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1  | INTRODUC TION

Understanding the influence of environmental factors on commu‐
nity membership is an essential part of determining how species are 
distributed in space (Gaston, 2000; Stein, Gerstner, & Kreft, 2014). 
Explaining the distribution patterns of species in terms of envi‐
ronmental variables can provide insights on the operational limits 
of species in their distributional areas (Gotelli et al., 2009; Wiens, 

2011). Communities are not just random groups of species; there‐
fore, in a biogeographic area, there are may be a variable number of 
communities, which are composed of species that share or compete 
for habitat resources. (Cornell & Lawton, 1992; Wiens, 2011). Thus, 
community patterns are better explained by integrating both envi‐
ronmental and ecological variables when determining biogeographic 
patterns at different scales (Jiménez‐Robles, Guayasamin, Ron, & De 
la Riva, 2017; Wiens, 2011).
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Abstract
The study of current distribution patterns of amphibian species in South America 
is of particular interest in areas such as evolutionary ecology and conservation bi‐
ology. These patterns could be playing an important role in biological interactions, 
population size, and connectivity, and potential extinction risk in amphibians. Here, 
we tested the effects of spatial and environmental factors on the variation, turnover, 
and phylogenetic diversity of anuran amphibian species in tropical forests of western 
Ecuador. Data for presence/absence of 101 species of 34 genera and 10 families 
registered in 12 sites (nested in four biogeographic units) were obtained through 
fieldwork, museum collections, and literature records. We examined the influence of 
geographical, altitudinal, temperature, and precipitation distances on differences in 
anuran composition between sites. We found significant positive correlations among 
all of these variables with anuran distribution. The greatest alpha diversity (species 
richness) was found in the Equatorial Chocó biogeographic unit. Equatorial Pacific 
biogeographic unit could act as a transition zone between the Equatorial Chocó and 
Equatorial Tumbes. The western Andes (Western Cordillera biogeographic unit) was 
the most dissimilar and exhibited a higher species turnover rate than the other bio‐
geographic units. Our results suggest that precipitation and elevation play a key role 
in maintaining the diversity of amphibian species in western Ecuador.

K E Y W O R D S

amphibia, Andes, phylogenetic structure, species richness, turnover, variation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited. 
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

mailto:﻿
https://orcid.org/0000-0003-2638-4068
mailto:amadoroyola@gmail.com
http://creativecommons.org/licenses/by/4.0/


     |  11041AMADOR et al.

TA
B

LE
 1

 
Bi

og
eo

gr
ap

hi
c 

un
its

, s
ite

s,
 g

eo
gr

ap
hi

c 
lo

ca
tio

n,
 fo

re
st

 ty
pe

s,
 a

nd
 e

nv
iro

nm
en

ta
l v

ar
ia

bl
es

 v
al

ue
s

Bi
og

eo
gr

ap
hi

c 
un

it
Si

te
Co

or
di

na
te

s
Fo

re
st

 ty
pe

Te
m

p.
 (°

C)
Pr

ec
ip

. (
m

l)
El

ev
at

io
n 

(m
as

l)
Re

fe
re

nc
es

Eq
ua

to
ria

l C
ho

có
Rí

o 
C

an
an

dé
00

°3
1′

47
″N

; 7
9°

12
′3

8″
W

M
oi

st
18

.5
4,

00
0

23
0–

60
0

M
or

al
es

, Y
án

ez
‐M

uñ
oz

, M
ez

a‐
Ra

m
os

, &
 

Re
ye

s‐
Pu

ig
 (2

01
3)

Bi
ls

a 
– 

M
ac

he
 

C
hi

nd
ul

00
°2

1′
33

″N
; 7

9°
42

′0
2″

W
M

oi
st

22
1,

90
0

30
0–

75
0

O
rt

eg
a‐

A
nd

ra
de

 e
t a

l. 
(2

01
3)

; J
on

gs
m

a 
et

 
al

. (
20

17
)

C
ho

ng
ón

 
C

ol
on

ch
e

01
°5

2′
00

″S
; 8

0°
38

′0
0″

W
Tr

an
si

tio
n

23
.4

75
0

20
0–

83
0

A
m

ad
or

 &
 M

ar
tín

ez
 (2

01
1)

; P
re

se
nt

 
re

se
ar

ch

Eq
ua

to
ria

l P
ac

ifi
c

C
hu

ru
te

02
°2

8′
00

″S
; 7

9°
43

′2
0″

W
Tr

an
si

tio
n

25
.5

90
0

30
–9

00
Pr

es
en

t r
es

ea
rc

h

M
ac

ha
lil

la
 

– 
Ay

am
pe

01
°4

0′
00

″S
; 8

0°
43

′0
0″

W
Tr

an
si

tio
n

24
.5

35
0

40
–4

00
C

is
ne

ro
s‐

H
er

ed
ia

 (2
00

6)
; M

or
al

es
 a

nd
 

A
lta

m
ira

no
‐B

en
av

id
es

 (2
01

3)
; P

re
se

nt
 

re
se

ar
ch

Ja
m

a 
C

oa
qu

e
00

°0
6′

56
″S

; 8
0°

06
′3

5″
W

Tr
an

si
tio

n
25

.1
1,

20
0

50
0–

84
0

Ly
nc

h,
 M

ay
na

rd
, H

am
ilt

on
, a

nd
 B

ur
ka

rt
 

(2
01

4)

Bu
en

av
en

tu
ra

03
°3

8′
47

″S
; 7

9°
45

′3
1″

W
Tr

an
si

tio
n

20
1,

10
0

65
0–

1,
30

0
Yá

ne
z‐

M
uñ

oz
 e

t a
l. 

