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Abstract

Background: In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like
maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems.

Methodology/Principal Findings: We could show that Listeria monocytogenes and other Listeria species contain genes/
gene products with high homology to the maltodextrin ABC transporter and utilization system of B. subtilis. Mutant
construction and growth tests revealed that the L. monocytogenes gene cluster was required for the efficient utilization of
maltodextrins as well as maltose. The gene for the ATP binding protein of the transporter was located distant from the
cluster. Transcription analyses demonstrated that the system was induced by maltose/maltodextrins and repressed by
glucose. Its induction was dependent on a LacI type transcriptional regulator. Repression by glucose was independent of
the catabolite control protein CcpA, but was relieved in a mutant defective for Hpr kinase/phosphorylase.

Conclusions/Significance: The data obtained show that in L. monocytogenes the uptake of maltodextrin and, in contrast to
B. subtilis, also maltose is exclusively mediated by an ABC transporter. Furthermore, the results suggest that glucose
repression of the uptake system possibly is by inducer exclusion, a mechanism not described so far in this organism.
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Introduction

Listeriae are gram-positive rods, asporogenic and very robust.

They grow between pH 5 to 9, from 1–45uC and at salt

concentrations up to 12%. The genus comprises eight species, L.

monocytogenes and L. ivanovii are pathogenic for humans and/or

animals, L. seeligeri is generally regarded as nonvirulent, the five

species L. innocua, L. welshimeri, L. grayi, L. marthii and L. rocourtiae are

harmless saprophytes. Natural habitats of Listeriae are decaying

plant material in soil and also the intestine of healthy animals,

including birds. The bacteria eventually gain access to sewage and

water and may contaminate food processing environments.

Uptake of contaminated food leads to the transmission of Listeria

to humans [1,2].

The multi-facetted systemic disease caused by the human-

pathogenic species L. monocytogenes, listeriosis, is rare but has a high

mortality in severe cases. It mainly occurs in children, pregnant,

elderly and immunocompromised persons [3,4]. The bacterium

has also been implicated in a number of gastroenteritis cases [5].

L. monocytogenes is commonly regarded as model organisms for

the important group of facultative intracellular bacterial pathogens

[6,3]. Also the occurrence and survival of Listeria in food

processing environments and in food has intensively been studied

[7,8]. Much less is known about the occurrence of Listeria in soil

[9,10,11] and in the environment [12,13]. A few reports deal with

the association of Listeria with plants [14,15,16]. Several factors

governing the transition of pathogenic Listeriae from the sapro-

phytic life in the environment to that of an intracellular pathogen

have been reviewed recently [17,18]. Bacterial mechanisms

counteracting acid, salt and bile stress have been studied with

respect to the survival in and the colonization of the intestinal tract

[7,19,20]. However, nothing was known about the nutritional

conditions of Listeria in this environment.

The bacterial habitat on decaying vegetation in soil is of

enormous diversity and is ill-defined. But it can be assumed that it

is rich in complex carbohydrates like starch and its degradation

products maltodextrins and maltose. This also holds true for the

intestinal tract of man and animals, the site of colonization for

non-pathogenic and pathogenic Listeria species and invasion for

pathogenic Listeriae. In the intestine, starch from food will be

degraded to maltodextrins and maltose mainly by pancreatic

amylase, independently of any amylolytic activity of colonizing
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bacteria. It has been shown that a number of bacteria found in

the natural environment and also in the intestine dispose of

efficient uptake mechanisms for maltodextrins/maltose. The

paradigm for this is the maltodextrin system of E. coli [21], but

related systems have also been found in gram-positives, for

example in Enterococcus faecalis [22], Staphylococcus xylosus [23],

Streptococcus pneumoniae [24], Lactococcus lactis [25], Streptomyces

lividans [26] and Lactobacillus casei [27]. The gram-positive model

organism Bacillus subtilis belongs to the closer relatives of Listeria

and its maltodextrin/maltose utilization system has recently been

characterized [28,29]. Fermentation of maltose by Listeria

monocytogenes has been described earlier [30,31] but nothing was

known so far about the mechanism of uptake and utilization of

complex carbohydrates by Listeria. Here we show that L.

monocytogenes EGD-e and other Listeria species contain genes for

an ABC transporter and other essential functions involved in the

efficient utilization of maltodextrin/maltose and describe their

regulation by different carbohydrates.

Results

Listeria monocytogenes EGD-e contains a gene cluster
with high similarity to the maltodextrin utilization system
of Bacillus subtilis

The uptake and utilization of maltose and maltodextrin by

Bacillus subtilis has been characterized in detail [28,29,32]. In this

microorganism maltose is taken up via MalP, the maltose-specific

EIICB component of a phosphotransferase (PTS) system, the

phospho-a-glucosidase MalA is involved in maltose utilization.

