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Blood-retinal barrier as a convergi
ng pivot in understanding the
initiation and development of retinal diseases
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Abstract
Clinical ophthalmologists consider each retinal disease as a completely unique entity. However, various retinal diseases, such as
uveitis, age-related macular degeneration, diabetic retinopathy, and primary open-angle glaucoma, share a number of common
pathogenetic pathways. Whether a retinal disease initiates from direct injury to the blood-retinal barrier (BRB) or a defect/injury to
retinal neurons or glia that impairs the BRB secondarily, the BRB is a pivotal point in determining the prognosis as self-limiting and
recovering, or developing and progressing to a clinical phenotype. The present review summarizes our current knowledge on the
physiology and cellular and molecular pathology of the BRB, which underlies its pivotal role in the initiation and development of
common retinal diseases.
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Introduction

The blood-retinal barrier (BRB) is the most critical
component underlying retinal homeostasis. There are
two sub-types of the BRB. The main structure of the inner
BRB (iBRB) is a microvascular network that nourishes the
inner retinal layers. The outer BRB (oBRB) lies between
the choriocapillaris and the neurosensory retina and is
maintained by tight junctions (TJs) between the retinal
pigment epithelial (RPE) cells. Notably, the BRB is unique
in maintaining the retina as an immune-privileged site by
separating the retina from systemic immune and inflam-
matory components.[1] Physiological neuronal or glial
injury/death within the retina during aging is generally self-
limited when the BRB remains structurally and function-
ally intact. Minor injury to the BRB may occur during
some of these physiological processes or very early disease
stage. Timely repair of BRB injury with complete recovery
of its structure and function results in no clinical
consequences. Otherwise, immune and inflammatory
components from the systemic circulation enter the retina
through the impaired BRB and initiate a self-exacerbating
vicious cycle of neuroimmune responses that lead to the
development of clinical disease phenotypes.

BRB impairment is detected in numerous retinal diseases,
such as glaucoma,[2] diabetic retinopathy (DR),[3] and age-
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related macular degeneration (AMD)[4], and retinal
inflammatory diseases, such as uveitis,[5,6] central serous
chorioretinopathy,[7] and retinal vein occlusion.[8] Each of
these retinal diseases is a completely independent and
unique clinical entity. However, various retinal diseases
share a few common pathogenetic pathways. Whether a
retinal disease initiates from direct injury to the BRB or
defect/injury to retinal neurons or glia that leads to BRB
impairment secondarily, the BRB is a pivotal point in
determining the fate or prognosis of the pathological
outcomes as (1) self-limiting and recovering or (2)
developing and progressing to a clinical disease phenotype.
Retinal exudates (eg, water, proteins, lipids, and cells) and
the neuroinflammation that recruits systemic immune
components subsequent to BRB impairment are underly-
ing all retinal diseases. Therefore, the investigation of
cellular and molecular changes in the BRB is of paramount
priority in our investigation of the pathogenesis and early
detection of retinal diseases.

Structure of the BRB

The iBRB is formed and maintained via the interaction of
vascular endothelial cells with neurons, pericytes, and glial
cells. This interacting complex is referred to as the
neurovascular unit (NVU) [Figure 1], which is relatively
similar in structure and function to the blood-brain barrier
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Figure 1: Structure of the blood-retinal barrier (BRB). The inner BRB comprises vascular endothelial cells, pericytes, glial cells, and neurons. The outer BRB is formed by interactions of the
choroid, Bruch’s membrane, and retinal pigment epithelium.
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(BBB).[9] Therefore, it is relatively understandable that any
injury originating in neurons or glia may extend to the
impairment of the iBRB.

The iBRB is a highly selective regulator of molecules that
enter the retina. This feature relies on two distinct and
interdependent transport systems, transcellular transport
(transcytosis) and paracellular transport.[9] A low rate of
transcytosis through the iBRB may result from the low-
level expression of receptors, transporters, and caveolae
mediators within the endothelial cells.[10] Junctional
complexes, specifically TJs, restrict paracellular transport
between the adjacent vascular endothelial cells. TJs
comprise more than 40 proteins, of which claudins,
occludins, tricellulin (transmembrane proteins), and zon-
ula occludens (ZO, intracellular proteins) are classic
markers.[9,11] Increased paracellular or transcellular per-
meability indicates dysfunction of the BRB, and the
abnormal expression of these classic marker proteins may
represent the earliest molecular sign of BRB injury.