(2
01

3)

Eq
ua

to
ria

l T
um

be
s

La
 C

ei
ba

 –
 C

. 
A

ra
ñi

ta
s

04
°2

4′
13

″S
; 8

0°
08

′0
3″

W
D

ry
22

.5
50

0
40

0–
75

0
D

ía
z 

&
 B

au
s 

(2
00

1)

A
ch

io
te

s 
– 

El
 

Fa
iq

ue
04

°0
7′

00
″S

; 8
0°

24
′0

0″
W

D
ry

25
.6

25
0

33
0–

45
0

A
lm

ei
da

 &
 N

og
al

es
 (2

00
5)

Rí
o 

G
ua

ja
lit

o
00

°1
3′

00
″S

; 7
8°

48
′0

0″
W

M
on

ta
ne

19
2,

40
0

70
0–

2,
00

0
Yá

ne
z‐

M
uñ

oz
 &

 M
or

al
es

 (2
01

3)

W
es

te
rn

 C
or

di
lle

ra
Rí

o 
Fa

is
an

es
00

°1
8′

13
″S

; 7
8°

52
′0

9″
W

M
oi

st
17

1,
90

0
1,

30
0–

1,
40

0
Bu

st
am

an
te

, R
on

, &
 C

ol
om

a 
(2

00
5)

Q
ue

br
ad

a 
Za

pa
do

re
s

00
°1

3′
59

″S
; 7

8°
45

′0
0″

W
M

on
ta

ne
18

2,
02

0
1,

90
0–

2,
30

0
Bu

st
am

an
te

 e
t a

l. 
(2

00
5)

A
bb

re
vi

at
io

n:
 m

as
l, 

m
et

er
s 

ab
ov

e 
se

a 
le

ve
l.



11042  |     AMADOR et al.

Amphibians have, on average, smaller body sizes than other ter‐
restrial vertebrates, thus enabling them to occupy relatively narrow 
niches unavailable for larger vertebrates (Wells, 2007). This in turn 
could cause that assemblages of amphibians are the most vulner‐
able and less tolerant to environmental changes (Blaustein et al., 
2010; Duarte et al., 2012; Navas & Otani, 2007). Taking into ac‐
count the accelerated transformation of natural ecosystems (Geist 
& Lambin, 2002; Lambin & Meyfroidt, 2011), an understanding of 
how the diversity of amphibians is distributed and composed is es‐
sential for amphibian diversity conservation. Amphibians, mainly an‐
urans species, face serious threats due to the combined effects of 
climate change, habitat loss, and diseases spread (Almeida‐Gomes, 
Vieira, Duarte Rocha, Metzger, & Coster, 2016; Berger et al., 1998; 
Blaustein & Bancroft, 2007; Jongsma, Hedley, Duräes, & Karubian, 
2014; Lessmann, Muñoz, & Bonaccorso, 2014; Lips et al., 2006; 
Pounds et al., 2006; Stuart et al., 2004).

Studies from a global perspective have been carried out to ana‐
lyze how the richness and turnover of amphibian species respond to 
different environmental and spatial gradients (Buckley & Jetz, 2007, 
2008) and also to test the influence of phylogenetic history on the 
global patterns of amphibian species richness (Fritz & Rahbek, 2012). 
Recent studies incorporating geographic, ecological, and biological 
variables as well as phylogenetics have been conducted to resolve 
the biogeography of amphibians globally and within the Neotropical 
region (e.g., Castroviejo‐Fisher, Guayasamín, González‐Voyer, & Vila, 
2014; Gonzalez‐Voyer, Padial, Castroviejo‐Fisher, De la Riva, & Vilá, 
2011; Hutter, Lambert, & Wiens, 2017; Jiménez‐Robles et al., 2017; 
Pinto‐Sánchez, Crawford, & Wiens, 2014). Despite this, research on 
Neotropical biota often emphasizes the influence of historical fac‐
tors rather than ecological factors when determining species distri‐
butions (Wiens, 2011). Ecological factors are key when describing 
assemblage patterns especially in areas with high species richness 
and turnover rates (e.g., Ecuador with 600 amphibian species, see 
Centro Jambatu, 2011–2017). Furthermore, the diversity of habitats 
occupied by amphibian assemblages has influenced the phyloge‐
netic diversity of this group in the Neotropics (Arteaga et al., 2016; 
Jiménez‐Robles et al., 2017; Ribeiro, Colli, Batista, & Soares, 2017). 
Overall, studies of the spatial patterns of species assemblages are 
urgently required to delineate conservation strategies in ecosystems 
under strong anthropogenic pressures such as the evergreen forests 
of Chocó and Equatorial dry forests, two of the most fragmented 
forests in western Ecuador (Dodson & Gentry, 1991; Escribano‐Avila 
et al., 2017).

