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Abstract: Infrared image simulation is challenging because it is complex to model. To estimate
the corresponding infrared image directly from the visible light image, we propose a three-level
refined light-weight generative adversarial network with cascaded guidance (V2T-GAN), which can
improve the accuracy of the infrared simulation image. V2T-GAN is guided by cascading auxiliary
tasks and auxiliary information: the first-level adversarial network uses semantic segmentation as
an auxiliary task, focusing on the structural information of the infrared image; the second-level
adversarial network uses the grayscale inverted visible image as the auxiliary task to supplement the
texture details of the infrared image; the third-level network obtains a sharp and accurate edge by
adding auxiliary information of the edge image and a displacement network. Experiments on the
public dataset Multispectral Pedestrian Dataset demonstrate that the structure and texture features of
the infrared simulation image obtained by V2T-GAN are correct, and outperform the state-of-the-art
methods in objective metrics and subjective visualization effects.

Keywords: image domain translation; infrared image simulation; generative adversarial network

1. Introduction

Infrared images are widely used in military, medical, industrial and agricultural fields,
and are generally obtained by shooting target scenes with an infrared thermal imager.
However, in some special environments, the amount of image data that can be obtained
by an infrared thermal imager is relatively insufficient, and the equipment is expensive.
These problems limit the acquisition of infrared image data. Therefore, related research on
infrared image simulation has been progressing.

The traditional infrared simulation approach can be divided into two types: infrared
image simulation based on three-dimensional modeling and infrared image simulation
based on visible light image. The first method uses three-dimensional modeling of the scene,
and then simulates according to infrared radiation characteristics [1–3], without the need
for real visible light images. The disadvantage is that the overall process is complicated,
and the texture of the simulation result is unnatural. Furthermore, because it only targets
a single scene, the generalization performance of the model is poor. The second method
requires real visible light images, which is a simpler and more convenient method than
the previous one, but it also has the disadvantages of low simulation accuracy and poor
generalization ability. In view of the above problems, we aim to provide a more convenient,
accurate and robust infrared simulation approach.

Infrared image simulation based on visible light image is a pixel-level image conver-
sion task, which can predict and simulate corresponding infrared images through visible
light images. Recently, the pixel-level image conversion task based on the deep learning
method has achieved great success, and the algorithm is relatively simple and convenient.
Common pixel-level image conversion tasks include monocular depth estimation [4,5],
semantic segmentation [6,7], optical flow estimation [8], image style conversion [9], etc.
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Among them, the first three tasks require high accuracy, and are generally implemented
by convolutional neural networks (CNN). Due to the constraint of the objective function,
although the methods based on CNN can obtain better results in the objective metrics,
the predicted result map generally has the problem of blurred edges and texture loss. In
order to solve this problem, some studies have used conditional generative adversarial
network (cGAN) to achieve such tasks [9,10]. The generated image of the cGAN have a
natural image texture, clear edges, and better visualization. Based on these observations,
we use cGAN to achieve the conversion of a visible light image to the corresponding
infrared image.

The visible light image and the infrared image have similar structural information,
semantic information and edge information, and the grayscale inverted visible (GIV) im-age
have a high degree of similarity with the infrared image in visualization and texture details.
The GAN designed in this paper uses semantic segmentation images and GIV images as
auxiliary tasks, and visible light edge images as auxiliary information, which can realize the
conversion of a visible light image to infrared image end-to-end. To improve the efficiency
of the algorithm, a variety of light-weight convolutions are used to reduce the amount of
overall network parameters.

The contributions of this paper consist of three aspects. First, a three-level refined
light-weight GAN with cascaded guidance (V2T-GAN) is proposed. It aims at converting a
visible light image to infrared image end-to-end. Second, a three-level network framework
for cascading guidance through auxiliary tasks and auxiliary information is proposed.
The first-level network of V2T-GAN uses a semantic segmentation image as an auxiliary
task to generate a coarse infrared image with a relatively correct structure; the second-
level network uses the GIV image as an auxiliary task to supplement the detailed texture
information of the infrared image; and the third-level network adds auxiliary information
of the edge image and displacement field to obtain a clear and accurate edge. Third,
extensive experiments were carried out on the public dataset Multispectral Pedestrian
Dataset (MPD) [11], which clearly demonstrate the effectiveness of the proposed V2T-GAN.

The rest of this study is organized as follows. In Section 2, we discuss the related
work on infrared image simulation. In Section 3, we introduce the proposed method in
detail. In Section 4, we present the main experiments. In Section 5, we conclude with a
brief summary and mention future work.