The oBRB is formed by a single layer of RPE cells that
interact with fenestrated choriocapillaris and Bruch’s
membrane [Figure 1].[12] TJs interconnect neighboring
RPE cells and control the paracellular transport of fluids
and molecules between the choriocapillaris and the
neurosensory retina. The oBRB is a major site for retinal
immune surveillance. RPE cells produce several immuno-
modulatory mediators, including pro-inflammatory and
inhibitory factors.[1]

BRB Impairment is a Hallmark of Retinal Dysfunction and
Diseases

Retinal immune privilege is essential for the maintenance
of retinal homeostasis and prevention of retinal diseases.
The BRB insulates the retina from circulating immune cells
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within the capillaries, and it is the first-tier defense strategy
to maintain the retina as an immune-privileged site.[13]

Under certain circumstances, the BRB may be impaired,
which results in the initiation and development of retinal
diseases [Figure 2]. BRB impairment may be caused by
direct injury or as a secondary response following defect/
injury to retinal neurons or glia. External infections and
trauma may directly damage the BRB.[5,14] These two
extreme conditions cause circulating components, includ-
ing exogenous antigens and leukocytes, to enter the retina
and activate the innate immune response, which may
further initiate adaptive immune responses to pathogen or
self-antigen exposure, and cause excessive retinal inflam-
matory injury. Pathology related to the advanced stage
of systemic diseases, such as diabetes and hypertension,
also impairs the iBRB via direct injury to the retinal
microvascular endothelial cells,[15,16] which leads to retinal
inflammation.

Aging is an important and independent risk factor for BRB
breakdown.[13,17] During the aging process, the retina
undergoes some pathophysiological changes primarily due
to increased oxidative stress.[18] The number of retinal
neurons, including rods, cones, and RPE cells, decreases
significantly due to aging-related cell apoptosis. Normally,
these apoptotic cells are cleared by resident phagocytes
within the retina without pathological immune conse-
quences. Microglia and other types of innate immune cells
residing in the retina sense stress and initiate a mild
inflammatory response (para-inflammation), which is
essential for maintaining retinal homeostasis. However,
if accumulated oxidative stress products or apoptotic cells
are too many to be cleared in a timely manner, then classic
inflammatory pathology may occur.

Various neuroimmune regulatory signals from neurons
regulated microglial activation.[19,20] Abnormal neuron
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Figure 2: Blood-retinal barrier impairment initiates and propagates retinal inflammation. APC: Antigen-presenting cell; BRB: Blood-retinal barrier.
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death with aging may initiate microglial activation and
lead to the excessive secretion of pro-inflammatory
cytokines, which may further exacerbate neuroinflamma-
tion and neuron loss. This vicious cycle may undermine
vascular endothelial cells, followed by the release of more
pro-inflammatory cytokines. Once the iBRB is impaired
from massive endothelium loss, circulating leukocytes
infiltrate into the retina and reach a stage of inflammatory
pathology that is beyond a self-limiting recovery. Aging is
also associated with an increased interaction between
leukocytes and endothelia and causes impairment to the
integrity of TJs.[21] Acute inflammation may breach the
BRB within a significantly short period, but BRB
impairment occurs insidiously over a notably long period
during aging. When para-inflammation develops into
chronic and consistent inflammation, age-related retinal
diseases, such as glaucoma and AMD, may occur.[17,22]

BRB Breakdown: The Initiation and Development of Retinal
Diseases

Clinically, ophthalmologists diagnose and treat each
retinal disease according to the anomaly that manifests
in the ocular fundus. Clinical signs, such as retinal hard
exudation, edema, and hemorrhage, reflect BRB im-
pairment of different severities. Basic research on retinal
diseases, specifically uveitis, AMD, and DR, demonstrated
2588
that the presence of BRB alternations at an early disease
stage, which is critical for all inflammatory expansion,
promoted neuron injury. There is no way for circulating
immune and inflammatory cells to enter the retina in the
absence of BRB impairment. Therefore, no exacerbation of
initial retinal injury and no clinical manifestations develop.