MalP and malA are under the transcriptional control of GlvR, the

three genes are grouped together on the chromosome. Maltodex-

trins are transported by an ABC transporter consisting of the

extracellular sugar-binding protein YvdH/MdxE and the mem-

brane-bound permease subunits YvdH/MdxF and YvdJ/MdxG.

The genes for these uptake proteins form a contiguous

chromosomal cluster together with yvdF (maltogenic amylase),

yvdK (maltose phosphorylase), malL (oligo-a-glucosidase) and pgcM

(b-phospho-glucomutase). No function could be assigned to the

product of yvdJ. MsmX, the gene of which is located outside of the

cluster, has been identified as the cognate ATP-binding protein of

the ABC transporter [29]. Fig. 1 (b) shows a schematic

representation of the cluster. It has been proposed that YvdE is

the respective transcriptional regulator, but this has not been

proven experimentally. Recently it has been show that the

maltogenic amylase YvdF is required for the generation of maltose

from maltodextrins, which in turn are degradation products of

extracellular starch or intracellular glycogen, respectively [28].

Furthermore it has been suggested that MalL and YvdK function

in the degradation of maltose to glucose and glucose-1-phosphate,

the latter one being converted to glucose-6-phosphate by PgcM. In

B. subtilis maltose is exclusively taken up via the MalP

phosphotransferase system, the YvdH/MdxE sugar-binding pro-

tein of the ABC transporter having a very low affinity for maltose

[29].

A homology search for orthologues of the maltose PTS uptake

and utilization proteins MalP, MalA and GlvR in the genome of

Listeria monocytogenes EGD-e [33], using the BLAST [34] utility at

the ListiList website (genolist.pasteur.fr/ListiList) gave the follow-

ing results. Lmo1255, annotated as trehalose-specific enzyme

IIBC, showed 22 percent identity/39 percent similarity to MalP of

B. subtilis and Lmo2766, a RpiR family regulator, was found to be

22 percent identical/45 percent similar to GlvR. The best

similarity (31 percent identical, 52 percent similar amino acids)

to MalA was found for Lmo0521, annotated as phospho-b-

glucosidase. Neither these three L. monocytogenes proteins nor other

ones with lower similarity to the B. subtilis query proteins are

encoded by clustered genes, as is the case in B. subtilis.

According to the ABCdb online resource for ABC transporter

repertoires [35; www.abc-db.biotoul.fr] the L. monocytogenes EGD-

e genome encodes for 57 complete or incomplete ABC

transporters, i.e. comprising genes for at least one membrane-

spanning domain (MSD) plus one for a nucleotide-binding

domain (NBD) or for a MSD plus a substrate-binding protein

(SBP), physically linked on the chromosome. Further, there are

three ‘‘orphan’’ genes for NBDs. Among the 57 ABC transporters

listed only Lmo2123-Lmo2125 were classified as similar to a

Figure 1. Schematic representation of maltodextrin utilization clusters. (A) from L. monocytogenes EGD-e as derived from the genome
sequence [33] (genolist.pasteur.fr/ListiList); (B) the corresponding cluster from B. subtilis str. 168, according to [29] (genolist.pasteur.fr/SubtiList). The
initial visualization of the genomic structures was done using the GECO utility [63]. Arrows are drawn to scale, genes putatively encoding proteins
with similar functions have the same graphical pattern. Gene names are indicated above the arrows, experimentally proven or presumptive protein
functions below, the protein lengths are also indicated. Triangles above the L. monoyctogenes cluster symbolize the position of insertion mutations
and of the deletion generated in lmo2123. T = putative transcriptional terminator. The GenBank accession nos. for the respective genome sequences
are AL591824 (L.m.) and AL009126 (B.s.).
doi:10.1371/journal.pone.0010349.g001
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maltodextrin ABC transporter. ListiList also showed that in L.

monocytogenes EGD-e, lmo2123–lmo2125 are part of a cluster of

eight genes which, according to annotated gene product function

and protein length, is almost identical to the major part of the

maltodextrin utilization cluster of B. subtilis, this is schematically

shown in figure 1.

A comparison by BLAST of the amino acid sequences derived

from the cluster genes in L. monoyctogenes EGD-e and B. subtilis str.