Here, we analyzed the community composition and phylogenetic 
structure of anurans occurring in 12 sites of four biogeographic 
units of western Ecuador. For this purpose, we use the alpha, beta, 
and phylogenetic diversity in order to establish questions about the 
factors that determine the variation of the diversity of anurans be‐
tween biogeographic units of western Ecuador. We hypothesized 
that diversity (alpha, beta, and phylogenetic diversity) would depend 
on local‐level composition of species in the sites and their location 
along environmental gradients. In summary, this study provides a 
baseline of the phylogenetic diversity of anuran species in western 

Ecuador, allowing us to propose “hot spots” of amphibian diversity 
in this region.

2  | MATERIAL S AND METHODS

2.1 | Study area and biogeographic units

Anuran assemblages of 12 sites spanning four biogeographic 
units (hereafter BU) in western Ecuador: Equatorial Chocó (EC), 
Equatorial Tumbes (ET), Western Cordillera (WC), and Equatorial 
Pacific (EP) (modified from Olson et al., 2001; shapefile avail‐
able at http://maps.tnc.org/gis_data.html and Morrone, 2014) 
were studied. For each BU, we compiled information for the fol‐
lowing sites: (a) EC: Bilsa‐Mache Chindul and Río Canandé; (b) 
EP: Chongón Colonche, Jama Coaque, Ayampe‐Machalilla, and 
Churute; (c) ET: Achiotes‐El Faique, La Ceiba‐Cordillera Arañitas, 
and Buenaventura; (d) WC: Quebrada Zapadores, Río Faisanes, 
and Río Guajalito. In addition, we classify the 12 sites according 
to four forest types: dry, moist, montane, and transition (modified 
from Harling, 1979; Holdridge, Grenke, Hatheway, Liang, & Tosi, 
1971) (Table 1; Figure 1).

2.2 | Data collection

Analyses were based on species presence/absence matrices includ‐
ing sites and biogeographic units (Table S1). Each matrix was built 
using field data, data from the literature (e.g., Arteaga, Bustamante, 
& Guayasamin, 2013; Lynch & Duellman, 1997; Ortega‐Andrade, 
Bermingham, Aulestia, & Paucar, 2010), and data from amphibian 
collections at the Museum of Zoology of the Pontificia Universidad 
Católica del Ecuador (QCAZ, https​://bioweb.bio; Ron, Merino‐
Viteri, & Ortiz, 2019), the Museum of Natural History Gustavo 
Orcés of the Escuela Politécnica Nacional in Quito (MHNGO), and 
the Museum of the Faculty of Natural Sciences of the Universidad 
de Guayaquil (FCCNN‐UG). To compare biogeographic similarity 
and to complement the presence/absence records, we used check‐
lists published in other locations in western Ecuador (Table 1). 
Species identification was performed using taxonomic keys and 
specialized literature, including the original descriptions of the 
species recorded (e.g., Coloma, 1995; Lynch & Duellman, 1997). 
Fieldwork was carried out in Machalilla‐Ayampe (between 2005 
and 2006) (site 4), Chongón Colonche (between 2005 and 2015) 
(site 5) and Churute (between 2012 and 2015) (site 6) (Figure 1), 
using a sampling technique of free and unrestricted search of indi‐
viduals called Complete Species Inventory, this method is the most 
efficient to obtain the largest number of individuals per species in 
less time (Rueda‐Almonacid, Castro, & Cortez, 2006).

2.3 | Anuran assemblage alpha diversity and 
variation in species composition

The species richness (SR) was calculated for each site, the for‐
est type and BU. Comparisons of S on BU's and forest type, 

http://maps.tnc.org/gis_data.html
https://bioweb.bio
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respectively, were analyzed with linear regression models and 
perform ANOVA on the data; afterward, a Tukey test was used 
to determine which relationships were statistically significant. 
These analyses were performed in R 3.3.2 software (R Core Team, 
2016). In order to address which species are shared and which 
are distinct in the anuran assemblage, we calculated the Jaccard 
index for pairs of sites. To represent the ordering relationships 
among sites per BU in a reduced and predetermined number of 
axes, an ordination analysis (nonmetric multidimensional scal‐
ing analysis, 2D‐NMDS) was performed on matrices constructed 
from Jaccard indices. To test for differences in species composi‐
tion dissimilarity, a permutational multivariate analysis of variance 
(PERMANOVA, Anderson, 2001) was performed on the Jaccard 
similarity matrices using “Biogeographic Unit” as a fixed factor. 
The probability value (pperm) was calculated from a pseudo‐F dis‐
tribution with 10,000 permutations. All analyses were performed 
using PERMANOVA+ in the PRIMER v6 statistical package (Clarke 
& Gorley, 2006). In order to evaluate the effects of geographical 