Circulating immune T cells were involved in the prolonged
phase of retinal ganglion cell (RGC) degeneration in a
transient high intraocular pressure (IOP) glaucoma mouse
model.[23] Microglia are essential for T-cell infiltration,[6]

and theoretically, BRB impairment is a prerequisite for T-
cell entry into the retina. It is important to examine and
clarify the time course and association between microglial
activation, BRB impairment, and immuno-inflammatory
cell infiltration in primary open-angle glaucoma (POAG).
However, studies examining the presence of a BRB
alteration in a special type of POAG, normal-tension
glaucoma, have not been conducted yet. Therefore,
knowledge of other retinal diseases may help us gain
insights for further clinical and basic research on different
sub-types of POAG.
Infectious uveitis and autoimmune uveitis

Uveitis is a complex group of diseases with multiple
etiologies, including infection, autoimmunity, and various
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physical and chemical injuries. Uveitis is categorized by
anatomical location and includes several sub-types:
anterior uveitis, intermediate uveitis, posterior uveitis,
and panuveitis. BRB impairment is commonly observed in
posterior uveitis due to infection or autoimmunity.

A significant number of studies demonstrated that
infectious agents, including viruses,[24,25] parasites,[5,26]

and bacteria,[27,28] caused posterior uveitis and damaged
the BRB, specifically the oBRB. An in vitro oBRB model
using a human RPE cell line showed that exposure to
human immunodeficiency virus 1 increased the permeabil-
ity of RPE monolayers due to the decreased expression of
several TJ proteins, including ZO-1, occludin, and claudin,
rather than influencing cellular viability. Disruption of
intercellular TJs caused oBRB breakdown and further
facilitated additional bacterial entry into the retina.[24] The
most common parasitic infection that causes posterior
uveitis is Toxoplasma gondii.[29] Monocytes are carriers of
tachyzoites, and infected monocytes cross the choroidal
vessels to the oBRB. The infiltrated monocytes disrupt the
TJs, which leads to increased permeability of the oBRB.[5]

Data from an in vivo mouse model injected with
endogenous Staphylococcus aureus (S. aureus) and an in
vitro RPE monolayer model inoculated with S. aureus
demonstrated that the bacteria may alter TJs of the oBRB
and directly cause endophthalmitis via the impaired
barrier.[27] Other bacteria, such as Candida albicans,
increase adhesion with retinal vascular endothelial cells
and access the neural retina via transcytosis.[30,31]

Notably, previous studies based on in vitro oBRB models
neglect the roles of Bruch’s membrane and choroid. Viral-
induced alterations of the oBRB may be more complicated
in humans than the simplified process in an in vitro
experiment setting. Therefore, three-dimensional models
integrating RPE, Bruch’s membrane, and choroid may be
necessary to provide a better research methodology.

Autoimmune uveitis is an important cause of blindness.
Several studies showed that the development of autoim-
mune uveitis was closely associated with BRB break-
down.[32,33] The BRB provides the retina an immune-
privileged environment. However, exposure of autoanti-
gens inside the eye, such as retinal S-antigen/arrestin and
interphotoreceptor retinoid-binding protein (IRBP),[34]may
trigger an uncontrolled, dysregulated immune response
under certain conditions. A murine model of experimental
autoimmune uveitis (EAU) induced by systemic immuniza-
tion with IRBP and additional adjuvants showed that
autoreactive CD4+ T cells in local lymph nodes and spleen
were cloned and polarized into pathogenic T helper (Th) 1
and Th17 cells. Although the dominant antigen-presenting
cell (APC) population in the retina during the early stages of
EAU is unclear, activation of microglia is indispensable for
the infiltration of circulating immune cells into the retina
through the impaired BRB, which initiates inflammation in
EAU.[6] After immune cells transmigrate out of the retinal
blood vessels, antigen-specific T cells interact with local
APCs and trigger the subsequent wide-scale inflammatory
response. Pro-inflammatory cytokines, such as tumor
necrosis factor (TNF) and interleukin-1b (IL-1b), produced
by activated T cells and the continuous infiltration of
leukocytes further damage endothelial TJs and the iBRB.[35]
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Cell surface proteins of RPEs that are important for cell
adhesion, transportation, and cell communication, includ-
ing synaptotagmin 1, basigin, and collectrin, respectively,
were significantly decreased on RPEs harvested from horse
models with EAU.[36] These data support the idea that the
oBRBmay also be altered during early autoimmune uveitis.