168 (genolist.pasteur.fr/SubtiList) [36] showed that most of them

had a significant homology (57–80 percent identity/70–92

percent similarity). Only Lmo2122 showed a low 25 percent

identity/47 percent similarity to YvdJ of B. subtilis. As mentioned,

the role of YvdJ is unknown, by conserved domain analysis [37]

YvdJ as well as Lmo2122 were classified as integral membrane

proteins of unknown function. One important difference between

the two gene clusters is that in B. subtilis the gene for the putative

transcriptional regulator YvdE is immediately upstream of the

first gene (ydvF) of the utilization cluster, however, the

transcriptional organization of this cluster is not yet known. In

L. monocytogenes the putative regulator gene lmo2128 is separated

from the yvdF orthologue lmo2126 by lmo2127, which is

transcribed in the opposite direction. The gene product of

lmo2127 has been annotated as a type II CAAX prenyl

endopeptidase. These poorly characterized enzymes are putative

metal-dependent proteases [38], the function of Lmo2127 in L.

monocytogenes is unknown.

Another obvious difference between L. monocytogenes and B.

subtilis is that in the former bacterium no proteins with functions

similar to MalL and PgmC could be found encoded downstream

of the maltose phosphorylase gene. BLAST searches in ListiList

with the B. subtilis proteins as query sequences yielded two oligo-

1,6-glucosidases and four putative phosphoglucomutases. In all

cases the similarities to the B. subtilis proteins were rather low and

the genes were scattered.

In B. subtilis MsmX has been identified as the cognate

ATP-binding protein for the MdxF/MdxG permease [29].

Lmo0278 of L. monocytogenes showed 72 percent identity/83

percent similarity to MsmX and therefore most probably is its

equivalent.

All sequenced L. monocytogenes strains and Listeria
species contain genes which are identical or very similar
to the L. monocytogenes EGD-e maltodextrin utilization
genes

Homology searches in the Listeria genome databases Listilist

(for L. monocytogenes and L. innocua) and LivaList (genolist.pas-

teur.fr/LivaList) for L. ivanovii and in the NCBI microbial

genome database (http://www.ncbi.nlm.nih.gov/sutils/genom_

table.cgi) yielded the following results. All L. monocytogenes isolates

as well as L. innocua and L. welshimeri encode proteins which are

virtually identical (90–100 percent identical/95–100 percent

similar amino acids) to Lmo2121–Lmo2128 and Lmo0278. For

L. ivanovii the homology slightly drops to 77–98 percent identity/

83–99 percent similarity. In the case of L. grayi the homology was

found to be significantly lower in most cases, with Lmo0278

showing the maximum value of 88 percent identity/94 percent

similarity, Lmo2121/Lmo2122 exhibiting minimal 24–25 per-

cent identity/44–50 percent similarity and the other proteins

having 54–76 percent identity/68–88 percent similarity. This is

in agreement with the established phylogenetic tree of Listeria

which classifies L. monocytogenes and L. innocua as belonging to one

group and L. grayi as the most distantly related one to all other

Listeria species [39].

Mutations in genes for the ABC transporter and for a
putative transcriptional regulator abolish the growth of
L. monocytogenes EGD-e on maltose or maltodextrin

Insertion mutations of the genes putatively encoding a subunit

of the maltodextrin permease (lmo2123), the maltogenic amylase

(lmo2126), the transcriptional regulator (lmo2128) and the ATP-

binding protein (lmo0278) were constructed (see methods section).

For lmo2123 also a deletion mutant was constructed. The positions

of the insertions and of the deletion are indicated in figure 1A by

triangles (Ins2123, Ins2126, Ins2128 and Ins0278) or a horizontal

bar (D2123), respectively, above the gene symbols. The insertions

into the monocistronic genes lmo0278 and lmo2128, as well as the

in frame deletion in lmo2123 should have no polar effect of the

transcription of other genes, whereas the insertions into lmo2123

and lmo2126 are supposed to abolish also the expression of the

downstream genes in the transcription unit. It has recently been

shown by others that lmo2121–lmo2126 indeed constitute one

operon [40].

Figure 2 (upper panel) shows that all strains showed good and

identical growth in TSB with 25 mM glucose, demonstrating that

the mutations did not cause a general growth defect. The wild type

grew slowly and reached a final optical density of 0.4 only in TSB

without sugar. The addition of 25 mM maltose resulted in a good

growth of the wild type bacteria, but significantly less than in

glucose-containing TSB. All mutants grew slowly and with a

kinetics and final density similar to the wild type grown in sugar-

free medium (Figure 2, middle panel), demonstrating that all were

unable to utilize maltose to a measurable extent. Similar results

were obtained in TSB with 1.0 percent maltodextrin (Figure 2,

lower panel).

These results show that sustained growth of L. monocytogenes

EGD-e in TSB is dependent on the addition and uptake of the

supplemented carbon source and hence TSB is a suitable medium

for such kind of investigations. Initial experiments with the defined

medium HTM [41] did not yield sufficient cell mass as also

previously shown for the defined medium MWB [31].