2. Related Work
2.1. Infrared Image Simulation

The traditional method of infrared simulation based on visible light image is generally
divided into two stages: in the first stage, the visible light image needs to be segmented; and
in the second stage, the gray-scale mapping relationship between the visible light image
and infrared of different objects is established, and then the infrared image is simulated
from the segmented visible light image. Zhou et al. [12] used the threshold method to
segment the image, and combined the reflectivity of the ground object to establish the
gray-scale mapping relationship, so as to obtain the simulated image. Li et al. [13] achieved
image segmentation through a pulse-coupled neural network, after artificially calibrating
the material to obtain simulation results through radiation calculation. Infrared imaging
systems and visible light imaging systems are both complex and affected by multiple
variables. This feature makes it difficult to express the mapping relationship between
visible light images and infrared images with a unified formula. Therefore, the model
generalization ability of this type of method is poor, and the simulation result lacks natural
image texture information.

2.2. Pixel-Level Image Conversion Tasks

Image conversion tasks include image style conversion, image perspective conversion,
depth estimation, optical flow estimation, semantic segmentation and so on. Generating
a corresponding infrared image from a visible light image can be regarded as a mapping
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from the visible light image domain to the infrared image domain, which is a kind of
image domain conversion task. In recent years, deep learning methods have achieved good
research results in image domain conversion tasks, such as monocular depth estimation
and image style conversion. In [4], Eigen et al. first used an end-to-end CNN to predict the
depth map. In further works, some people introduced concepts such as an attention
mechanism and continuous conditional random field to improve the performance of
the algorithm [14–16], whereas some achieved better results by optimizing the network
structure [5]. In addition, there is also the use of multi-task [8,17–19] learning methods to
obtain auxiliary information.

2.3. Conditional Generative Adversarial Network

Unlike the image depth estimation task, the conversion from visible light to infrared
requires better objective evaluation results, as well as better visual effects. Constrained
by the objective function, although the CNN method in the image depth estimation task
has obtained good results in objective evaluation indicators, the output image is relatively
blurry and loses many texture details. In the field of deep learning, the cGAN derived from
the GAN [20] has excellent performance in the image domain conversion task [9,20–24],
and the visual effect of the output image is better.

2.4. Lightweight Network

Various computer vision tasks implemented through deep learning have shortcomings,
such as high network model redundancy and complex calculations. With the development
of deep learning, the lightweight and high-efficiency of the network models has become
more and more important. Currently, lightweight and efficient network structures are
mostly used in tasks such as image classification, object detection and semantic segmenta-
tion. Moreover, most lightweight network models use lightweight convolution instead of
standard convolution to build network structures. Zhang et al. [25] proposed ShuffleNet
with efficient computing power to realize image classification. In [26], Krizhevsky et al. pro-
posed group convolution (GConv) and constructed a network model that includes group
convolution, which has fewer network model parameters and higher accuracy than Shuf-
fleNet. MobileNetV2 [27] included Depthwise Separable Convolution (DSConv), which is
a lightweight network model that can be applied to mobile architectures. Mehta et al. [28]
proposed depthwise dilated separable convolution (DDSConv) and used it to construct
the network ESPNetv2, which has high computational efficiency and has a large receptive
field. Haase et al. [29] analyzed the depth separable convolution and improved it to obtain
the blueprint separable convolution (BSConv). Han et al. [30] proposed the Ghost mod-
ule, which can effectively reduce the redundancy of feature maps through simple linear
operations, thereby greatly improving network computing efficiency.

3. V2T-GAN

In order to achieve the conversion from a visible light image to infrared image, we
propose a three-level refined light-weight GAN with cascaded guidance. As shown in
Figure 1, V2T-GAN is a three-level cascaded network. The first-level network uses semantic
segmentation images as an auxiliary task to guide G1 to learn infrared images with more
accurate structural information; the second-level network uses GIV images as an auxiliary
task to guide G2 to learn more accurate infrared images with detailed textures; and the third-
level network uses visible light edge images as auxiliary information to further optimize
the predicted infrared images. Gd predicts the displacement offset map of the second-level
network’s output image T2 in the x and y directions, and then resamples T2 according to
the displacement offset information to obtain the final infrared image T3.
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3.1. First-Level Network

The first-level network uses semantic segmentation images as auxiliary tasks to guide
the first-level target task generative network to predict infrared images with more correct
structure information. As shown in Figure 1, the blue part is the first-level network,
including a target task generator G1, a discriminator D1 and an auxiliary task network
Gs. G1 estimates the corresponding infrared image T1 from the visible light image, and
D1 is responsible for identifying the authenticity of the predicted infrared image T1 and
the target infrared image Ttrue. Then, Gs estimates the semantic segmentation image from
T1, and guides G1 to pay more attention to the structure information by predicting the
semantic segmentation image, thereby predicting the infrared image with more correct
structure information.

The network structure of G1 and Gs is the generator U-net [31] in pix2pix [9], and the
network structure of D1 is the discriminator in pix2pix. To reduce the overall parameter
amount of the network, we adjust the initial output channel number of Gs to 4; that is, the
number of all the feature map channels in the network is 1/16 of the original U-net. In order
to improve the calculation efficiency of the overall algorithm, this paper generally uses
lightweight convolutions in the network, such as GConv, DSConv, BSConv, Ghost module,
etc. In V2T-GAN, G1 has the largest overall network parameters, and its lightweight
operation has the greatest impact on the overall network. Therefore, we analyzed and
compared the different lightweight methods of G1, and finally adopted GConv, and the
standard convolution of G1, Gs and D1 are all replaced by GConv with a group number
of 4.