In summary, infectious uveitis may directly alter the oBRB
to initiate and expand inflammatory damage to the retina.
Although EAU shows that a systemic immune response
induces BRB disruption, the initial factor for BRB
disruption in human autoimmune uveitis is unclear.
BRB impairment is an essential first step in the pathogene-
sis of inflammatory retinal lesions in either scenario.
AMD

AMD is a macular disorder with a progressive loss of
central vision and irreversible visual impairment. AMD is
classified clinically into a dry form, or non-exudative
AMD, and a wet form, or exudative AMD. Dry AMD
features drusen and pathological extracellular deposit
accumulation between the RPE and the inner Bruch’s
membrane.[37] Aging and genetic, environmental, and
metabolic factors contribute to the development of AMD,
but its pathogenesis remains largely unknown.

The distinctive characteristic of wet AMD is the formation
of choroidal neovascularization. Neovascularization is the
consequence of the increased production of angiogenic
factors from RPE to compensate for the hypoxic status via
dysfunctional choriocapillaris. Neovascularizations pene-
trate the oBRB and reach the neurosensory retina.
Alternatively, neovascularization may occur after break-
down of the oBRB and the subsequent recruitment of
circulating macrophages, which secrete more vascular
endothelial growth factor (VEGF). Wet AMD may be
diagnosed using fundus fluorescein angiography/indocya-
nine green angiography to identify the leakage of neo-
vascularization or optical coherence tomography to detect
the accumulation of subretinal and/or intraretinal fluid.

The lack of positive findings on these imaging techniques in
dry AMD indicates a preserved intact oBRB. However,
several studies showed sub-clinical leakage in dry AMDvia
analysis of abundant plasma proteins in postmortemAMD
retinas from donors.[38,39] Albumin, fibrinogen, immuno-
globulin G, and complement components should not be
able to cross the BRB in theory, and the fact that these
macromolecular substances were significantly higher in
dry AMD retinas than controls indicates the presence of
BRB impairment in the early stage of dry AMD.[39] AMD is
accompanied by neuroinflammation. One possible mech-
anism is that the disruption of the retinal immune privilege,
subsequent to impairment of the BRB, leads to an excessive
activation of inflammation and immunological cascade
with subsequent neuronal injury.[40]
DR

DR is a common complication of diabetes, and it remains a
major cause of visual impairment and blindness in
working-age people.[41] DR is traditionally considered as
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a microvascular disease with signs of microaneurysms,
hemorrhages, vascular distortion, hard exudates, cotton
wool spots, intraretinal microvascular abnormalities, and
neovascularization,[42] some of which are the consequen-
ces of BRB impairment.

