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ABSTRACT

Motivation: Gene expression assays allow for genome scale
analyses of molecular biological mechanisms. State-of-the-art data
analysis provides lists of involved genes, either by calculating
significance levels of mMRNA abundance or by Bayesian assessments
of gene activity. A common problem of such approaches is the
difficulty of interpreting the biological implication of the resulting gene
lists. This lead to an increased interest in methods for inferring high-
level biological information. A common approach for representing
high level information is by inferring gene ontology (GO) terms which
may be attributed to the expression data experiment.

Results: This article proposes a probabilistic model for GO term
inference. Modelling assumes that gene annotations to GO terms
are available and gene involvement in an experiment is represented
by a posterior probabilities over gene-specific indicator variables.
Such probability measures result from many Bayesian approaches
for expression data analysis. The proposed model combines these
indicator probabilities in a probabilistic fashion and provides a
probabilistic GO term assignment as a result. Experiments on
synthetic and microarray data suggest that advantages of the
proposed probabilistic GO term inference over statistical test-based
approaches are in particular evident for sparsely annotated GO terms
and in situations of large uncertainty about gene activity. Provided
that appropriate annotations exist, the proposed approach is easily
applied to inferring other high level assignments like pathways.
Availability: Source code under GPL license is available from the
author.

Contact: [peter.sykacek@boku.ac.at]

1 INTRODUCTION
The well-known gene ontology (GO) (Ashburner er all, 200Q) is

at the center of different research questions in Systems Biology
and Bioinformatics. Even for well-studied model organisms such
as Saccharomyces cerevisiae, annotations of genes to ontology

terms _is far from complete. To improve this situation, (de Queiroz
et . EO0D proposed a BLAST [slischul er o} 00, 1903)
based sequence similarity analysis and machine learning approaches
for a denovo annotation of genes to GO terms. Novel-scientific
discoveries require a constant updating of the standardized gene

ontology (Ashburner et gil, 2000). Maintaining a well-curated
gy g

specification is a tedious and time-consuming manual task. For

improving the reaction time (]Msiimaﬂ, DDQJ) propose inferring

Bayesian networks by literature mining to generate domain-specific
ontologies automatically. With the purpose of benchmarking gene
associations inferred with Bayesian networks, m,

*To whom correspondence should be addressed.

M) propose using known GO term annotations for assessing the
significance of inferred associations.

Research is also concerned with mapping biological assays
like expression experiments to global biological function. Such
approaches use known gene to GO annotations and represent
biological function by assigning standardized GO terms to
experimental data. Recent surveys (]llmazd |2m_d |H_uang_eLaL|
|2£)Q_‘j |Kha_m_&_]2mhu‘_i |2m3) show that a majority of these methods
use statistical test-based inference. Strategies are often modular and
will first rank genes using state-of-the-art expression data analysis
which includes statistical test based (@ 12002; [Reiner ez all, [2003;
tEushﬂLeLal] |21)D_1| Merms_ch_eLalJ |2£)Q3) and Bayesian methods

i L et gl ; Posekany
| ] 1) More recently, the quantification
of transcript abundance from next generation sequencing data
(Guttman er afl, 201d; [Trapnell er ail, R01d) attracted a lot of
attention.

Approaches like FatiGO (Al-Shahrour et afl, 2004) and Onto-
express (Illtaghm_aulj, |29Q1d ﬂ) rely on rank lists obtained
from first level analysis, separate the genes which are annotated
to GO terms into groups and use Fishers exact test, the hyper
geometric distribution or similar approaches for calculating P-
values of GO term enrichment. All GO terms with P-values below
a suitably chosen threshold are then assigned to the experiment,
with the inherent multiple testing problem being tackled with state-
of-the-art approaches. Separation into lists of active and inactive
genes depends greatly on the chosen threshold. As is illustrated
in m, ), in particular conservative thresholds are likely
to underestimate over-representation of GO terms by functionally
active genes. A solution to this problem was suggested as Fati-
Scan (lA];S_b_ahrmu‘_aLQl], |2m)ﬂ), which repeatedly applies FatiGO
with different thresholds, adjusts P-values correspondingly and thus
reduces the effect of choosing a particular threshold. With BayGO,
, M) proposed a Bayesian tool for inferring active
GO terms. BayGO is based on gene counts allows, however, for
unobserved genes which may result from missing probes or poor
quality measurements. The approach regards the true number of
active and inactive genes as random variables and infers active
GO terms by calculating significance levels of (lack of) association
via Monte Carlo simulation. If all annotated genes are observed,
the method will provide the same result as statistical tests based
on the hyper geometric distribution. More recently, W,

) proposed another Bayesian approach for counts-based GO
term enrichment which considers the GO DAG structure to ease

identification of groups of closely related GO terms.
Arecentinvestigation in m,M) finds methodological
biases in the assigned GO terms which depend on the statistical

approach used for assessing significance. Their observation is likely
caused by variations in the power of the tests which in general
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increases with sample size. Inferring active GO terms with a
statistical test will thus inevitably favor GO terms which represent
well-studied concepts with many annotated genes.