distance on dissimilarity in species composition (distance–decay 
relationship) and to have another measure if species turnover 
and beta diversity, we calculated the distance in km between all 
pairs of sites and plotted the calculated Jaccard index. The dis‐
tance–decay relationship was quantified, in the data set the linear 
relation of Jaccard similarity to geographic distance (on both log‐
transformed and original scales) was assessed using linear regres‐
sion. This analysis was made using the Vegan package (Oksanen et 
al., 2016) in R 3.3.2 (R Core Team, 2016).

2.4 | Phylogenetic diversity and 
phylogenetic structure

We used a phylogeny of anuran species present in the 12 sites, since 
some species did not have available sequences and other species 
have only been identified to the genus level, as is the case of sev‐
eral reported Pristimantis, we downloaded 70 sequences (761 base 
pairs in each sequence) of 16S mitochondrial gene available from 
Genbank (see Appendix S1). Phylogenetic relationships performed 
with 1,000 ultrafast bootstrap replicates and the most appropriate 
substitution model based on the Bayesian information criterion (BIC) 
were inferred using IQ‐tree (Nguyen, Schmidt, von Haeseler, & Minh, 
2015) and ModelFinder (Kalyaanamoorthy, Minh, Wong, Haeseler, 
& Jermiin, 2017), respectively. The sequences were analyzed under 
the TIM2 + I + G model, and the maximum likelihood tree was saved 
as Newick format for analysis. With this phylogeny and the commu‐
nity presence/absence matrix as input, we performed phylogenetic 
metrics for each site. We calculated two diversity measures, first 
the phylogenetic diversity (PD) index, defined as the sum of branch 
lengths between root and tips for a community (Faith, 1992) for each 
site, and we compared PD with forest type and BU's; first, we fit a 
linear regression models, and then, we perform an ANOVA on the 
data; afterward, a Tukey test was used to determine which two vari‐
ables had significant differences. These analyses were performed 
in R 3.3.2 software (R Core Team, 2016). And then, we calculated 
the standardized effect size of Faith's PD (SESPD) for all the sites. In 
order to assess how phylogenetically related are the average pair 
of species in a site, we use two indices proposed by Webb, Ackerly, 
McPeek, and Donoghue (2002) and modified by Kembel (2009) as 
measures of standardized effect size of phylogenetic community 
structure, SESMPD and SESMNTD, which are the negations of Net 
Relatedness Index (NRI) and Nearest Taxon Index (NTI), respectively 
(Pearse, Jones, & Purvis, 2013). The community phylogenetic struc‐
ture was calculated as follows:

MPD calculate the mean pairwise distance between all species 
in each site. On the other hand, MNTD calculates the mean nearest 
taxon distance, the mean of the branch lengths connecting each spe‐
cies to its closest relative (Webb, 2000). We use a null model of ran‐
domly shuffling tip labels across the tips of the phylogeny with 1,000 

SESMPD=MPDobs−MPDrand_mean∕MPDrand_sd

SESMNTD=MNTDobs−MNTDrand_mean∕MNTDrand_sd

F I G U R E  1   Map of Ecuador showing the study sites. 1 = Río 
Canandé, 2 = Bilsa‐Mache Chindul, 3 = Jama‐Coaque, 4 = Ayampe‐
Machalilla, 5 = Chongón‐Colonche, 6 = Churute, 7 = Buenaventura, 
8 = Achiotes‐El Faique, 9 = Cordillera Arañitas‐La Ceiba, 
10 = Río Guajalito, 11 = Río Faisanes, 12 = Quebrada Zapadores. 
Approximate distribution of terrestrial South American ecoregions 
modified from Olson et al. (2010)
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runs for each analysis (site). The reported p‐value was calculated 
with a two‐tailed test, thus, significance at the threshold α = 0.05 
level is achieved when p ≤ .025 or p ≥ .975 (Cadotte & Davies, 2016). 
Positive SES values and high p‐values (p ≥ .975) indicate phylogenetic 
evenness and greater phylogenetic distance among co‐occurring 
species than expected, and negative SES values and low p‐values 
(p  ≤  .025) indicate phylogenetic clustering and small phylogenetic 
distances among co‐occurring species than expected (Kembel et al., 
2010). The analyses were performed with PICANTE package (Kembel 
et al., 2010) in R 3.3.2 software (R Core Team, 2016).