In order to verify that the growth defects observed for the

insertion mutants in maltose-maltodextrin-containing TSB were

only due to the insertion and not the result of secondary genetic

alterations, revertants with a precise excision of the plasmid insert

were isolated. Growth tests of the revertants in media containing

maltose or maltodextrin confirmed that they grew like wild type

(Table S1).

When multiplying in the cytosol of eukaryotic host cells L.

monocytogenes can utilize different carbon sources, apart from

glucose or glucose-6-phosphate derived from the glucose metab-

olism of the host, e.g. glycerol. The enzymatic breakdown of

glycogen stores by host cell glycogen phosphorylase yields glucose-

1-phosphate which also can be taken up by the bacteria [42,43].

Maltose and maltodextrin are not taken up by mammalian cells

and may potentially be generated by hydrolysis of glycogen under

very unusual conditions only, e.g. upon release of lysosomal

amylase into the cytoplasm. Therefore we did not expect an effect

of the mutations in the maltose-maltodextrin utilization system on

the multiplication of L. monocytogenes within Caco-2 enterocytes,

which are known to contain rather large amounts of glycogen.

This assumption was confirmed in infection experiments where

the mutants Ins2123 and Ins2126 showed wild type multiplication

in Caco-2 cells (Figure S1). Further we found that in wild type

bacteria all genes within the cluster lmo2121–lmo2128 were

virtually not transcribed in Caco-2 cells (Figure S1), corroborating

that these genes have no role during the intracellular phase of a

Listeria infection.

Listeria Maltodextrin Uptake
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The transcription of the maltose-maltodextrin utilization
gene cluster is induced by maltose and maltotriose and
depends on the regulator Lmo2128

It has been shown that the expression of the B. subtilis

maltodextrin/maltose utilization enzymes was induced by maltose

or maltodextrin [29]. We measured by quantitative RT-PCR the

transcription of lmo2121 to lmo2126 and lmo2128 (putative

regulator) after growth at 37uC into mid-log phase in TSB either

containing no supplemented sugar or supplemented with glucose

plus maltose, with maltose or maltotriose respectively. In parallel,

the transcription of these genes was determined in the mutant

Ins2128 in which the putative transcriptional regulator of the gene

cluster was inactivated by plasmid insertion.

The transcription of the representative genes lmo2121, lmo2124

and lmo2126 was massively induced upon the addition of maltose

or maltotriose when compared to sugar-free medium (Figure 3).

The gene for the putative transcriptional regulator Lmo2128 was

transcribed constitutively. In medium containing both glucose and

maltose this induction was completely abolished. In the mutant

Ins2128, lacking the putative regulator, the induction also was

abolished. The similar results for the other cluster genes lmo2122,

lmo2123 and lmo2125 are shown in Figure S2. These results

indicated that the expression of lmo2121–lmo2126, but not of

lmo2128 is subject to glucose repression and that Lmo2128

activates transcription of the entire cluster dependent on the

presence of maltose or maltotriose in the medium. A potential

binding site for Lmo2128, belonging to the LacI-GalR class of

transcription regulators [44] could not be identified in the

upstream sequences of the genes regulated by Lmo2128.

Glucose repression of the maltose-maltodextrin
utilization genes is independent of CcpA and is relieved
in an InshprK/P-mutant

The potential role of the catabolite control protein CcpA and of

HprK/P in the transcriptional repression by glucose was assessed

using appropriate mutants. The transcriptional repression by

glucose of the representative genes lmo2121, lmo2124 and lmo2126

was not relieved in a mutant lacking CcpA (Figure 4). The similar

results for the other cluster genes lmo2122, lmo2123 and lmo2125

are shown in Figure S3. As expected from the previous

experiment, the mutation in ccpA also had no effect on the

transcription of the regulator gene lmo2128.

The gene lmo0278 for the ATP-binding protein of the ABC

transporter had the same transcription profile as the cluster genes

(Figure 5). It was repressed by glucose, induced by maltodextrin,

not expressed in the Ins2128 regulator mutant and inactivation of

ccpA did not relieve its glucose repression. Further, the transcrip-

tion of several representative genes of the maltose-maltodextrin

utilization cluster was measured in an InshprK/P-mutant of L.

monocytogenes [45]. The repression by glucose of lmo2121, lmo2124,

lmo2126 and lmo0278 was abolished in the mutant (Figure 6). It

can be anticipated that the other genes in the operon (lmo2122,

lmo2123 and lmo2125) are regulated in the same way.