Counts-based GO term enrichment analysis has in addition the
disadvantage of considering all genes on one side of the threshold
equally, irrespective of the assigned significance level or posterior
probability of functional importance. Essential information from
first level data analysis about the degree of believe we should have
about gene activity gets thus removed.

A thoroughly Bayesian GO term inference should, however,
consider the uncertainties about gene importance which we get
from first level data analysis. The Bayesian approach we propose
in this article considers this uncertainty by representing every gene
as a binary random variable. This requires modeling expression
data such that gene wise posterior probabilities quantify the degree
of believe we have about gene activity. The essential difference
between our proposed analysis and the Bayesian methods in (Vencio
etal. MMM) is that we consider the uncertainties
about gene activity during GO term inference. GO term inference
is here implemented by a probabilistic model which has some
similarity with clustering methods. Using the proposed approach,
we may expect avoiding biases toward GO terms with many
annotated genes: even sparsely annotated GO terms will be assigned
to an experiment with high probability, if all assigned genes are
with high probability found to be expressed By combining the
probabilities about expression of individual genes, probabilistic
GO term inference considers thus additional information which is
discarded by a threshold-based enrichment analysis.

After providing an overview of the proposed approach in the
‘Methods’ section, we discuss several applications of the proposed
approach. Inferring hypothetical GO terms from synthetic data
illustrates advantages we may expect from probabilistic GO term
inference over counts-based GO term enrichment methods. GO term
inference for microarray data is used for further investigations. A
previously published (Sykacek er all, 2007) probability measures
of shared gene function in (i) a cycle of mouse mammary gland
development and (ii) the process of in vitro endothelial cell apoptosis
obtains with the proposed approach a stronger enrichment of cell
death-related GO terms at the top of the rank list, as was found
in Ref. (]S;dgml;amﬂ, [200%) with inference based on Fisher’s
exact test. Finding cell death-related GO terms is in line with
previous reports that apoptosis of endothelial cells is known to
occur during the mammary gland cycle and may play an important
role in this process (Djonov er afl, 2001; [Matsumoto er all,

). In a second experiment on the mRNA expression dataset
from anmU.s;Rgga_aLaﬂ, |21)_1_1|), a heat shock experiment in S.
Cerevisiae, we obtain very little uncertainty about gene activity.
Even in this situation where we do not expect advantages when
considering these uncertainties, a counts-based enrichment analysis
is at best equally well suited than the proposed method. We may,
therefore, conclude that the moderate increase in computation of
the probabilistic GO term analysis over a counts-based approach is
time well spent. Bayesian GO term inference is a viable alternative
to existing GO term enrichment methods, in particular, if the
expression data was already analyzed with a compatible Bayesian
method.

!“Expression’ is used as synonym for a genes involvement in the studied
biological experiment

gene g
GO—cat. k

Fig. 1. Adirected acyclic graph (DAG) representing GO term inference. The
graph represents discrete variables by rectangles and continuous quantities
as circles. Plates (or sheets) denote repeated conditional independence
relations. Shaded nodes are observed variables or specified quantities. The
clear nodes represent random variables which are subject to inference.
GO terms are represented as binary indicator variables, Gy, with Gy =1
indicating active and Gy =0 dormant terms. The binary indicators I
represent genes which are assigned to the k-th GO term. Genes which we
find active in the corresponding microarray data Dy y are represented by
Iy x =1, whereas Iy x =0 indicates inactive genes. The prior probability of
GO terms being active is modeled hierarchically as Beta-Bernoulli model,
using 8¥ = {ng ; VG } as prior counts and P for denoting the prior probability.
The conditional probabilities of observing active genes are modeled by
Beta-Bernoulli models as well. We use IT1={I1o=P(gk|Gx=0), I1;=
P(Ig k|Gr=1)} as conditional probabilities and 51 ={(Sgk_[g k;VGk,Ig_k} as
corresponding prior counts ‘