2.5 | Effect of environment on anuran diversity

We evaluated the correlation between abiotic and biotic com‐
ponents. Correlation tests were performed between dissimilar‐
ity matrices (Bray–Curtis dissimilarity) of environmental variables 
(precipitation, temperature, and elevation between sites), and the 
inverse value of Jaccard similarity (Jdissim). These models were cal‐
culated using the package Vegan in R (Oksanen et al., 2016) and fol‐
lowing the recommendation by Legendre, Borcard, and Peres‐Neto 
(2005), Legendre, Fortin, and Borcard (2015) and Legendre and 
Legendre (1998). To detect multicollinearity of predictor variables, 
we used a statistic called the variance inflation factor (VIF) (Fox & 
Monette, 1992). The square root of the VIF indicates the degree to 
which the standard error is, comparing if a predictor variable was 
not correlated with other predictor variables in a model. As a gen‐
eral rule, 

√

vif > 2 indicates a multicollinearity problem. VIF values 
were calculated with the vif function in the car package. Averages of 
temperature and precipitation from five recent years (2012–2016) 
were obtained from the Meteorological Service of Ecuador (www.
servi​ciome​teoro​logico.gob.ec), and elevation of the sites were ob‐
tained from Google Earth Pro (Google, Version 7.3.0.3832) (Table 1). 
Also, we evaluated if there was an effect of the three environmental 

variables previously mentioned (see Table 1) on S and PD (response 
variables), in order to select the best‐fit model that explains the 
maximum amount of variance, we created two multiple regression 
models to explain the two response variables, this was done in R 
3.3.2 (R Core Team, 2016). To look for evidence of nonlinearity in 
the relationship between the dependent variable (S and PD) and the 
independent variables (precipitation, temperature, and elevation), 
we used component plus residual plots whit the crPlots function in 
the R package car (Fox & Weisberg, 2011). Similarly, we performed 
a global validation of linear model assumptions with the R pack‐
age gvlma (Pena & Slate, 2006). To assess the relative importance, 
that is, the contribution of each of the predictor variables on the 
response variable in a multiple regression model; we use the R pack‐
age relaimpo which provides several reasonable metrics, such as lmg 
that propose averaging sequential sums of squares over all orderings 
of regressors (Lindeman, Merenda, & Gold, 1980) for assessing rela‐
tive importance (percent contribution) of each correlated predictor 
(regressor) in a linear model (Grömping, 2006).

3  | RESULTS

3.1 | Anuran assemblage alpha diversity and 
variation in species composition

A total of 101 species of frogs were recorded (Table S1); they belong to 
the families Bufonidae (5 species), Centrolenidae (16), Ceratophryidae 
(1), Craugastoridae (41), Dendrobatidae (8), Hemiphractidae (2), 
Hylidae (14), Phyllomedusidae (2), Leptodactylidae (9), and Ranidae 
(2). The genus Pristimantis (Craugastoridae), with 37 species, had 
the highest species diversity. The most diverse sites were within 
the Equatorial Chocó (Río Canandé [site 1] and Bilsa‐Mache Chindul 
[site 2], each with 33 species). Within the Equatorial Pacific BU, 
the Chongón‐Colonche (site 5) had the highest S with 27 species. 

TA B L E  2   Values of species richness (SR), phylogenetic diversity (PD), phylogenetic distance (mean pairwise distance—MPD and mean 
nearest taxon distance—MNTD), phylogenetic structure calculated as standard effect size of MPD (SESMPD) and MNTD (SESMNTD) and 
standardized effect size of PD (SESPD). The p‐value reported is a two‐tailed test, where the significance level of 0.05 is achieved when 
p ≤ .025 or p ≥ .975. Number of amphibian species found in each biogeographic unit (are shown in parentheses)

Biogeographic 
units Site SR PD SESPD MPD SESMPD p‐Value MNTD SESMNTD p‐Value

Equatorial 
Pacific (43)

Chongon‐Colonche 27 91.36 0.486 0.527 −1.046 .135 0.259 0.174 .549

Machalilla‐Ayampe 20 90.88 −0.316 0.551 0.109 .467 0.246 −0.867 .204

Churute 15 93.02 −0.014 0.497 −1.893 .049 0.306 0.375 .632

Jama‐Coaque 25 90.78 −0.630 0.537 −0.491 .267 0.229 −1.98 .124

Equatorial 
Chocó (44)

Bilsa‐Mache Chindul 33 91.60 −0.844 0.538 −0.606 .225 0.228 −0.486 .307

Río Canandé 33 92.05 −0.259 0.53 −1.117 .136 0.232 0.036 .505

Western 
Cordillera (38)

Q. Zapadores 17 79.90 −2.710 0.534 −0.602 .221 0.194 −2.285 .015

Río Faisanes 17 90.44 0.864 0.566 0.784 .784 0.306 0.947 .815

Río Guajalito 22 80.81 −1.274 0.55 0.087 .441 0.227 −1.001 .165

Equatorial 
Tumbes (20)