There have been many research studies on lightweight convolutions, and the methods
applied in this paper will be introduced below.

The specific implementation of GConv is divided into three steps:

• GConv divides the input channels into even and non-overlapping groups according
to the grouping number g;

• Perform standard convolution independently on each group that has been divided;
• Concat the results of the standard convolution in the dimension of the channel.

Depthwise Convolution (DConv) [32] is a special type of GConv. The number of
groups and output channels are the same as the number of input channels. The DSConv
consists of two steps:

• The first step is to perform DConv;
• Use standard convolution with a 1 × 1 convolution kernel to adjust the number of

output channels.

The BSConv is also divided into two steps:

• First perform standard convolution with a 1 × 1 convolution kernel to adjust the
number of output channels;

• Use DConv.
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The GhostModule is divided into three steps:

• Perform standard convolution with a 1 × 1 convolution kernel. The number of output
channels in this step is: C1 = [Cin/r], where C1 is the number of output channels in the
first step, Cin is the number of input channels, and r represents the manually set rate;

• Use GConv on the output result of the first step, the number of groups is the number
of output channels in the first step (that is, equal to C1), the number of output channels
in this step is: C1 × (r − 1);

• Concatenate the output result of the first step and the second step to get the final result.

3.2. Second-Level Network

The second-level network further optimizes the infrared image output by the first-level
network, and uses the GIV images as an auxiliary task to guide the second-level target task
generative network to predict infrared images with more accurate details and textures. The
network structure is shown in the purple part of Figure 1, including a target task generator
G2, a discriminator D2 and an auxiliary task network Gg. The input of G2 is concatenated
with the predicted infrared image T1 of the first-level network, the output feature map of
the penultimate layer of G1 and the GIV image Ig, and finally the predicted infrared image
T2 is output. D2 has the same structure and function as D1, which used to discriminate
the predicted infrared image T2 and the target infrared image Ttrue. Gg estimates the GIV
image from T2, and guides G2 to further optimize the predicted infrared image.

In the case of good lighting, visible light images have more detailed texture informa-
tion than infrared images. GIV images also have rich detailed texture information, and
compared with visible light images, it has a high similarity with infrared images in terms of
human visual effects and some objective metrics, such as FID [33], LIPIS [34], etc. Therefore,
we adopt the GIV image as the auxiliary task of the second-level network to guide G2 to
further optimize the detailed texture information of the predicted infrared image.

3.2.1. Target Task Generator G2

An illustration of the second-level target task generator G2 is depicted in Figure 2,
consisting of an MFM module [28], four L-FMR modules that add skip connection and a
Ghost module. The MFM module is shown in Figure 3. In order to obtain the information of
multiple receptive fields, the input is respectively passed through four dilated convolutions
with a convolution kernel size of 3 × 3 and a dilation rate of 1, 2, 3 and 4. The output of the
dilated convolution with different dilation rates are added and fused, and then the added
results are concatenated. The input and output of G2 are similar. To increase the direct
mapping between input and output, the input is added to the final concatenated result
after a pointwise convolution. The L-FMR module is improved from the FMRB [35], which
is a network module for image deblurring tasks. It has been verified that FRMB can learn
and restore the detailed texture information of the image. In order to reduce the amount
of overall network parameters, we replace all the standard convolutions in FMRB with a
Ghost module with a rate of 4, which is the L-FMR module in Figure 2.
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3.2.2. Second-Level Auxiliary Task Network Gg

In order to better guide G2 to learn the detailed texture information and obtain the
predicted infrared image T2 with rich detailed texture, Gg only needs to pay attention
to the details of T2. Therefore, the receptive field of Gg should be smaller. The network
structure of Gg is shown in Figure 4. The upper part is the overall network structure of
Gg, which contains four blocks, and the number in the middle represents the number of
channels. The lower part represents the specific network structure of each block: it contains
three cascaded Ghost modules, the number is the size of the convolution kernel and the
convolution step length is 1. This kind of network structure makes the overall network
receptive field size of Gg only 5 × 5, and the parameter quantity is extremely small.
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3.3. Thrid-Level Network