2 METHODS

2.1 Probabilistic model for inferring active GO terms

We propose inferring the activity of GO terms by the probabilistic model
illustrated in Figure[l] GO terms are represented as binary indicator variables,
G, where Gy =1 implies activity and Gy =0 a dormant term. Activity is
inferred by relating the indicator variable of the k-th GO term, Gy, to all
genes with known annotation to that GO term. Variable /g k is again a binary
indicator variable, with Iy x = 1 indicating activity of the corresponding gene
and /g x =0 a lack thereof. The probability whether a gene is active or not
depends on the corresponding expression data Dg k. The graphical model in
Figure [[ denotes the prior probabilities of GO term activity by variable P,
with P(Gg = 1|P) denoting the prior of GO term activity and P(Gx =0|P) the
prior of being dormant. Variable IT represents the conditional probabilities
P(Ig x| Gy) which determine the probabilities of observing active and inactive
genes for active and dormant GO terms.

In principle, we could fix both probabilities. Ignorance about the activity of
GO terms were then coded by P(Gy =1|P)=0.5. Our intention that an active
GO term should with high-probability correspond to observing active genes
were coded by P(Igk =1|Gx =1)=1. We could as well assume that a dormant
GO term implies with high-probability inactive genes and set P(Ig k =0|Gx =
0)=1. Inferring active GO terms is then a message passing problem and
requires applying Bayes theorem and normalization. A disadvantage of this
approach is its inadequacy in situations where not all genes annotated to an
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active GO term are active and in the converse situation, where not all genes
annotated to an inactive GO term are necessarily inactive.

To cope with more realistic impure situations, we suggest adding an
additional hierarchy to the model and inferring the variables P and IT as
well. This is achieved by including a beta prior over P and I1g, with prior
counts 8" ={8§, ;¥Cy} and 8" ={5¢ ;  :¥Gr.Iyx}. This results in a fully
probabilistic approach, with Iy x being modeled as a two-component mixture
of Bernoulli distributions. In addition, P and IT are random variables and
thus part of the inference problem. Without taking further steps, this model
does not allow the indicator G to be fully identified as inference does not
determine whether Gx =1 or Gx =0 codes for active GO terms. Using the
preconception formulated above, that active GO terms are those having a
larger number of active genes annotated to, requires thus after inference to
identify the solution once.

2.2 Parameterizing the joint density

Parameterizing the joint density represented by the DAG in Figure[requires
specifying all conditional densities, where we use /=[1,2] in all equations
below for indexing the two states of the binary indicators (G and /Iy k) and
the corresponding count values in the Beta densities. The prior over P is
modeled as a Beta density

L))y pof -

P|sPy=
p(PI8") l—IzF(Szp)l ;

, @

with F(S,P) denoting a gamma function. Similarly, we get as prior over IT a
product of Beta density functions

INOWLIM! 801, -1
[Lregy

OSLIN 8-
s e 2
Xinzr(a{,l/)lj[ I (@)

p(r1sh=

The conditional densities of Gy and Iy x are Bernoulli densities

= Iy =1
P(GeIP)=[ [P and pUl i G =] [1&",. ©)
! !

The specification of the model is completed by p(Dg k [Ig,x) which denotes
the marginal likelihood of the data given the gene indicator. Using yi for
denoting the number of genes annotated to GO term k, we finally obtain the
joint density implied by the graphical model in Figure [[las

P(P.TL Gy, .., Gi 11, Ay g D11y oo Dy 18,8 =

K
p(PI8 (IS [T (p(GelP)
k=1
Vk
% [T (pUek1G, TDP(Dg Mg 0) ). )
g=1

2.3 Marginal likelihoods from probabilistic microarray
analysis

The marginal likelihoods P(Dg |l ) in the model specification can be
obtained from all probabilistic approaches to microarray data analysis, which
provide posterior probabilities of gene function as a result. We can, for
example, use the marginal probabilities over gene indicators as they arise
from Bayesian variable selection in W,m;w, M)
or the posterior probabilities of shared gene function proposed in (Sykacek
etal. ,M)- Using the above notation, the information obtained by Bayesian
expression data analysis about genes is typically summarized by a probability
measure P(Igx|Dg k), with the probability that the corresponding gene is
involved in the biological assay being given as P(Ig  =1|Dg k).