Emerging evidence suggests that several factors, such as
hypoxia-ischemia, oxidative stress, and inflamma-
tion,[3,43-45] together are responsible for the breakdown
of the iBRB and the oBRB during the pathogenesis of DR.
Chronic hyperglycemia triggers metabolic abnormalities.
Biochemical metabolic pathways including the polyol and
hexamine pathways, accumulation of advanced glycation
end products, activation of protein kinase C, and tissue
renin-angiotensin system have been implicated in
DR.[3,42,46] The overall effects of these disturbed metabolic
pathways increase the production of reactive oxygen
species (ROS). Under normal conditions, the antioxidant
system clears the ROS to prevent cellular damage.
However, an imbalance between oxidants and antiox-
idants was identified in DR.[47] The accumulation of ROS
exacerbates mitochondrial injury and facilitates the
production of ROS from the mitochondria.[48] This vicious
cycle further leads to oxidative stress, which affects the
metabolic status of multiple retinal cell types and results in
damage to retinal vascular endothelia. The overproduction
of ROS also stimulates inflammation via the activation of
signal transduction pathways, including nuclear factor
kappa light chain enhancer of activated B cells and
mitogen-activated protein kinase cascades. DR murine
models showed that oxidative stress and inflammation
were augmented and coordinately promoted BRB break-
down.[49] This result is consistent with the fact that the
expression of several inflammatory cytokines and growth
factors is unregulated during the development of DR.
TNF-a and IL-1b increase the expression of intercellular
adhesion molecule-1(ICAM-1) on retinal endothelial cells
and leukocytes, which recruits leukocytes to the vascular
membrane.[50] The collagenase matrix metalloproteinase 9
degrades the extracellular matrix and releases netrin-1
fragments, which augments the vascular permeability.[51]

Unregulated VEGF binds to cell-surface tyrosine kinase
receptors, which decreases the level of intercellular TJ
proteins and contributes to neovascularization.[52] The
overall effects of these molecules facilitate leukostasis, the
non-perfusion of the retinal vessels, retinal hypoxia-
ischemia, and endothelial cell death, which work together
and lead to a common end, that is, BRB impairment.

Endothelial cell damage received more attention in the
disruption of the BRB, but the roles of other injured cells
are also important. Traditionally, vascular pericyte
dropout is one of the earliest hallmarks of DR, responsible
for the early leakage of the iBRB.[53,54] A recent study
demonstrated that pericyte dropout was not a direct
causative factor of vascular leakage. Early pericyte loss did
not increase BRB permeability. Nevertheless, pericyte
dropout remains an essential factor that destabilizes retinal
vascular endothelial cells and contributes to iBRB
breakdown.[55] In patients with diabetic macular edema,
a loss of astrocytes is observed in the thinned nerve fiber
layer, which causes impairment of iBRB integrity and
increased vascular leakage.[56] Activation of microglia
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accompanied by increased inflammatory cytokines and an
excessive inflammatory response leads to vascular im-
pairment and neuronal death.[57] Because the core
structure of the iBRB is NVU, the dysfunction of pericytes
and glial cells induced by metabolic disorder in diabetes
accelerates iBRB breakdown. Photoreceptors release
inflammatory cytokines, such as IL-1a, IL-1b, IL-6, IL-
12, and TNF-a, in diabetic mice, which directly increase
the permeability of the iBRB partially via a change in
claudin expression.[58] Hyperglycemia also alters the
products of RPEs and compromises TJs between RPEs,
which affect the function of the oBRB.[59] Notably, retinal
neurodegeneration is identified in DR patients, which may
be the consequence of diabetic ischemia and microvascular
damage.[60] However, retinal neurodegeneration may
occur before clinically detectable vasculopathy. We
hypothesize that neurodegeneration is consequent to
minor impairments to the BRB. Continuous microvascular
leakage may induce a chronic neural immune-inflamma-
tory response, followed by the loss of neurons. Future
studies may develop a novel technique to tackle these
questions via examination of specific BRB damage-related
molecular targets. The current research data allow us to
conclude that a series of pathophysiological changes in
diabetes cause BRB impairment, which progresses into
clinically detectable retinopathy.
POAG

Glaucoma is a complex and multifactorial neurodegener-
ative disease that is characterized by a loss of RGCs and
their axons with typical changes in the optic nerve head,
which results in a progressive loss of visual function.[61]

POAG is the most common form of glaucoma with no
definitive etiology. Elevated IOP, aging, and abnormal
blood pressure (hypertension or hypotension) are impor-
tant risk factors,[62] but the pathophysiology of POAG is
not well understood.