To further optimize the predicted infrared image and obtain a clear edge, the third-
level network adds the edge image of visible light as auxiliary information. At the same
time, inspired by [36], we learn the position offset information to further obtain infrared
images with sharper and more accurate edges. As shown in the green part of Figure 1, the
third level has just one displacement network, Gd. The input of Gd is concatenated with the
predicted infrared image T2 of the second level network and the edge image of the visible
light image. The output is the positional offset map of the input image in the row direction
and the column direction. Then, the input image T2 is resampled from the two position
offset maps to obtain the final predicted infrared image T3.
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The overall network structure of Gd is shown in Figure 5a, using a codec network
structure, and the encoding end includes four down-sampling residual blocks (D-Res).
The specific network structure of D-Res is shown in Figure 5b. The input goes through
two standard convolutions with 3 × 3 convolution kernels, and then through a bilinear
interpolation down-sampling to compress the resolution of the feature map twice. Finally,
the skip connection of the convolution with a convolution kernel of 4 × 4 and step size
of 2 is added to the down-sampling result. The network structure of the decoding end
is symmetrical to the encoding end, including four up-sampling residual blocks (U-Res).
The specific network structure of U-Res is shown in Figure 5c. The input goes through
two standard convolutions with 3 × 3 convolution kernels, and then through a bilinear
interpolation up-sampling to double the resolution of the feature map. Finally, the decon-
volution skip connection with a convolution kernel of 4 × 4 and step size of 2 is added to
the up-sampling result.
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In this paper, according to the row direction position offset map, IRow, and the column
direction position offset map, ICol, predicted by Gd, the second-level output result T2 is
resampled to obtain the final predicted infrared image, T3. The resampling process is
defined as Equation (1). T3 (x, y) represents the gray value of the third-level network output
image at the position (x, y); and T2 (x, y) represents the gray value of the second-level
network output image at position (x, y). Row (x, y) and Col (x, y) denote the position offset
in the row and column direction.

T3(x, y) = T2(x + Row(x, y), y + Col(x, y)), (1)

3.4. Loss Function

The three-level network in this paper is jointly trained in an end-to-end manner. The
gradient descent of the discriminator and the generator is performed alternately; we first
fix the parameters of D1 and D2, train G1, Gs, G2, Gg and Gd, and then fix G1, Gs, G2, Gg
and Gd, and train D1 and D2. The overall loss function Lfinal uses a minimum–maximum
training strategy, and the expression is as follows:

min
{G1,Gs ,G2,Gg}

max
{D1,D2}

L f inal = LGAN + Lpixel , (2)
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LGAN is the sum of adversarial loss functions, and Lpixel is the sum of pixel-level loss
functions. LGAN includes the first-level adversarial loss, LGAN1, and the second-level
adversarial loss, LGAN2. The expression is as follows:

LGAN = LGAN1 + 10× LGAN2. (3)

The first-level discriminator D1 is used to distinguish the synthetic image pair [Irgb,
T1] and the real image pair [Irgb, Ttrue]. The loss function adopts the combination of cross
entropy, which is expressed as

LGAN1 = EIrgb ,Ttrue

[
logD(Irgb, Ttrue

)]
+EIrgb ,T1

[
log(1−D( Irgb, T1))

] (4)

The second-level discriminator D2 is used to distinguish the synthetic image pair
[Irgb, T2] and the real image pair [Irgb, Ttrue], expressed as

LGAN2 = EIrgb ,Ttrue

[
logD(Irgb, Ttrue

)]
+EIrgb ,T2

[
log(1−D( Irgb, T2))

] (5)

The total pixel-level loss function Lpixel includes the L1 loss function LG1 and LGs of
the first-level generative network G1 and Gs; the L1 loss function, LG2 and LGg, of the
second-level generative network, G2 and Gg; the gradient loss function Lg_G2, which is
more sensitive to texture; and the L1 loss function LGd after resampling. The expression is
defined as follows:

Lpixel = λ1LG1 + λ2LGs + λ3LG2
+λ4LGg + λ5Lg_G2 + λ6LGd

(6)

λ is a hyperparameter, which represents the weight of each loss function. G1, G2 and Gd are
the target task networks with the highest weights; the networks Gs and Gg are responsible
for auxiliary tasks and have lower weights; the gradient loss function is used to increase
the network’s ability to perceive edges, with the smallest weights. After experiments, we
finally set λ from 1 to 6 as 100, 5, 200, 10, 0.5 and 100, respectively. The L1 loss function
represents the average absolute error, expressed as

L1 =
1
N

N

∑
i=1

∣∣yi − y∗i
∣∣, (7)

where i is the pixel index, N is the total number of all pixels in an image, and yi and y∗i ,
respectively, represent the real and predicted gray value at pixel i. The expression of the
gradient loss function Lg_G2 is as follows:

Lg_G2 =
1

2N

2N

∑
i=1

(∣∣∇hyi −∇hŷi
∣∣+ ∣∣∇vyi −∇vŷi

∣∣), (8)

∇hŷi and ∇hyi represent the gradient value in the horizontal direction at pixel i of the
target infrared image Ttrue and the infrared simulation image respectively.