By applying Bayes theorem, these probabilities can be converted to
quantities which are proportional to marginal likelihoods

P(Ig,k ‘Dg,k)
P(Ig,k)

with the marginal likelihood P(Dg k |Ig x = 1) arising from a model having the
corresponding gene active and p(Dg k |15 x =0) being the marginal likelihood
if the gene is dormant. The multiplicative constant p(D, ) in Equation (3 is
independent of Iy x and cancels out during inference of the graphical model
in Figure [[1 This suggests that we can replace the marginal likelihoods
P(Dg k|lg k) with posterior probabilities of gene activity divided by the
corresponding prior probabilities. We can thus use the proposed method as
post-processing step to all Bayesian methods which calculate measures of
gene activity, P(Ig x|Dg x), for gene expression assays.

PP(Dg kg 1) = p(Dg ) )

2.4 Variational inference

Inferring active GO terms require calculating the marginal posterior
distributions over all Gx indicator variables in the DAG in Figure @ For
reasons of tractability, we follow previous examples in the bioinformatics
community wm&w ) and resort to variational
methods for inference. Variational approximations (m, ;@,m;

,I@) are computationally efficient. This comes, however, at the
price of introducing systematic approximations to the posterior distribution
of GO term activity, P(Gx|D1 k, .., Dy, x,87,8™).

We will first define some abbreviations which ease mathematical notations
below and use 8§ ={P,I1,G,..,Gk,I1,1,..I k} for denoting all random
variables in the DAG in Figure[Mland D={D 1,..., D, i} for abbreviating
all data. Variational learning requires approximating the joint distribution of
the model in Equation @) by a factorising Ansatz

p01D, 8", 5"~

Yk
o[ [| eGo] et | 6)
k

g=1

Jensen’s inequality allows obtaining a lower bound on the log marginal
likelihood of the DAG.

10g</p(0,D|8P,8n)d0> >
0
/o (102 (p(8. D1s",5™) ~log (0(9)) ) 0(6)d8 )

By integrating the second line in Equation @) w.r.t. 8, i.e. w.r.t. all random
variables of the model, we obtain a quantity which is called the negative
free energy of the model. Its main use in the proposed implementation is
for diagnosis purposes and for assessing convergence of the approximation.
Variational learning requires maximizing the lower bound in Equation (Z)
w.r.t to all Q-distributions. By integrating this bound with respect to all
but one Q-distributions from Equation (@) and maximizing the resulting
functional with respect to the remaining Q-function, we obtain for every
Q-function in Equation (@) a separate update rule. These updates are done
iteratively, until the negative-free energy converges. The most important
result of the algorithm are the P(Gy|D)~ Q(Gy);V;k, i.e. all approximate
marginal distributions representing the posterior probabilities of GO term
activity. What remains is deciding about which GO terms we should report
as active. This depends on the relative cost we assign to false-positive and
false-negative GO terms. If both errors are equally expensive, the Bayes
optimal decision is assessing GO term k as active, if P(Gx=1|D)> 0.5 and
otherwise declare it as inactive.

2.5 Algorithms for probabilistic GO analysis

To infer GO term probabilities from expression experiments, we perform the
following steps.
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2.5.1 Expression data analysis To be able to use the proposed method, we
have to infer posterior probabilities of gene function from the expression data
under consideration. For microarrays, such analysis can, for example, be done
with the approaches proposed in Ref. (Bae & MallicH,[2004;[Lee ez all, m

IZ_QE[' ). Inference requires a careful
sensitivity ana]ySIS with multiple runs started with different initial conditions.
When relying on variational approximations for obtaining posteriors, the
overall analysis can be done within about half an hour of runtime.

2.5.2 Preparing GO annotations ~As a second prerequisite to the proposed
approach, we have to convert gene-to-GO-term annotations for the chosen
organism to a format which is suitable for inference. For maintaining
consistency, we annotate every gene not only to the original GO term, but
also to all ancestral terms until the highest ancestral term with an existing
manual gene annotation was reached. We get, therefore, annotations which
reflect the term relationships in the GO DAG. Because we do only traverse
upwards to levels where human annotations have previously been made, this
approach generates a custom level of abstraction 5 m)
which warrants that inference is of biological interest. The annotated GO
DAG is then written into a tabulator delimited file which contains the GO
terms in the first column and all annotated genes in the corresponding rows.