La Ceiba‐C. Arañitas 7 93.65 −0.394 0.517 −0.882 .173 0.336 −0.277 .398

Achiotes‐El Faique 8 97.62 0.827 0.535 −0.387 .275 0.411 1.184 .897

Buenaventura 17 91.67 1.049 0.561 0.454 .632 0.347 1.106 .878

http://www.serviciometeorologico.gob.ec
http://www.serviciometeorologico.gob.ec
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The sites with lowest S were in the Equatorial Tumbes BU; these 
sites included Cordillera Arañitas‐La Ceiba (site 9) and Achiotes‐El 
Faique (site 8) with seven and eight species, respectively. Regarding 
the BU's, Equatorial Chocó had the highest S with 44 species, and 
this was followed by the Equatorial Pacific (43 species), Western 
Cordillera (38 species), and Equatorial Tumbes (20 species) (Table 2; 
see also Figure 1 for site number). According to linear models, S differ 
significantly with the forest type (F (3,8) = 4.55, p = .038) (Figure 2), 
post hoc Tukey's HSD tests showed that only moist forests and 
dry forests had significant differences in species richness; all other 

comparisons were not significant. Further, strong significant differ‐
ences were found in S for the different BU's (F (3,8) = 10.03, p = .004) 
(Figure 2), Tukey's tests showed significant differences of Equatorial 
Chocó with Equatorial Tumbes and Western Cordillera (Table S2).

In relation to species composition variation in biogeographic 
units, the nMDS indicated that the sites form two main clusters 
of low similarity. The most distinct group included the Western 
Cordillera sites while the second group included the Chocó, Pacific, 
and Equatorial Tumbes sites (Figure S3). This result was comple‐
mented by high goodness of fit resulting from repeated optimization; 

F I G U R E  2   Boxplot showing species richness (SR) (a and b) and phylogenetic diversity (PD) (c and d) per biogeographic unit and forest 
type. Outliers are shown with black circles. Thick horizontal black lines indicate means
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the stress function of the nMDS was 0.069, which indicates that the 
scaling was properly adjusted. From a total of 44 species recorded 
in the Equatorial Chocó, only eight species were also present in W. 
Cordillera; similar variation occurs with Equatorial Pacific (43 spe‐
cies), and only eight were also in W. Cordillera. BU's that shared 
more species were E. Chocó–E. Pacific (18 species shared) and E. 
Pacific–E. Tumbes (16 species shared) (Table S3).

The results of the PERMANOVA analyses showed significant 
differences between sites (pseudo‐F (3, 8) = 3.278; p (perm) < .001) 
and between some of the BU's. Specifically, the Equatorial Pacific 
and Western Cordillera were significantly different (t  =  20.21, p 
(MC) = .0288), and the p (MC) probability values of the comparison 
of Western Cordillera with Equatorial Tumbes and Equatorial Chocó 
suggested that there may be subtle differences between these units, 
p (MC) = .0558 and p (MC) = .0553, respectively (Table S5).

When we evaluate the geographical distance with the Jaccard 
dissimilarity in species composition, we found a statistically signif‐
icant positive correlation coefficient (r =  .461, p <  .001), indicating 
that there is a distance decay of similarity (communities far away 
from each other have more different species compositions) (Figure 3).

3.2 | Phylogenetic diversity and 
phylogenetic structure

The relationship between SR and PD for the community data 
showed that PD is strongly correlated with SR (p < .001, R2 = 0.86) 
(Figure S1). As expected, PD was found to be the highest in moist 
forests of Equatorial Chocó and the lowest in dry forest of Equatorial 
Tumbes. The highest SESPD was found in Buenaventura (Equatorial 
Tumbes, transition forest), while the lowest SESPD in Quebrada 
Zapadores (Western Cordillera, montane forest) (Table 2). There 

were differences in PD among different forest types (F (3,8) = 7.12, 
p  =  .012) and among different BU's as predictor (F (3,8)  =  6.06, 
p = .019) (Figure 2). However, post hoc Tukey's HSD tests showed that 
forests comparisons do not have differences in PD, except moist–
dry forests that were significant. On the other hand, Tukey's tests 
showed significant differences only Equatorial Tumbes‐Equatorial 
Chocó BU's, all other comparisons were not different (Table S2).

Phylogenetic structure of the anuran communities varied across 
the spatial extent of the study area (Table 2). There were no signif‐
icant differences of SESMPD when this standardized effect size was 
calculated for the different sites, forest types, and biogeographic 
units. Similar results were found with SESMNTD, there were no sig‐
nificant differences in the same three previous levels, only the site 
Q. Zapadores had a p‐value = .015 calculated with a two‐tailed test 
(Figure S2, Table 2).