Because RGCs and their axons exist in a specific retinal
microenvironment, and an intact BRB is essential for
retinal homeostasis, dysfunction of the BRB may be an
initial factor that contributes to the progressive loss of
RGCs and their axons. Clinically, some POAG patients
present with typical flame-shaped hemorrhage near the
edge of a defective nerve fiber layer and atrophy of
choriocapillaris and the RPE, which indicate a BRB
impairment that may exacerbate neuronal injury. Howev-
er, few basic research directly addressed the role of BRB
breakdown in POAG. Retinal histology showed abnormal
RPE cells, disruption of RPE continuity, increased
permeability of retinal blood vessels, leukocyte infiltration,
and an accumulation of CD3-positive T lymphocytes
around some vessels in the inner retinal layers of the canine
globes with primary glaucoma,[2] which are signs of BRB
damage. A transient high IOP glaucoma mouse model
demonstrated that T cells engaged in progressive ganglion
cell death.[23] BRB impairment is a prerequisite for T-cell
infiltration into the retina, and we must examine and
clarify the time course and association between glial
activation, BRB impairment, and immuno-inflammatory
cell infiltration in POAG. One study used an acute short-
term ocular hypertension (OHT) mouse model and
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showed that the tightness of the retinal vascular endothe-
lium was unaltered during the entire course of experiment
despite a time-dependent RGC loss, narrowing of the
capillary plexus, microglial activation, and decrease of
microvascular pericyte coverage.[63] This finding is largely
consistent with the concept that a sudden pericyte dropout
does not significantly disturb the BRB.[55] Although the
OHT model does not investigate the presence of BRB
breakdown, glaucomatous neurodegeneration in humans
is generally a long-term course, and the aging population is
a primary patient group. Taken together, BRB dysfunction
may occur in the very early stages of POAG. However, this
area remains a virgin territory for subsequent study.

The retina is an extension of the central nervous system
(CNS), and the iBRB resembles the BBB. Aging is a
strong risk factor for the development of CNS degenera-
tion and POAG. Therefore, it is reasonable to hypothesize
that some insights would be gained from knowledge
on the pathogenetic mechanisms of CNS degenerative
diseases.

Recent evidence of BBB impairment was identified in
naturally aged mice and humans. Dysfunction in the NVU
and consequent albumin extravasation triggered the
transforming growth factor-b signaling cascade in astro-
cytes, which caused an abnormal function of neurons.[64]

Circulating immune cell migration through an impaired
BBB together with glial activation contributes to the
progression of Alzheimer’s disease (AD).[65] Similarly, we
hypothesize that iBRB dysfunction and secondary neuro-
inflammatory damage occur in POAG patients despite the
absence of significantly elevated IOP. Vascular endothelial
loss and deterioration of the iBRBwere reported during the
natural course of human aging.[66] However, age-related
barrier (eg, the BBB and BRB) breakdown alone may not
be adequate to cause neurodegenerative diseases, including
AD and POAG.

The integration of all known knowledge on the patho-
genesis of POAG, other retinal diseases, and CNS
neurodegenerative diseases allows us to introduce some
theoretical hypotheses for further discussion and inves-
tigations: (1) significantly or relatively elevated IOP may
cause RGC loss and retinal vascular injury due to
ischemia-reperfusion; (2) massive physiological loss of
RGCs and their axons during the aging process may be
responsible for the excessive activation of retina-resident
microglia and other innate immune cells, which leads to
the production of pro-inflammatory cytokines, upregu-
lation of vascular permeability, and impairment of the
integrity of the iBRB; and (3) the antigens from CNS, the
retina or circulating system may activate the immune
system and cause circulating immune cells to infiltrate into
the retina and damage the BRB, which disrupts retinal
immune privilege and induces gradual RGC loss. Because
the BRB plays a pivotal role in the initiation and
amplification of neuroinflammation within the retina, it
is definitively worthwhile to investigate whether BRB
impairment is present in early stage of POAG. BRB
breakdown, due to elevated IOP or other unknown
etiologies, may provide us with a novel window to clearly
understand the pathogenesis of POAG.
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Barriers We Should Investigate and Understand in More
Details