Discussion

It has previously been suggested [46] that in L. monocytogenes

EGD-e maltose is taken up and utilized by the proteins encoded by

lmo0858–lmo0865. This assumption was based on a comparison of

the genome organization of Lactococcus lactis, Lactobacillus plantarum

and Listeria monocytogenes. Lmo0859–Lmo0861 are annotated in

both ListiList and the ABCdb database of ABC transporters [35]

as components of a sugar ABC transporter without a particular

specificity, hence they were indeed suitable candidates for the

uptake of maltose. However, our results clearly show that in fact

maltose is taken up by L. monocytogenes EGD-e via the Lmo2121–

Lmo2124 and Lmo0278 ABC transporter, which is under the

transcriptional control of Lmo2128. In B. subtilis maltose is solely

transported by the MalP enzyme IICB protein, this has been

attributed to the very low affinity for maltose of the YvdG/MdxE

substrate-binding protein of the ABC transporter preventing an

efficient transport of maltose [29]. In contrast, our growth

experiments with wild type and mutants showed that L.

monocytogenes, which lacks a MalP orthologue, obviously can take

up maltose by the ABC transporter. Its sugar-binding protein

Figure 2. Growth curves in TSB. L. monocytogenes EGD-e wildtype
and its isogenic mutants in TSB (tryptic soy broth, without glucose),
supplemented with different sugars as indicated in the figure, at 37uC.
For further explanations see text. The graph shows the means and
standard deviations from three independent experiments.
doi:10.1371/journal.pone.0010349.g002
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Lmo2125 has 63 percent identity/77 percent similarity to the B.

subtilis protein, the observed differences between the two proteins

seem to cause a sufficient affinity for maltose in the case of L.

monocytogenes. Furthermore, we show for the first time that L.

monocytogenes can also utilize maltodextrins, using the Lmo2121–

Lmo2126 and Lmo0278 system for uptake and metabolism.

As B. subtilis, the L. monocytogenes gene cluster encodes an enzyme

(Lmo2126) which has been annotated as maltogenic amylase. For

B. subtilis it has been shown that this enzyme, YvdF/MAase [28]

hydrolyses maltodextrins to maltose. In the case of B. subtilis the

maltodextrins are derived either from glycogen stores, degraded by

the sequential action of the glycogen phosphorylase GlgP and the

pullulanase AmyX, or from extracellular starch, hydrolyzed by the

secreted amylase AmyE [28]. L. monocytogenes lacks the enzymes for

glycogen biosynthesis and metabolism. It also has no gene

encoding a secreted amylase and we could not detect any

amylolytic activity in cell extracts or in culture supernatants (data

not shown). Also a previous analysis of the proteins secreted by L.

monocytogenes did not detect Lmo2126 (or any other potentially

starch-degrading enzyme) in the culture supernatant [47].

However, on decaying vegetation in soil L. monocytogenes most

probably will be associated with other microorganisms able to

hydrolyze starch. In the intestine, the pancreatic amylase will

generate maltose and maltodextrins from nutrional starch. In both

cases L. monocytogenes is independent of secreting an amylolytic

enzyme by its own. So most presumably Lmo2126 has the same

function as YvdF/MAase of B. subtilis, i.e. intracellular generation

of maltose and maltotriose from longer maltodextrins.

It has been proposed that YvdE of B. subtilis is the cognate

transcriptional regulator of the maltodextrin-utilization cluster

[29], but so far there is no experimental evidence for this. Here we

show that Lmo2128, the L. monocytogenes orthologue of YvdE, is a

positive regulator of the transcription of lmo2121–lmo2126 and of

lmo0278, i.e. of all components of the maltose-maltodextrin

utilization system. A similar positive regulatory effect has

previously been shown for MalR of L. lactis [25]. Transcriptional

activation by Lmo2128 was observed with maltose, maltotriose

and higher maltodextrins (4–7 glucose moieties) in the growth

medium. Our experiments suggest that maltose is the genuine

intracellular inducer, with Lmo2126, the maltogenic amylase,

generating maltose from maltodextrins in the cytoplasm. Domain

analyses (data not shown) of Lmo2128 using SMART [48] and the

Conserved Domain Database [37] showed that the protein

belongs to the LacI/GalR family of transcriptional regulators. It

has a N-terminal DNA-binding helix-turn-helix motif, followed by

a PBP1 type sugar-binding domain (data not shown), a PRD (PTS

regulation domain) [49,50] was not found. A consensus sequence

corresponding to a LacI-family operator motif [44] could not be

detected in the 59 upstream region of the genes regulated by

Lmo2128, so the binding site for this regulator has yet to be

identified. Figure 7 shows a hypothetical model for the function

and regulation by Lmo2128 of the L. monocytogenes maltodextrin/

maltose uptake and utilization system.