4. Experiments
4.1. Experimental Details and Evaluation Metrics
4.1.1. Dataset

We performed the experiments on MPD [11], which consists of image pairs for visible
light images and corresponding infrared images with a resolution of 640 × 512. The
training set and test set contain 50,187 and 45,141 image pairs, respectively. Both the
training set and the test set involve three scenes—campus, street and suburbs—and each



Sensors 2022, 22, 2119 9 of 16

scene contains images taken during the day and night. We select image pairs in the daytime
as the training set of the network, and the training set size consisted of 33,399 image pairs.
Correspondingly, we randomly select 565 image pairs from the daytime image pairs in the
MPD test set as the test set of the network. We resize the image resolution to 256 × 256
through bilinear interpolation down-sampling.

Predicting the semantic segmentation image and gray-scale inversion image of visible
light is the auxiliary task of this network. The gray-scale inversion image is obtained
by converting the visible light image from a color image to a gray-scale image and then
performing the gray-scale value inversion operation. Semantic segmentation images can
be predicted by feeding visible light images into a model trained by Refinenet [37] on
Cityscapes. Cityscapes is a large dataset mainly used for semantic segmentation. The main
scene is outdoor streets, similar to MPD. The edge image of the visible light is the auxiliary
information in the third-level network, which is extracted by the Canny operator with the
upper and lower thresholds set to 60 and 120, respectively.

4.1.2. Evaluation Metrics

In the previous work of the image domain conversion task, there are some recognized
evaluation metrics to evaluate the similarity between the network predicted image and the
real target image. We used the mean absolute relative error (Rel), mean log10 error (Log10),
root mean squared error (Rms) and accuracy index (δ < 1.25i, i = 1, 2, 3). The calculation
expressions of each metrics are as follows:

Rel =
1
|N|∑

N
i=1

∣∣yi − y∗i
∣∣/y∗i , (9)

Log10 =
1
|N|∑

N
i=1

∣∣lgyi − lgy∗i
∣∣, (10)

Rms =

√
1
|N|∑

N
i=1 ‖yi − y∗i ‖

2, (11)

δ = max(
yi
y∗i

,
y∗i
yi

) < thr, (12)

where i is the pixel index, and N is the total number of pixels in an infrared image. yi
and y∗i respectively, represent the gray value of the target image and the gray value of the
predicted image at pixel i. We also employed pixel-level similarity metrics to evaluate our
method, i.e., Structural-Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR). PSNR
and SSIM, as evaluation metrics for image deblurring and super-resolution, can better
reflect the similarity of the two images.

4.1.3. Training Setup

Our method was implemented with Pytorch using one NVIDIA GeForce RTX 2080 Ti
GPU with 16 GB memory. We used a Gaussian distribution with a mean of 0 and a standard
deviation of 0.2 for weight initialization. We minimized the loss function using the Adam
optimizer with a momentum of 0.5 and initial learning rate of 0.0001. We set the batch size
to 4.

4.2. Results

This section compares our method with other state-of-the-art image domain conversion
methods based on generative adversarial networks. The comparison results are shown in
Table 1. Pix2pix [9] is a popular cGAN that can realize image-to-image conversion and is
suitable for all image domain conversion tasks. The input of the network is conditional
information. In this paper, the input of pix2pix is set as a visible light image, and the output
is a corresponding infrared image, without other auxiliary tasks or auxiliary information.
X-Fork [38] is a GAN that realizes cross-view image translation and requires auxiliary tasks
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of semantic segmentation. Selection-GAN [24] is also a GAN that realizes cross-view image
translation, and its network structure is a two-level GAN, where each level of the network
is guided by an auxiliary task of semantic segmentation. SEAN [39] can achieve image
fusion and conversion. The style image needs to be added as auxiliary information in
the process of converting the input image to the target image. In this paper, the semantic
segmentation image is used as input, the GIV image is used as the style image, and the
output is the predicted infrared image. LG-GAN [40] explores the generation of scenes in
the local environment, and considers the global and local context at the same time, which
can effectively deal with the generation of small objects and scene details.

Table 1. Comparison of the algorithms in objective metrics.

Methods
The Lower, The Better The Higher, The Better

Abs Rel Avg log10 RMS δ < 1.25 PSNR SSIM

Pix2pix [9] 0.248 0.107 0.906 0.571 22.431 0.985
X-Fork [38] 0.314 0.130 1.074 0.480 20.692 0.984

Selection-GAN [24] 0.284 0.112 0.958 0.554 21.976 0.982
SEAN [39] 0.293 0.114 0.966 0.564 21.804 0.983

LG-GAN [40] 0.262 0.102 0.886 0.616 22.601 0.989
Ours 0.247 0.099 0.850 0.623 22.908 0.990

As can be seen from Table 1, compared with other advanced generative adversarial
networks for image domain transformation, our algorithm achieves the best results on
various objective evaluation metrics.