2.5.3 GO terminference After these preparatory steps, we calculate for all
annotated GO terms the posterior probability of relevance to the underlying
experiment. These probabilities are obtained by inferring the approximate
marginal distributions over all random variables in the DAG in Figure [
The free parameters in our GO term inference are the prior counts, §°
and 8". For specifying uninformative prior countsE, we set 8 and 8T
to 1. Note that this prior setting does not guarantee that Gy =1 implies
GO term activity. We have thus got to identify the inference result once
after inference is completed and possibly exchange the parameters of the
posterior such that GO term assignment is coded by Gy = 1. The algorithm
shares some similarity with clustering, which implies that it finds a locally
optimal mode. We should thus repeat inference several times from randomly
chosen starting points for making sure that a suitable solution was found.
Different solutions can be judged by their negative-free energy, with the
optimal solution having attained the largest value. One inference run will
typically take between one and 3 min. Within at most half an hour, we can
thus iterate 10 inference runs, which we found so far sufficient for obtaining
meaningful GO term assignments. As a result from inference, we store GO
terms and the approximate posterior P(Gy = 1|D), that is the probability that
the term is active, into a tab delimited file. For typical datasets, the overall
time required for first level data analysis and the proposed Bayesian GO term
inference will be around 1 h run time on a conventional personal computer,
which clearly demonstrates the feasibility of the approach.

2.6 Data

We analyze the proposed approach for GO term inference with synthetic
data and two microarray datasets. Synthetically generated data are first used
for contrasting the behavior of the proposed Bayesian GO term inference
with classical enrichment analyses. Figure [2] illustrates for that purpose
four hypothetical GO terms, each of which is annotated with genes we
find expressed with different probabilities. A second synthetic test case
was generated to assess the entire analysis pipeline from log expression
measurements to assigned GO terms. We generate for that purpose 2000
hypothetical GOterms, each of which is annotated by between 1 and 100
genes. With 20% chance a GO term is declared ‘active’. For active GO terms,
we assume observing differentially expressed genes with a chance of 80%.

2Specifying prior counts formalizes our prior belief of having observed a
certain number of outcomes (here, for example, a certain number of active
and inactive GO terms) a priori. In the light of the number of GO terms
analyzed and the number of genes annotated to GO terms, prior counts below
or equal to 1 are uninformative.

Gene Probs assigned to A Gene Probs assigned to B

1 1

0.8

0.6

04

0.2

[ 2 4 6 8 10 12 0 5 10

1

0.8

0.6

04

0.2

Fig. 2. Figure showing four sub-plots illustrating hypothetical probabilities
of gene activity. The dashed line indicates the threshold probability of 0.5
used in determining the counts of active versus inactive genes in Fisher’s
exact test. The genes assigned to the four hypothetical GO terms have
different probabilities of being active. Term ‘A’ has a large majority of highly
active genes assigned to. Half of the genes assigned to term ‘B’ are highly
active whereas the rest is ‘just not active’. Term ‘C’ has, like term ‘A’ a
majority of active genes assigned to. The probabilities are, however, just
above 0.5 and two genes are with high probability assessed as inactive (low
probability for being active implies high probability for being inactive). The
majority of genes assigned to term ‘D’ are with high probability inactive.
Inference results are found in Table[[] A detailed discussion of the purpose
of this experiment is provided in the main text

For inactive GO terms, we assume a 20% chance of observing differentially
expressed genes. Data are generated to mimic a two-level experiment
with log expressions of differentially expressed genes drawn from two
Gaussians with mean +1 and —1. Log expressions of non-differentially
expressed genes are drawn from zero mean Gaussians. For investigating the
influence of differential expression uncertainty, we generated two datasets:
one experiment generated the log expression data using a Gaussian with
a standard deviation of 0.6; the other experiment used a Gaussian with a
standard deviation of 1.2. Data were generated such that we obtain 20 103
hypothetical genes and eight samples per group. Because we know which
GO terms we should assign to each experiment, we can compare the accuracy
of the proposed method with the accuracy of a classical counts-based
enrichment analysis.

The synthetic investigations are complemented with analyses on

microarray data. One analysis is based on indicator probabilities of shared
gene function that were previously reported in Ref. m M)

These probabilities are obtained from an analysis of (1) a cycle of growth
and regression in mammary glands in vivo m ) and
(2) an assay of programmed endothelial cell death investigated in vitro
m, ) for shared gene function. As a second biological
experiment, we chose the mRNA expression dataset from (Castells-Roca
et al., ), a heat-shock experiment in S. Cerevisiae. The genes in both

datasets were mapped to a recent version of the GO DAG, which is available
from http://www.geneontology.org.