The transcription of all the genes of the system was repressed by

glucose, i.e. it is affected by carbon catabolite repression (CCR). In

gram-positive bacteria, this kind of repression is fundamentally

Figure 3. Role of Lmo2128 in regulation. Transcription analysis by qRT-PCR for lmo2121, lmo2124, lmo2126 and lmo2128 in wild type (open bars)
and in the Ins2128 mutant (grey bars). The strains were grown at 37uC in TSB without sugar or with 25 mM glucose+maltose (glc/mal), 25 mM
maltose (mal) or 12.5 mM maltotriose (maltotr). Cells were harvested in mid-log phase (OD600 0.5–0.6). The results from the qRT-PCR analysis,
obtained with an Opticon DNA Engine system (MJ Research Inc.) were normalized using rpoB as an internal standard [45,62] and expressed as ng
cDNA with an external standard as a reference, using the Opticon Monitor software (MJ Research Inc.). Means and standard deviations from three
independent experiments.
doi:10.1371/journal.pone.0010349.g003
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different from the mechanisms operating in enterobacteria. It

involves components of the phosphotransferase sugar uptake

system and in most cases the catabolite control protein CcpA and

its corepressors Hpr or Crh [49,51,52,53]. A homologue of CcpA

has been found in L. monocytogenes [54], Hpr is also present, Crh is

missing in this bacterium (our own BLAST search, results not

shown). A lack of CcpA did not abrogate the repression by glucose

of lmo2121–lmo2126 and lmo0278, also in the presence of the

inducer in the external medium. CcpA-independent catabolite

repression by glucose has been described for several genes of B.

Figure 4. Role of CcpA in repression. Transcription analysis by qRT-PCR of lmo2121, lmo2124, lmo2126 and lmo2128 in wild type (open bars) and
in a InsccpA mutant (grey bars). The strains were grown at 37uC in TSB without sugar or with 25 mM glucose+maltose (glc/mal) or 25 mM maltose
(mal). Cells were harvested in mid-log phase (OD600 0.5–0.6). The results from the qRT-PCR analysis, obtained with a Opticon DNA Engine system (MJ
Research Inc.) were normalized using rpoB as an internal standard [45,62] and expressed as ng cDNA with an external standard as a reference, using
the Opticon Monitor software (MJ Research Inc.). Means and standard deviations from three independent experiments.
doi:10.1371/journal.pone.0010349.g004

Figure 5. Transcription profile of lmo0278. Results of qRT-PCR for
lmo0278 in wild type and the Ins2128 or InsccpA mutants. The strain was
grown at 37uC in TSB without sugar or with 25 mM glucose + 1.0
percent maltodextrin (glc/mdx) or 1.0 percent maltodextrin (mdx). Cells
were harvested in mid-log phase (OD600 0.5–0.6). The results from the
qRT-PCR analysis, obtained with a StepOnePlus Real-Time PCR system
(Applied Biosystems Inc.) were normalized using rpoB as an internal
standard [45,62] and expressed as fold change with the values for wild
type without sugar (WT w/o sugar) set as 1.0. Calculations were
performed with the StepOne Software v2.1 (Applied Biosystems Inc.).
Means and standard deviations from three independent experiments.
doi:10.1371/journal.pone.0010349.g005

Figure 6. Role of HprK in repression. Transcription analysis by qRT-
PCR of lmo2121, lmo2124, lmo2126 and lmo0278 in the InshprK mutant.
The strain was grown at 37uC in TSB without sugar or or 1.0 percent
maltodextrin (mdx) or with 25 mM glucose + 1.0 percent maltodextrin
(glc/mdx). Cells were harvested in mid-log phase (OD600 0.5–0.6). The
results from the qRT-PCR analysis, obtained with a StepOnePlus Real-
Time PCR system (Applied Biosystems Inc.) were normalized using rpoB
as an internal standard [45,62] and expressed as fold change with the
values for wild type without sugar (WT w/o sugar) set as 1.0.
Calculations were performed with the StepOne Software v2.1 (Applied
Biosystems Inc.). Means and standard deviations from three indepen-
dent experiments.
doi:10.1371/journal.pone.0010349.g006
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subtilis [55] and also for the virulence genes of L. monocytogenes

[45,54]. In the presence of glucose the Hpr protein, the common

component of phosphotransferase (PTS) transport systems for

various sugars, is phosphorylated at Ser-46, yielding P-Ser-Hpr.

This phosphorylation is catalyzed by the Hpr kinase/phosphor-

ylase HprK/P and P-Ser-Hpr in a complex with CcpA binds to

target sites (cre-boxes) in the upstream regions of regulated genes.