The visual comparison between our method and other advanced algorithms is shown
in Figure 6. Our proposed V2T-GAN has the smallest network parameters, only 15.24 M,
and the lowest error RMS. The overall parameters of the network are about 73.35%, 73.68%,
73.83%, 94.29% and 14.03% lower than the Pix2pix, X-Fork, Selection-GAN, SEAN and
LG-GAN algorithms, respectively.
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4.3. Ablation Study

To further analyze the details of the proposed approach, ablation experiments were
conducted by investigating different configurations of the components of V2T-Net.

4.3.1. Three-Level Network Structure

To verify the effectiveness of the three-level network structure, this section compares
the experimental results of the first-level network, the two-level network and the third-level
network. The comparison results are show in Table 2. We can observe the improvement in
the three-level network structure in this table, which outperforms other structures in all
the metrics.

Table 2. Comparison of the different network structures.

Network
Structure

The Lower, The Better The Higher, The Better

Rel Avg log10 RMS δ < 1.25 PSNR SSIM

One-level 0.254 0.100 0.859 0.617 22.838 0.988
Two-level 0.254 0.099 0.853 0.619 22.872 0.990

Three-level 0.247 0.099 0.850 0.623 22.908 0.990

The predicted infrared images of the one-level and two-level networks are shown
in Figure 7. It can be seen that the results of the one-level network are relatively rough,
while the results of the two-level network are more accurate in detail and more similar to
the target image. For example, for the road signs selected in the first image, part of the
structure is missing in the result of the first-level network, and the outline of the two-level
network is more complete. The framed parts in the second image include road signs and
branches. Comparing the two results, we can observe that the detailed texture information
of the two-level network results is relatively more accurate.
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Figure 8 shows the infrared simulation images output by the two-level network and
three-level network. We can see that the visualization results of the selected area in the
yellow box after the position offset optimization are poor, mainly reflected in the blurred
image edges, unclear textures and many errors at the edges. This is because the position
offset network adopts the CNN training method; that is, it learns to convert the image
directly through the pixel-level loss function. Although the converted result performs
better on the pixel-level objective indicators, the subjective perception of the human eye is
poor. From the perspective of the local image, it can be found from the cars selected in the
second and fourth columns that the contour of the two-level network conversion result is
easier to identify and more similar to the target infrared image.
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4.3.2. Auxiliary Task

Auxiliary tasks are added to the method in this paper to improve network performance.
In this section, we compare the effects of auxiliary tasks. The auxiliary task of the first-level
network is semantic segmentation of images, and the auxiliary task of the second-level
network is the GIV images. The results of specific ablation experiments are shown in
Table 3: Structure 1, removing the two auxiliary tasks of semantic segmentation and GIV
images at the same time; that is, removing the Gs and Gg networks. Structure 2, only
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remove the GIV image, which means there is no Gg network. Structure 3, only remove
the semantic segmentation image; that is, no Gs network. Row 4 represents the complete
V2T-GAN.

Table 3. Comparison of the different auxiliary tasks.

Setup
The Lower, The Better The Higher, The Better

Rel Avg log10 RMS δ < 1.25 PSNR SSIM

−Gs, Gg 0.257 0.103 0.876 0.609 22.674 0.989
−Gg 0.255 0.102 0.870 0.611 22.678 0.989
−Gs 0.249 0.101 0.855 0.615 22.811 0.990
Ours 0.247 0.099 0.850 0.623 22.908 0.990

It can be seen from Table 3 that the our complete V2T-GAN, including semantic
segmentation and GIV image auxiliary tasks, obtains the best experimental results. The
accuracy rate δ < 1.25 is 2.30%, 1.96% and 1.30% higher than Structures 1–3, respectively.
The structure one has no auxiliary tasks, and the performance is the worst. Structure 3 is
better than the Structure 2 network in various objective metrics, indicating the GIV auxiliary
task has a greater effect than semantic segmentation.

Although the auxiliary task of semantic segmentation in Structure 2 enables the
network to learn more correct structure information, the calculation process of objective
metrics cannot add weight to the structure information. The auxiliary task of GIV image in
Structure 3 enables the network to obtain more detailed image information. Even if there
are some differences in structure, it can still ensure better metrics. This is also a limitation
of objective metrics.

4.3.3. Edge Auxiliary Information

In order to guide the third-level network to learn more clear and accurate edge
information, the input of the third-level network adds the edge image of visible light as
auxiliary information. We conducted an experimental analysis on the effectiveness of the
edge image auxiliary information, and the results are shown in Table 4. We found that
adding visible light edge images as auxiliary information can improve the objective metrics
of predicting infrared images, which means that V2T-GAN has indeed learned a sharp
edge from this auxiliary task.

Table 4. Effectiveness of the edge auxiliary information.