3 RESULTS

We obtained all results which we report here with the algorithmic
settings that were proposed in the ‘Methods’ section. This section
compares the proposed probabilistic analysis for inferring active GO
terms with a classical counts-based approach. Classical inference
is based on Fisher’s exact test which is mainly motivated by its
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Table 1. Probabilistic versus. classical inference of hypothetical GO term
activity

GO term P(Gi|D), Bayes P-value, Fisher
Hypoth. A 1 (active) 0.033 (active)
Hypoth. B 1 (active) 0.61 (inactive)
Hypoth. C 0 (inactive) 0.033 (active)
Hypoth. D 0 (inactive) 0.91 (inactive)

The table displays for the Bayesian approach the probabilities that GO terms are active
and for Fisher’s exact test the P-value of the null hypothesis. In brackets, we indicate
whether the GO term is assessed as active or inactive.

popularity and availability in many analysis packages m,
2006; [Khatri & Drahici, 2003).

3.1 Hypothetical GO term inference

The purpose of a hypothetical GO term inference is illustrating the
properties of the proposed analysis. We will in particular discuss
two situations where the proposed probabilistic approach provides
identical conclusions as inference with Fisher’s exact test. For
two other examples, the results about active GO terms differ. The
synthetic experiment uses four hypothetical GO terms ‘A’to ‘D’. The
posterior probabilities of hypothetical gene activity, which represent
the P(lg x|Dg x) in the derivation of GO term inference, are shown
in Figure [2l Term ‘A’ has a large majority of highly active genes
assigned to. Half of the genes assigned to term ‘B’ are highly active,
whereas the rest is ‘just not active’. Term ‘C’ has, like term ‘A’ a
majority of active genes assigned to. The probabilities are, however,
just above 0.5 and two genes are with high probability assessed as
inactive (low probability for being active implies high probability
for being inactive). A majority of genes assigned to term ‘D’ are
with high probability inactive.

The result in Table [ shows that the probabilistic assessment
and Fisher’s exact test assess term ‘A’ as active. They also agree
about term ‘D’ which is found being inactive. The approaches
do, however, differ about terms ‘B’ and ‘C’. Term ‘B’ has six
genes assigned to which show a large probability of being active.
The other six genes are found inactive with probabilities close to
0.5 indicating large uncertainty. Probabilistic inference combines
these probabilities and concludes that this situation points with
high probability to an active GO term. Statistical tests based on
counts ignore these probabilities and will thus generate very large
P-values for the null hypothesis. The different result for term
‘C’ is also caused from test-based approaches ignoring certainty
levels. Although term ‘C’ has 10 genes assigned to, which are
more likely active than inactive, the probabilities are just above
0.5, indicating large uncertainties. A counts-based test ignores these
uncertainty levels and regards a gene as active and consequently
assigns a significant enrichment with active genes. The probabilistic
approach considers the uncertainty implied by small probabilities
and combines these small probabilities, in favor of gene activity
with two probabilities, which state the opposite with much more
certainty. The result is that a situation as shown here for term ‘C’
leads to a large probability assessing inactivity of that GO term.

The second synthetic dataset is more realistic because we generate
log gene expressions from known GO term activity states. The
corresponding analysis comprises inferring differentially expressed

genes and, based on these gene wise probabilities, inferring GO term
activity. Probabilities of differential expression were obtained from
a variational Bayesian analysis of variance (ANOVA) model which
was implemented along the lines of (]EQ&Qka.n;Lar_a_lJ, |2£)_L]]). Because
we know the state of every GO term, we can compare the results
of both methods independent of thresholds with receiver operating
characteristics (ROC curves). To simulate different branches in the
GO DAG which are studied with different degrees of detail and thus
annotated with different number of genes, we group the GO terms
by the number of assigned genes. As thresholds we chose 16, 37,
63 and 84 genes. This results for both noise levels (std dev. of 0.6
and std dev. of 1.2) in five different ROC curves which we illustrate
in Figure B As we can see, the Bayesian approach leads to larger
areas under the ROC curve for GO terms which have fewer than
about 40 genes annotated to. For larger numbers of genes annotated
to GO terms, these differences disappear, without however leading
to a situation where the Bayesian approach would be outperformed
by the counts-based approach.

3.2 Inferring active biological processes from
probabilities of gene function

3.2.1 Apoptosis and differentiation in endothelial cells and
mammary gland development We will now turn to inferring
active GO terms from the biological process subgraph of the gene
ontology for two biological experiments. The first example uses
the Bayesian probabilities that were calculated previously analysing
two microarray time-course experiments: (1) a cycle of growth and
regression in mammary glands in vivo (Clarkson et all, 2004) and
(2) an assay of programmed endothelial cell death investigated in
Vitro (IJthsgn_eLalJ, |2£)QA) for shared gene function. The results
of this analysis were reported in Ref. (Sykacek er gl 2007).
Measurements were taken with Affymetrix arrays and genes cross
annotated to human. The Affymetrix GO annotations were mapped
to a recent version of the GO DAG. These initial steps provide
indicator probabilities of shared gene activity and 2245 GO terms
which we use as inputs for inferring GO term activity.

