adjustment parameters from the LASSO model. The bias likelihood deviation was expressed in log(l) whenever l was the adjustment parameter.
Values of the bias-likelihood deviation are displayed, and the error bands indicate S.E. of the mean according to the minimal criterion and the 1-S.E. criterion; vertical
dashed lines were plotted at the optimal point. Numbers at the top denote numbers for cell categories implicated in the LASSO model for (B, C) The prognostic
accuracy of the immunoscore as a continuous variable as assessed by ROC analysis in the training set (D) and validation set (E).
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clinicopathologic features enhanced the prognostic accuracies of
the validation cohort (Figure S9 and Tables S4, S5).
DISCUSSION

The immune microenvironment of tumors is a critical determining
factor in the therapeutic response and results in numerous types of
cancers (23), and high-level immune infiltration has been shown to
be related to positive clinic results in BC (24). In the present study,
we calculated an immunoscore using CIBERSORT, an algorithm
that can accommodate high numbers of cancer samples that have
already been analyzed by RNA sequencing so as to estimate
proportions of immune cells. This algorithm avoids the complex
process of immunostaining and offers a substitute for flow or mass
cytometry-based approaches. Importantly, archives of RNA and
cellular samples are equally accessible to CIBERSORT (25). It has
also been demonstrated that CIBERSORT is effective in identifying
particular immune subgroups, representing a major advance
compared to other methods that reflect more restricted
capabilities (26–28). In the present study, an immunoscore
model consisting of seven immune cells was constructed and
evaluated by applying LASSO regression (29, 30), and the
predictive value was validated in both the training as well as the
validation set. We showed a significant segregation between OS
T

V
v

R
E
P
H
L
A
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curves of high and low immunoscore subjects, which is in line with
previous studies (31). Furthermore, the ability of the ImmunoScore
in predicting patient group survival, similar to TNM staging,
suggests this model may be useful for prognostic purposes and
could possibly supplement the current TNM staging approach.

Our assessment of the immune microenvironment in the
tumors was determined for histologic samples, was only available
on a single postoperative basis, and was restricted by the inherent
heterogeneity of the biopsied tissue. By comparison, the rare benefit
of radiographic images is that they are available non-invasively and
can be obtained continuously prior to and across the course of
therapy. Radiomic analyses can uncover microscopic tumor
profiles that mirror the makeup of tumor-invading immune cells.
In our study, we found that RIS can be used to predict breast cancer
immunoscore and confirmed in the validation set, suggesting that
radiomics is feasible for predicting breast cancer immunoscore.
While image-based assessments will likely neither supplant nor
substitute for the current gold standard of tissue-based assessment,
we posit that our radiographic methodology would be helpful in
promoting long-term evaluation and in vivo surveillance of the
TME. In fact, some researchers have surveyed the relationship
between radiographic features and tumor-invading lymphocytes
(10–12), and the ability of radiomic features to predict prognosis
(12). Ferté et al. correlated both on-tumor and peri-tumor radiomic
features with CD8 expression at the central tumor area and
ABLE 2 | Cox regression analysis of multivariate for RFS and OS of breast cancer patients.

ariables RFS OS
alidation cohort 95%CI p 95%CI p

IS (high vs. low) 0.079-0.870 0.029 0.083-0.920 0.036
strogen receptor status(positive vs. negative) 0.564-1.088 0.145 0.542-1.046 0.009
rogesterone receptor status(positive vs. negative) 0.607-1.162 0.293 0.610-1.168 0.306
uman epidermal growth factor receptor2 status(positive vs. negative) 0.572-3.835 0.419 0.547-3.655 0.474
aterality(left vs. right) 0.379-2.407 0.922 0.389- 2.470 0.967
ge(≥60 vs. <60) 0.429-5.126 0.533 0.446-5.322 0.495
January 2
022 | Volume 12 | Article 7
A B

FIGURE 4 | Kaplan-Meier analysis for RFS (A) as well as OS (B), depending upon the RIS dichotomous signature of the breast cancer patients.
73581

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Han et al. Radiomics for Breast Cancer
suggested that imaging features might help assess the CD8 cell
population and also forecast the clinical response for those patients
receiving antibody therapy (11). In another study, Tang et al.
related intra-tumor radiomics to critical immunologic profiles (32).
In addition, RFS as well as OS curves were significantly separated
based on the RIS dichotomous characteristics of breast cancer
patients and patients with low RIS had a better prognosis, which is
consistent with the literature (33).

The radiomic signature presented in this study was defined
using preprocessed MRI images that reflected the potential
biologic (principally immune-related) features of the TME
unrelated to therapy (33). Therefore, the radiomic signature
developed during diagnostic imaging might also apply to
clinical settings that encompass multiple treatment regimens.
Further efforts will be required to evaluate the radiomic signature
within these specified settings.

A major advantage to our work was that when we deduced a
radiomic signature, we not only executed an analysis of the imaging
features within the tumor alone but also clearly identified the
structure of the circumferential ring around the peritumoral area.
The reason for this was that the peritumor environment secretes
large amounts of growth factors and cytokines, which can induce
oxygen deprivation and angiogenesis, playing important functions
in tumor development, progression or metastasis. Integrating
tumor and peritumor data can more comprehensively portray the
aggressive andmetastatic characteristics of tumors. Thus, extraction
and fusion of tumor and peritumor features can be improved as the
predictive properties of radiomics models (34). Similar radiomic
methods are already employed to exploit radiomic signatures for
the purpose of forecasting chemotherapeutic reactions in gastric
cancer (33). The utilization of sophisticated deep-learning
technologies also contributes to the automated identification of
new imaging phenotypes in forecasting results (35).

Although we uncovered several significant elements, there were
still some limitations to our study that need to be resolved. First, the
size of our patient cohort remained comparatively small, as there
were only a restricted number of usable and accessible RNA
sequencing information and breast MR images from the TCGA as
well as the TCIA databases. The predictive accuracy of imaging
signatures in predicting the ISBC remains to be validated by additional
extrinsic research in this area. Next, data from the DCE-MRI were
obtained in a multisite cohort that possessed different imaging
characteristics and provided a variety of images. Finally, since all
subjects in our study were chosen retrospectively, prospective
randomized trials are required in the future to validate our findings.

Overall, we established a radiomic signature that enabled us to
non-invasively assess TIME, particularly the immunoscore. Studying
Frontiers in Immunology | www.frontiersin.org 8
radiomic features to forecast and detect immunotherapeutic
reactions may therefore constitute an attractive area of focus when
considering the dynamic quality of the immune reaction.
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