Methods
The Lower, The Better The Higher, The Better

Abs Rel Avg log10 RMS δ < 1.25 PSNR SSIM

−Ie 0.248 0.099 0.850 0.616 22.922 0.989
Ours 0.247 0.099 0.850 0.623 22.908 0.990

4.3.4. Lightweight Convolution

To reduce the amount of overall network parameters, we generally use lightweight
convolution in the proposed network. The two sub-networks with the largest amounts
of parameters in V2T-GAN are G1 and Gs. Therefore, this section compares the different
lighweight methods of G1 and Gs. The experimental results are shown in Table 5. BSConv,
DSConv, GhostModule and GConv, respectively, represent the replacement of the standard
convolutions in G1 and Gs with blueprint separable convolution, depthwise separable
convolution, GhostModule and group convolution. In the experiment, the grouping
number of group convolution and GhostModule were both set to 4.
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Table 5. Comparison of the different lightweight convolutions.

Methods
The Lower, The Better The Higher, The Better

Params
Abs Rel Avg log10 RMS δ < 1.25 PSNR SSIM

BSConv 0.256 0.105 0.898 0.601 22.442 0.989 5.081M
DSConv 0.259 0.108 0.916 0.593 22.257 0.989 5.126M

GhostModule 0.260 0.105 0.891 0.604 22.565 0.987 15.263M
GConv 0.247 0.099 0.850 0.623 22.908 0.990 15.235M

It can be found from Table 5 that the overall network parameters using BSConv are the
smallest, but the overall network using GConv performs best in various objective metrics.
The goal of a lightweight network for V2T-GAN is to reduce the amount of overall network
parameters, improve calculation efficiency, alleviate the problem of network overfitting
and improve conversion accuracy. In order to trade off accuracy and efficiency, we finally
use GConv in our network.

5. Conclusions

We propose a three-level refined lightweight GAN with cascaded guidance (V2T-GAN)
to address image domain conversion task on a visible light image to the corresponding
infrared simulation image. In the three-level network, semantic segmentation images, GIV
images and visible light edge images were used as input information for auxiliary tasks. The
experimental results on the MPD show that our method obtains much better results than
the state-of-the-art on the task of feature conversion from visible light to infrared images.

In the future, we would like to be able to convert from visible light to infrared images
without having to create a one-to-one mapping between the training data, as well as apply
the idea of the algorithm in this paper to other fields, such as the fusion of visible light and
infrared images and the detailed enhancement of infrared images.

Author Contributions: Conceptualization, R.J. and T.L.; methodology, R.J. and X.C.; software, T.L.;
validation, R.J., X.C. and T.L.; formal analysis, T.L.; investigation, X.C.; resources, X.C. and T.L.; data
curation, T.L.; writing—original draft preparation, X.C.; writing—review and editing, R.J. and X.C.;
visualization, T.L.; supervision, R.J.; project administration, R.J. and J.C.; funding acquisition, J.C. and
R.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by National Natural Science Fund (No.61371143), National
Key Research and Development Program Project (2020YFC0811004), Beijing Science and Technology
Innovation Service capacity-basic scientific research project (No.110052971921/002), the Science and
Technology Development Center for the Ministry of Education “Tiancheng Huizhi” Innovation and
Education Promotion Fund (No.2018A03029), Cooperative Education Project of Higher Education
Department of the Ministry of Education (No.201902083001), Science and Technology Project of
Beijing Education Commission (No.KM202110009002), Hangzhou Innovation Institute of Beihang
University (No. 2020-Y3-A-014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors thank the assistance from other people of the School of Information
Science and Technology, North China University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, S. Sea-based infrared scene interpretation by background type classification and coastal region detection for small target

detection. Sensors 2015, 15, 24487–24513. [CrossRef] [PubMed]
2. Mu, C.P.; Peng, M.S.; Dong, Q.X.; Gao, X.; Zhang, R.H. Infrared Image Simulation of Ground Maneuver Target and Scene Based

on OGRE. Appl. Mech. Mater. 2014, 716–717, 932–935. [CrossRef]

http://doi.org/10.3390/s150924487
http://www.ncbi.nlm.nih.gov/pubmed/26404308
http://doi.org/10.4028/www.scientific.net/AMM.716-717.932


Sensors 2022, 22, 2119 15 of 16

3. Yang, M.; Li, M.; Yi, Y.; Yang, Y.; Wang, Y.; Lu, Y. Infrared simulation of ship target on the sea based on OGRE. Laser Infrared 2017,
47, 53–57.

4. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. In Proceedings of
the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 3, pp. 2366–2374.

5. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper depth prediction with fully convolutional residual
networks. In Proceedings of the 2016 4th International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October
2016; pp. 239–248.

6. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1520–1528.

7. Badrinarayanan, V.; Handa, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic
Pixel-Wise Labelling. arXiv 2015, arXiv:1505.07293.

8. Yin, Z.; Shi, J. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 1983–1992.

9. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017;
pp. 5967–5976.

10. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251.

11. Hwang, S.; Park, J.; Kim, N.; Choi, Y.; Kweon, I.S. Multispectral pedestrian detection: Benchmark dataset and baseline. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 1037–1045.