3.3 | Effect of environment on anuran diversity

We do not find multicollinearity evidence of variable predictors in 
this model, elevation 

√

vif = 1.456, precipitation 
√

vif = 1.504, tem‐
perature 

√

vif  =  1.956. Correlations between the value of Jaccard 
dissimilarity and the dissimilarity matrices of precipitation (r = .364, 
p = .004), temperature (r = .444, p < .001), and elevation (r = .470, 
p <  .001) were positive and significant (Figure 4). We ran multiple 
regression linear models of S and PD using elevation, precipitation, 
and temperature as predictors (Figure 5). Components + Residuals 
plots and global validation of linear model (gvlma) confirm that lin‐
ear model assumptions are true for all models (see Supporting infor‐
mation). According to the linear model, S did not differ significantly 
with elevation + precipitation + temperature (F (3,8) = 3.06, p = .092) 
(Table S4). However, a significant relationship was found between 
S and precipitation alone (p = .031), yet there was no significant ef‐
fect of elevation and temperature on S (p  >  .05). PD was not sig‐
nificantly correlated with each of the three environmental variables 
examined (F (3,8) = 3.38, p = .075), as in S precipitation was signifi‐
cant (p = .046). However, the p‐value for elevation and temperature 
(0.324 and 0.885, respectively) is greater than the common alpha 
level of 0.05, which indicates that were not statistically significant 
(Table S4).

According the relative importance of three environment vari‐
ables on PD and S, we use the method called lmg (Grömping, 2006). 
Precipitation had the highest relative importance or regressor con‐
tribution (R2) on S (lmg = 79.8%) and PD (lmg = 72.5%) (Table 3). When 
comparing lmg with other methods to measure relative importance, 
similar results were obtained (Figure S4).

4  | DISCUSSION

We found heterogeneity in the alpha, beta, and phylogenetic diver‐
sity among the four Ecuadorian biogeographic units. The Equatorial 
Chocó was the unit with the highest species richness, which can be 
mainly explained by climatic factors such as high average annual 

F I G U R E  3   Distance–decay plot, the distance was measured 
in km between all pairs of sites (Spatial Euclidean distance) 
and plotted the calculated Jaccard index (Species composition 
dissimilarity)
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rainfall (2,000  mm; Sierra, Cerón, Palacios, & Valencia, 1999) and 
moisture throughout the year (Ortiz‐Yusty, Páez, & Zapata, 2013); this 
condition was corroborated in this work through regression models 

and analysis of relative importance. In contrast, Equatorial Tumbes is 
dominated by dry vegetation and is characterized by high seasonality 
where rainfall is <1,600 mm per year, and there are at least four to six 

F I G U R E  4   Correlations tests between dissimilarity (Species composition variation) and environmental variables (a) elevation, (b) 
precipitation, (c) temperature

F I G U R E  5   Scatterplots using a multiple regression model of environmental variables (precipitation, elevation, and temperature) values 
plotted against species richness values (SR, a–c) and phylogenetic diversity (PD, d–f)
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dry months with rainfall <100 mm per month (Gentry, 1995; Mooney, 
Bullock, & Medina, 1995; Pennington, Lavin, & Oliveira‐Filho, 2009); 
likely as a result, amphibian richness was lower in Equatorial Tumbes. 
As in species richness, the differences in phylogenetic diversity in 
community assemblage of anurans are related to differences in pre‐
cipitation; this is relevant to understand the turnover across different 
sites, forest types, and biogeographic units. The effect of precipita‐
tion may be due to the fact that alpha and phylogenetic diversity are 
inherently positively correlated, since a greater number of species al‐
most always correlates with a greater genetic divergence summarized 
in a phylogeny (Cadotte & Davies, 2016; Venail et al., 2015).

The similarity/dissimilarity among the anuran communities 
studied here can be explained in part by environmental or climatic 
factors (Lynch & Suárez‐Mayorga, 2002). Here, we used ordination 
analysis to identify significant relationships between biological (e.g., 
number of species, species turnover and phylogenetic diversity) and 
environmental variables (e.g., temperature, precipitation) among 
sites. We found that biogeographic dissimilarity measured as spe‐
cies composition variation was significantly correlated with precip‐
itation, temperature, and elevation (Figure 4). The Jaccard indices 
suggest that each of the biogeographic units (and some of the sites 
within) has characteristics that differentially influence species com‐
position. Overall, low values of similarity, not exceeding 40% shared 
species, were found. It is noteworthy that out of the 101 species 
reported in this study, only four species were recorded in the four 
units: Rhinella marina (Bufonidae, nine sites), Espadarana prosoblepon 
(Centrolenidae, six sites), Pristimantis achatinus (Craugastoridae, eight 
sites), and Boana pellucens (Hylidae, six sites). Therefore, the largest 
proportion of recorded species are not shared when we move from 
one unit to another along a latitudinal or environmental gradient.

In this study, the genus Pristimantis (Craugastoridae) had the high‐
est number of recorded species (36.6% of the total species recorded). 
Lynch and Duellman (1997) show that Pristimantis species from the 
lowlands of western Ecuador have wider distribution ranges than 
congenerics from the Andes; this could explain the high number of 
species of this genus recorded in the Western Cordillera (Pristimantis 
richness was much higher than that of other genera in the same unit).