Although previous studies demonstrated the presence of
BRB impairment in various retinal diseases, their exact
mechanisms are not completely clarified. There are still
several questions that need to be answered: (1) Is
impairment of BRB the cause or consequence of retinal
inflammation? (2) Is BRB impairment an early manifesta-
tion or an advanced injury in retinal diseases? (3) As an
immune-privileged site, what triggers autoimmune retinal
inflammation? (4)What is the exact mechanism underlying
progressive RGC loss in glaucoma, even if IOP is effectively
controlled or constantly in the normal range? (5) What
exact role do glia play in iBRB breakdown? We will need
comprehensive clinical and basic research to answer these
questions. The latest developments in neuroscience and
immunological investigations on CNS neurodegeneration
will help shed light on retinal exploration.

Some recent studies demonstrated that the gastrointestinal
microbiome modulated the development of CNS[67] and
immune system,[68] and it played an important role in
immune-mediated diseases, such as CNS degenera-
tion[69,70] and some retinal diseases.[23,71] Some important
barriers exist in physiological conditions, including the
BBB, BRB, intestinal epithelial barrier (IEB), and gut-
vascular barrier in the human body,[72] which protect the
brain, retina, and intestine from harmful gut microbial
cometabolites, thereby preventing or limiting the develop-
ment of pathological immune responses. Intact microbiota
contribute to the maturing process of the BBB and regulate
the morphology and function of microglia,[73,74] and germ-
free (GF) mice exhibit a leaky BBB, which indicates the
essential role of intact microbiota.[73] Short-chain fatty
acids produced by microbiota help maintain the integrity
of the IEB.[75] Therefore, perturbed components of the
microbiota may be involved in abnormal barrier perme-
ability, which triggers systemic inflammatory processes via
the translocation of gut-derived immune stimuli, such as
microbe-associated molecular patterns and damage-asso-
ciated molecular patterns. The BBB and BRB are two
important bridges for these stimuli to enter the brain or the
eye. Several recent studies showed that microbial dysbiosis
increased barrier permeability and systemic inflammation,
which promoted AD pathology via a neuroimmune-
specific response.[76,77] A microbe-induced neuroimmune
response was also found in glaucoma. A recent compre-
hensive study using a transient high IOP glaucoma mouse
model in immunodeficient mice andGFmice demonstrated
that T-cell responses partially mediated glaucomatous
neurodegeneration. Exposure to commensal microflora-
derived heat shock proteins (HSPs) sensitizes T cells, and
memory T cells infiltrate into the retina and may be
activated by host HSPs via molecular mimicry.[23]

Although BRB breakdown was not investigated in this
study, the permeability of the BRB must have been pre-
compromised to allow T-cell migration into the retina.
Similar findings were demonstrated in a novel mouse
model of spontaneous uveitis, which showed that retina-
specific T cells were activated by gut commensal micro-
biota antigen via autoreactive T-cell receptor.[78] Taken
together, we can reasonably hypothesize that intestinal
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microorganisms are closely associated with several retinal
diseases via the pivotal gate of the BRB. The role of
gastrointestinal microbes in glaucoma is a nascent field,
but existent data on the microbiome and CNSmay provide
us with valuable insights.
Conclusion and Perspective

The BRB plays a significant role in maintaining retinal
homeostasis, and BRB impairment is pivotal in the
initiation and development of several retinal diseases.
An impaired BRB may serve as a gateway for macromo-
lecular substances, such as leukocytes and microbes, to
migrate from the blood circulation into the retina, which
results in disruption of retinal immune privilege and
expansion of retinal inflammation. Alterations of the BRB
were identified in various retinal diseases, including
inflammatory retinal diseases, AMD, DR, and POAG.
However, the importance of the BRB as a common pivotal
point in retinal diseases has been relatively underestimated,
specifically in POAG. Based on data from other retinal
diseases, CNS degeneration, and related glaucomatous
research, BRB impairment in POAG is likely an essential
step in pathogenesis and a prerequisite to exacerbated
neuroinflammation and the progressive loss of RGCs and
their axons.
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