12. Zhou, Q.; Bai, T.; Liu, M.; Qiu, C. Near Infrared Scene Simulation Based on Visual Image. Infrared Technol. 2015, 37, 11–15.
13. Li, M.; Xu, Z.; Xie, H.; Xing, Y. Infrared Image Generation Method and Detail Modulation Based on Visible Light Images. Infrared

Technol. 2018, 40, 34–38.
14. Wang, P.; Shen, X.; Lin, Z.; Cohen, S.; Price, B.; Yuille, A. Towards unified depth and semantic prediction from a single image. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 2800–2809.

15. Xu, D.; Ricci, E.; Ouyang, W.; Wang, X.; Sebe, N. Multi-scale continuous CRFs as sequential deep networks for monocular depth
estimation. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, 21–26 July 2017; pp. 161–169.

16. Xu, D.; Wang, W.; Tang, H.; Liu, H.; Sebe, N.; Ricci, E. Structured Attention Guided Convolutional Neural Fields for Monocular
Depth Estimation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–22 June 2018; pp. 3917–3925.

17. Qi, X.; Liao, R.; Liu, Z.; Urtasun, R.; Jia, J. GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 283–291.

18. Ranjan, A.; Jampani, V.; Balles, L.; Kim, K.; Sun, D.; Wulff, J.; Black, M.J. Competitive collaboration: Joint unsupervised learning
of depth, camera motion, optical flow and motion segmentation. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 12232–12241.

19. Jiao, J.; Cao, Y.; Song, Y.; Lau, R. Look deeper into depth: Monocular depth estimation with semantic booster and attention-driven
loss. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Volume 11219
LNCS, pp. 55–71.

20. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
21. Hu, L.; Zhang, Y. Facial Image Translation in Short-Wavelength Infrared and Visible Light Based on Generative Adversarial

Network. Guangxue Xuebao/Acta Opt. Sin. 2020, 40, 0510001. [CrossRef]
22. Ma, S.; Fu, J.; Chen, C.W.; Mei, T. DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial

Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 5657–5666.

23. Mejjati, Y.A.; Richardt, C.; Cosker, D.; Tompkin, J.; Kim, K.I. Unsupervised Attention-guided Image-to-Image Translation. In Pro-
ceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 3693–3703.

24. Tang, H.; Xu, D.; Sebe, N.; Wang, Y.; Corso, J.J.; Yan, Y. Multi-channel attention selection gan with cascaded semantic guidance
for cross-view image translation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2412–2421.

25. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 6848–6856.

26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

http://doi.org/10.3788/AOS202040.0510001


Sensors 2022, 22, 2119 16 of 16

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 4510–4520.

28. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. ESPNetv2: A light-weight, power efficient, and general purpose convolutional
neural network. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 16–20 June 2019; pp. 9182–9192.

29. Haase, D.; Amthor, M. Rethinking depthwise separable convolutions: How intra-kernel correlations lead to improved mobilenets.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020;
pp. 14588–14597.

30. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 1577–1586.

31. Ronneberger, O.; Fischer, P.; Brox, T. UNet: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

32. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

33. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a
local Nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6627–6638.

34. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 586–595.

35. Jia, R.; QIU, Z.; Cui, J.; Wang, Y. Deep multi-scale encoder-decoder convolutional network for blind deblurring. J. Comput. Appl.
2019, 9081, 2552–2557.

36. Ramamonjisoa, M.; Du, Y.; Lepetit, V. Predicting sharp and accurate occlusion boundaries in monocular depth estimation using
displacement fields. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Virtual, 14–19 June 2020; pp. 14636–14645.

37. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In
Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26
July 2017; pp. 5168–5177.

38. Regmi, K.; Borji, A. Cross-View Image Synthesis Using Conditional GANs. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3501–3510.

39. Zhu, P.; Abdal, R.; Qin, Y.; Wonka, P. SEAN: Image synthesis with semantic region-adaptive normalization. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 5103–5112.

40. Tang, H.; Xu, D.; Yan, Y.; Torr, P.H.S.; Sebe, N. Local Class-Specific and Global Image-Level Generative Adversarial Networks for
Semantic-Guided Scene Generation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Virtual, 14–19 June 2020; Volume 1, pp. 7867–7876.


	Introduction 
	Related Work 
	Infrared Image Simulation 
	Pixel-Level Image Conversion Tasks 
	Conditional Generative Adversarial Network 
	Lightweight Network 

	V2T-GAN 
	First-Level Network 
	Second-Level Network 
	Target Task Generator G2 
	Second-Level Auxiliary Task Network Gg 

	Thrid-Level Network 
	Loss Function 

	Experiments 
	Experimental Details and Evaluation Metrics 
	Dataset 
	Evaluation Metrics 
	Training Setup 

	Results 
	Ablation Study 
	Three-Level Network Structure 
	Auxiliary Task 
	Edge Auxiliary Information 
	Lightweight Convolution 


	Conclusions 
	References