But P-Ser-Hpr may also directly bind and inhibit the activity of

ATP-binding proteins of ABC transporters, thus preventing the

uptake of inducing sugar, this has been designated as inducer

exclusion. In case of the maltose transport in Lactobacillus casei and

Lactococcus lactis good evidence has been obtained that glucose

repression is mediated by such an inhibition of the maltose ABC

transporter MalFGK [27,49,56]. As we could show here, the

repression by glucose of the genes of the maltose-maltodextrin

utilization cluster of L. monocytogenes EGD-e is also independent of

CcpA but relieved in a HprK/P mutant. Therefore we tentatively

propose inducer exclusion as the underlying mechanism. Howev-

er, we cannot exclude that other, so far unknown mechanisms are

operating here.

Concerning a potential role of maltose-maltodextrin utilization

during a natural infection by L. monocytogenes it has been shown that

environmental oligosaccharides are involved in the enterococcal

biofilm formation and colonization of the gastrointestinal tract

[57], which is also the site of entry of L. monocytogenes. For

Streptoccocus pyogenes, a pathogen which colonizes the carbohydrate-

rich mucosa of the oropharynx, a direct link between carbohydrate

utilization and virulence has been demonstrated [58,59]. Recently

is has been shown that lmo2121–lmo2126 are significantly up

regulated in the intestinal lumen of orally infected mice [44].

Therefore it will be interesting to see in further studies if L.

monocytogenes carrying mutations in the maltose-maltodextrin

utilization system are impaired in their ability to colonize the

intestine.

Materials and Methods

General techniques
PCR amplifications, cloning procedures, isolation of chromo-

somal DNA, and DNA manipulations were carried out according

to standard procedures [60]. Cycle sequencing was performed

using the CEQ Dye Terminator Cycle Sequencing Quick Start kit

(Beckman Coulter, Fullerton, CA), and sequencing reactions were

run on a XL2000 Beckman Coulter sequencer.

Bacterial strains, plasmid, and cell line
L. monocytogenes Sv1/2a EGD-e (ATCC BAA-679) was obtained

from T. Chakraborty (University of Giessen, Germany). Insertion

mutants in ccpA and hprK, respectively, were constructed and

provided by Mertins et al. [45]. E. coli strain TG1 and plasmid

pG+host4 [61] were kindly provided by E. Maguin (INRA Jouy en

Josas, France). Human colon epithelial cells (Caco-2 cells) were

from the American Type Culture Collection (ATCC HTB-37) and

were cultured at 37uC and 5% CO2 in RPMI 1640 (Gibco)

supplemented with 10% heat-inactivated fetal calf serum (FCS)

(Biochrom KG, Germany).

Media and growth conditions
L. monocytogenes was grown in brain heart infusion (BHI) or

tryptic soy broth without glucose (TSB; Sigma Co.) at 37uC.

Glucose, maltose (analytical grade, purity .99 percent; less pure

preparations may contain significant amounts of maltodextrin) and

maltodextrin used as supplements were purchased from Sigma Co.

For some growth test the defined medium HTM [41] was used.

Cultivation of E. coli was in Luria-Bertani (LB) medium at 37uC.

For transformation experiments media were supplemented with

erythromycin to final concentrations of 300 mg ml21 for E. coli or

5 mg ml21 for L. monocytogenes. For growth tests of L. monocytogenes,

300 ml of an overnight culture were diluted into 10 ml prewarmed

TSB or HTM and shaken at 190 rpm. The optical density of the

cultures was measured every hour in a photometer (Ultrospec,

AmershamBiosciences) at 600 nm in 1 cm cuvettes.

Mutant construction
PCR-amplified fragments from the 59 region of the respective

genes were cloned into the temperature-sensitive integration

vector pG+host4 and transformed into E. coli TG1 [61]. L.

monocytogenes EGD-e was transformed with the plasmid constructs

and plasmid integrants were selected at the non-permissive

temperature of 42uC on erythromycin-containing BHI agar. To

obtain revertants, the mutant strains were subcultured twice for

24 hrs, in BHI without antibiotics at 25uC. At this temperature the

plasmid origin of replication was fully active which favored

plasmid excision [61]. Serial dilutions of the subcultures were

plated on BHI without antibiotic and erythromycin-sensitive

clones were identified by replica-plating on erythromycin-

containing medium, plasmid excision was confirmed by PCR. In

addition, an in frame deletion mutant in lmo2123 (D2123) was

constructed by a similar approach, using a plasmid construct

carrying both 59 and 39gene fragments and selection first at 42uC
on erythromycin-containing medium for insertion and subse-

quently at 30uC on antibiotic-free medium for plasmid loss and

Figure 7. Hypothetical model of the ABC transporter system.
The putative function and regulation of the L. monocytogenes ABC
transporter and utilization system for maltose and maltodextrin,
adapted from [28,29,49]. Explanations in the text.
doi:10.1371/journal.pone.0010349.g007
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deletion. The correct insertion/deletion was verified by PCR and

DNA sequencing (data not shown). Oligonucleotides used for

mutant construction are listed in table S2.