The ordered posterior probabilities of GO term activity obtained
from such inference are displayed in Figure @l Assuming equal cost
for false positives and false negatives, the Bayes optimal decision
is to use probability 0.5 as lower threshold for assigning GO terms.
This threshold provides 95 GO terms and, assuming independence
of GO term activity, corresponds roughly to a false discovery rate
(FDR) of 15%. Table [ focuses attention to a smaller selection
of GO terms that are most probably active. Using a conservative
threshold of 0.995 (FDR < 1%) selects 27 GO terms. The GO terms
in Table [2] are in decreasing order of probability of being active.
GO term probabilities have been rounded for two digits after the
decimal point and are consequently all 1. The list contains most
notably five GO terms from the cell death subgraph. This is in line
with previous findings that endothelial cell apoptosis may play an
important role in mammary gland development Mﬁm,
[Matsumoto et all, ll_QQZ). The observation that active GO terms from
these indicator probabilities of shared gene function point to several
cell death-related terms is in line with the Fishers exact test-based
inference in (Sykacek er a/l,2007). The main difference is, however,
that probabilistic GO term inference finds five such GO terms among
the 27 highest probable GO terms and the test-based inference

in (Sykacek er all, 2007) finds as the highest ranked cell death
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Fig. 3. Graphs that allow comparing the performance of predicting known GO terms with the proposed Bayesian analysis to a classical count statistics-based
enrichment analysis. We observe that larger noise levels (sd denoting the standard deviation) render inference of differential expression more difficult and
consequently increase the difficulty of predicting GO term activity. This manifests itself in smaller areas under the ROC curves for all inferences which were
obtained at the larger noise level. We can also deduce that inference gets easier for GO terms which are annotated with larger numbers of genes (av# denoting
the average number of genes annotated to the GO terms) which again manifests in larger areas under the ROC curves we get for such GO terms. At the same
time, the advantage for the proposed Bayesian GO term inference disappears for GO terms which have more genes annotated to, however, without leading to

a situation that would disfavor the Bayesian approach for accuracy reasons

Probabilities of GO Term Activity

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Fig. 4. This figure shows probabilities of GO term activity, P(G|D), ranked
in decreasing order. GO term inference is based on indicator probabilities
which assess shared gene activity. As a result, we find 95 active GO terms
that have activation probabilities larger than 0.5. Assuming independence of
GO term activity, the false discovery rate among these 95 genes is about 15%

related terms ‘induction of programmed cell death’ and ‘induction
of apoptosis’ on positions 37 and 38. The proposed probabilistic
approach shows thus in this example a stronger enrichment of
expected GO terms at the top of the rank list.

3.2.2 Heat shock in S. cerevisiae We will now briefly touch
on a second biological experiment which was analysed for active
biological processes. The study was recently published in Ref.

- , 2011)) and deposited at the gene expression
omnibus under accession number GSE24484. The data are a time

course with three control samples and five time points under heat-
shock stress. The mRNA data comprises 18 expression arrays which
were assessed using the GEO platform GPL4566. We used the first
two time points (control before treatment and the first time point
sampled 4 min after induction of heat stress) and selected those genes
which allowed for an annotation to GO terms using the resources
provided at http://www.geneontology.org. Data were vsn normalized
(cf mﬁ,m» and probabilities of differential expression
inferred using a variational implementation of the ANOVA model
that was presented in Ref. (Posekany er gfl, RO11]). This lead to a
small number of genes which were with large probability assessed as
differentially expressed and a sharp transition to many genes which
got very small probabilities, with uncertainty about involvement
limited to very few genes. Very little uncertainty at the gene level
suggests that the differences between counts based approaches and
the proposed Bayesian method should for this data set be small.
The proposed Bayesian approach for GO term inference was run
for 10 times from random starting points. Predictions which were
based on the solution which had the smallest free energy ranked the
GO term ‘response to heat’ with probability 0.77 to position 81. To
challenge the Bayesian approach, the counts-based approach was
run several times with different thresholds leading to different sets
of active and inactive genes. The different runs of counts-based GO
term enrichment found ‘response to heat’ between positions 91 and
up to position 80, that is, in the best case one position higher than
the Bayesian solution.