According to the phylogenetic structure in the assembly of the 
communities, most of the communities are phylogenetically grouped 

(e.g., La Ceiba‐Cordillera Arañitas, Quebrada Zapadores, Bilsa‐
Mache Chindul, Jama‐Coaque), however, no significant differences 
were found. Only two sites (Buenaventura and Río Faisanes) pre‐
sented are high phylogenetically overdispersal or a greater phylo‐
genetic distance between coexisting species than expected. These 
results could be explained given that the community assemblages 
consist mainly of species that have diverged relatively recently.

Because species richness and distribution patterns at local scales 
are the result of complex biotic and abiotic interactions at many spa‐
tial and temporal scales (Wisz et al., 2013), there is no single cause 
of these patterns. On the other hand, environmental factors such as 
precipitation or elevation can influence ecological processes in or‐
ganisms, and therefore their capacity for dispersion and persistence 
in different environments (Brown & Lomolino, 1998). By analyzing 
precipitation, temperature, and elevation, we have sought to widen 
our inference of the factors affecting the distribution of amphibians 
in western Ecuador. Others have found that the species richness of 
amphibians is influenced by factors such as temperature, geography, 
and precipitation (e.g., Ortiz‐Yusty et al., 2013; Soares & Brito, 2007). 
Nonetheless, these factors are not the only studied, other studies 
have also found that anuran diversity has been determined as a re‐
sponse to either different types of vegetation, distance to water 
bodies or environmental heterogeneity (e.g., Goncalves, Crivellari, & 
Conte, 2015; Ribeiro et al., 2017). Here, from the regression analysis, 
we also found that precipitation could have a strong effect on the 
diversity of amphibians (SR‐PD; Figure 5, Figure S4).

The results of this work may suggest that Equatorial Pacific 
would act as a transition zone between Equatorial Chocó (wet/
moist northern forests) and Equatorial Tumbes (dry southern for‐
ests) (see Figure 1) in terms of anuran species composition. Overall, 
our results support this suggestion, as has been previously defined 
for the area (Valverde, 1991; Yánez‐Muñoz, Morales, Reyes‐Puig, & 
Meza‐Ramos, 2013). These three biogeographic units mentioned 
above, could be characterized by high species turnover, which would 
follow a latitudinal gradient. For example, among these three units 
the species composition of some dendrobatids varies latitudinal and 
ecologically (see Coloma, 1995; Grant et al., 2006, 2017; Santos et 
al., 2009; Tarvin, Powell, Santos, Ron, & Cannatella, 2017, for dis‐
tribution data). As in the case of replacement, in the biogeographic 

Dependent variable Regressors

lmg value
Confidence interval (CI) (1,000 
bootstrap replicates)a

% 0.95 Lower 0.95 Upper 0.95

Species richness Elevation 0.0744 ABC 0.0214 0.4190

Precipitation 0.7979 AB_ 0.3238 0.8450

Temperature 0.1277 _BC 0.0582 0.4200

Phylogenetic diversity Elevation 0.1322 ABC 0.0274 0.5758

Precipitation 0.7250 AB_ 0.2616 0.8392

Temperature 0.1427 _BC 0.0466 0.3684

aLetters (ABC) indicate the ranks included in the bootstrapped CIs. Rank bootstrap confidence 
intervals were obtained using the percentile method (bty = perc). 

TA B L E  3   Relative importance metrics 
for species richness and phylogenetic 
diversity. The lmg method (expressed as 
percentage of explained variance) was 
used in R package relaimpo
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units mentioned above, of three Epipedobates species: E. boulengeri 
(Chocó)–E.  machalilla (Transition Zone)–E.  anthonyi (Tumbes), and 
three Hyloxalus species: H. awa (Chocó)–H. infraguttatus (Transition 
Zone)–H. elachyhistus.

We conclude that environmental factors such as precipitation, 
elevation, and temperature could affect the diversity of anurans in 
Western Ecuador. For example, the composition of anuro‐fauna in 
the forests of the Western Cordillera, sites that present low tem‐
peratures on average, is markedly different from the composition 
found in three other biogeographic units, presenting a high species 
richness but belonging to a few taxonomic groups (e.g., rainfrogs 
of genus Pristimantis or glassfrogs of family Centrolenidae). On the 
other hand, the high rainfall in the Ecuadorian Chocó lead to the sites 
in this biogeographic unit maintain a constant humidity throughout 
the year, which make available numerous ideal microhabitats for the 
persistence of several amphibian species distributed in different 
clades within a phylogenetic tree.

Finally, these ecosystems in the coast and western Andes of 
Ecuador have already been categorized as high priority areas for 
conservation and as high exposure risk zones (Cuesta et al., 2017; 
Sierra, Campos, & Chamberlin, 2002). Furthermore, given the high 
phylogenetic diversity of amphibians and even because most of the 
sites in this study do not have a formal declaration of forest protec‐
tion, which could allow these forests to be considered as conserva‐
tion areas of biodiversity (see also Arteaga et al., 2013; Cuesta et al., 
2017; Lessmann et al., 2014).
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