RNA isolation
For in vitro experiments, L. monocytogenes was grown in TSB to an

optical density of 1.0 at 600 nm corresponding to the late

logarithmic phase. For in vivo assays 250-ml tissue culture flasks

with confluent Caco-2 cells were infected with L. monocytogenes at an

m.o.i. of 20 as described [42]. Cells were lysed 6 h post infection

with cold distilled water. Mammalian cell debris was removed by

centrifugation at 1,0006g for 10 min at 4uC, leaving only the

bacteria in the supernatant. Bacteria were pelleted at 6,0006g for

10 min at 4uC. Total RNA was isolated using the RNeasy mini kit

(Qiagen) according to the manufacturer’s protocol with some

modifications to lysis of the bacteria. Cell pellets were suspended in

700 ml RLT lysis buffer (Qiagen) and placed in a 2-ml tube, filled

with Lysing matrix B (Q BIOgene). The tube was shaken three

times for 45 s each time with a 1-minute interval on ice between

each shaking at a speed setting of 6.5 in a bead beater FP120

FastPrep cell disrupter (Bio101 Savant). Residual DNA was

removed on a column with RNase-free DNase (Qiagen).

Real-time qRT-PCR
Real-time quantitative reverse transcriptase PCR (qRT-PCR)

was conducted on total RNA isolated. The absence of DNA from

RNA samples was verified by PCR prior to reverse transcription,

using rpoB-specific primers. 5 mg of total RNA was reverse

transcribed with random hexamers and SuperScript IITM Reverse

Transcriptase (Invitrogen) according to the manufacturer’s

instruction. Real-time qRT-PCR in a final volume of 50 ml was

carried out in an Opticon DNA Engine (MJ Research) or in a final

volume of 25 ml in a StepOnePlus Real Time PCR System

(Applied Biosystems) according to the manufacturer’s protocols.

The AbsoluteTM QPCR SYBRR Green Mix (Thermo Scientifi-

c,UK) was used. Transcript analysis was done with the Opticon

Monitor (MJ Research) or StepOne v2.1 (Applied Biosystems)

software, respectively. The housekeeping gene rpoB served as an

internal standard [45,62]. All primers used are listed in Table S2.

Supporting Information

Table S1 Growth of wild type and revertants in TSB

supplemented with maltose or maltodextrin, respectively. Indicat-

ed is the optical density at 600 nm after 24 hrs. at 37uC, means

from three independent experiments.

Found at: doi:10.1371/journal.pone.0010349.s001 (0.01 MB

PDF)

Table S2 Oligonucleotide primers used in the study.

Found at: doi:10.1371/journal.pone.0010349.s002 (0.02 MB

PDF)

Figure S1 (A) Intracellular multiplication in Caco-2 enterocytes

of L. monocytogenes EGD-e wild type and its isogenic mutants

Ins2123 and Ins2126. For experimental details see methods section.

Colony forming units per ml (c.f.u. ml-1) in the host cell lysate

were determined after an initial 45 min. adhesion and invasion

phase, this is designated t = 0, and 3, 6 and 24 hrs. later. (B)

Transcription analysis by qRT-PCR of lmo2121-2126 and lmo2128

at t = 6 hrs. after infection of Caco-2 enterocytes with wild type L.

monocytogenes EGD-e. The virulence genes actA and plcA, which are

readily expressed within eukaryotic host cells, served as positive

controls. Means and standard deviations from three independent

experiments.

Found at: doi:10.1371/journal.pone.0010349.s003 (0.09 MB TIF)

Figure S2 Transcription analysis by qRT-PCR of lmo2122,

lmo2123, lmo2125 in wild type (open bars) and in the Ins2128

mutant (grey bars). The strains were grown at 37uC in TSB

without sugar or with 25 mM glucose+maltose (glc/mal), 25 mM

maltose or 12.5 mM maltotriose (maltotr). Cells were harvested in

mid-log phase (OD600 0.5–0.6). Means and standard deviations

from three independent experiments.

Found at: doi:10.1371/journal.pone.0010349.s004 (0.13 MB TIF)

Figure S3 Transcription analysis by qRT-PCR of lmo2122,

lmo2123, lmo2125 in wild type (open bars) and in the InsccpA

mutant (grey bars). The strains were grown at 37uC in TSB

without sugar or with 25 mM glucose+maltose (glc/mal) or with

25 mM maltose. Cells were harvested in mid-log phase (OD600

0.5–0.6). Means and standard deviations from three independent

experiments.

Found at: doi:10.1371/journal.pone.0010349.s005 (0.12 MB TIF)
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