The results suggest that the proposed Bayesian GO term inference
has the potential to provide more accurate insights than a counts-
based alternative. The Bayesian approach should in particular lead to
favorable results for sparsely annotated GO terms and in situations
where expression data analysis remains uncertain about gene activity
for a large number of genes.
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Table 2. Table displaying active GO terms, we find from analyzing (1) a time
course of mammary gland development and (2) a time course of endothelial
cell apoptosis for shared gene activity

GO Id Term name P(Gk|D)
0016043 Cell organization and biogenesis 1.0
0051649 Establishment of cellular localization 1.0
0051641 Cellular localization 1.0
0046907 Intracellular transport 1.0
0009058 Biosynthesis 1.0
0007242 Intracellular signaling cascade 1.0
0048523 Negative regulation of cellular process 1.0
0051243 Negative regulation of cellular physiological process 1.0
0015031 Protein transport 1.0
0043118 Negative regulation of physiological process 1.0
0008104  Protein localization 1.0
0045184 Establishment of protein localization 1.0
0044249  Cellular biosynthesis 1.0
0006886 Intracellular protein transport 1.0
0016070 RNA metabolism 1.0
0016192  Vesicle-mediated transport 1.0
0012501 Programmed cell death 1.0
0006915  Apoptosis 1.0
0008219  Cell death 1.0
0016265 Death 1.0
0044255  Cellular lipid metabolism 1.0
0006259 DNA metabolism 1.0
0006396 RNA processing 1.0
0006629 Lipid metabolism 1.0
0006412  Protein biosynthesis 1.0
0043067 Regulation of programmed cell death 1.0
0042981 Regulation of apoptosis 1.0

GO terms are in decreasing order of the assigned probability and included in the list, if
the respective probability is >0.995. GO term probabilities have been rounded for two
digits after the decimal point and are consequently all 1. The list contains most notably
five GO terms from the cell death sub graph. This is in line with previous findings that
endothelial cell apoptosis may play an important role in mammary gland development.

4 DISCUSSION

This article proposes a Bayesian approach for assigning GO terms
to expression experiments which can be used as a post-processing
step to Bayesian expression data analysis. Probabilities of GO
term activity are obtained by combining results from probabilistic
expression analysis in a Bayes’ consistent manner. Calculations are
isolated from pre- and post-processing and based on a tab delimited
representation of GO term annotations and indicator probabilities
which assess gene activity. Inference uses the variational Bayesian
framework, which warrants that computations can feasibly be
carried out on personal computers.

The results of the proposed approach are compared against a
counts-based enrichment analysis which uses Fisher’s exact test.
Synthetically generated data reveals that the proposed Bayesian
GO term assignment provides more accurate results for sparsely
populated GO terms and in situations where expression data
analysis has large uncertainty about gene activity. In scenarios,
where a sufficiently large number of genes is annotated to GO
terms and where expression data allow assessing genes activity
with high probability, the Bayesian approach and counts-based
enrichment analysis provide similar results, without, however,
leading to situations which would disfavor the proposed Bayesian

approach. Our assessment that GO term activity can be more
reliably inferred by quantitatively combining probabilities of gene
activity is also supported by analysing probabilities of shared gene
function , 2007) in mammary gland development
and_endothelial cell apoptosis (Johnson
et al., ). Compared with the GO term ranking obtained in
Ref. W,M) with Fishers exact test, we observe with
the proposed approach a stronger enrichment of cell death-related
GO terms at the top of the GO term rank list. Shared apoptosis
events in these assays are expected from reports that endothelial
cell apoptosis may play an important role in mammary gland
development (Djonov ez all,2001l; ,11992). A second
expression data set by W,M) which investigates
heat shock stress in S. cerevisiae lead to a much more clear cut
distinction between active and inactive genes. In this situation, we
find a strong agreement between the proposed Bayesian GO term
assignment and the counts-based enrichment analysis and thus equal
performance.

The experiments allow hence the conclusion that a Bayesian
GO term assignment has the potential of outperforming counts-
based enrichment analysis in situations where GO terms are
sparsely annotated and gene activity is difficult to assess. In
situations with sufficiently many genes annotated to GO terms
or with low uncertainty about gene activity, both counts-based
enrichment and the proposed Bayesian assignment will provide
similar accuracies. Although the application of the proposed
Bayesian ontology assignment used gene ontology and microarray
experiments as examples, the method is easily generalized to
other ontology annotations and expression experiments by adapting
the preprocessing filters and exchanging expression data analysis.
The main limiting factor of Bayesian GO term assignment is
the requirement of Bayesian indicator probabilities assessing gene
activity. For statistical test-based array analysis, a comparable

quantitative combination of P-values using statistical meta analysis
can be obtained by applying the approach in Ref. m

>

Rood).
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