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Abstract: The effect of electric potential on the sulfide capacity of the CaO-SiO2-Al2O3 system
was evaluated by applying voltages in the range of −1.5 to 1.5 V at 1823 K in a C/CO gas
equilibrium. When the cathodic potential (−1.5 to 0 V) was applied, it was confirmed that the
sulfur partition ratio increased based on the electrochemical reaction of sulfur (S + 2e− = S2−).
However, the reversibility of the electrochemical resulfurization reaction (S2− = S + 2e−) in slag
was not established in the reverse (anodic) potential region (0–1.5 V), yet the sulfur partition ratio
increased. In particular, sulfur evaporation was observed in the anodic potential region. Therefore, in
the present study, potential anodic electro-desulfurization mechanisms based on sulfur evaporation
are proposed. To verify these mechanisms, sulfur evaporation is discussed in detail as a function of
the thermodynamic stability of sulfur in the slag.
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1. Introduction

The increasing importance of desulfurization during pyrometallurgy processes, which is attributed
to the degradation of raw materials and increased demand for highly functional steel, makes the
investigation of slag desulfurization an important endeavor.

Since Fincham and Richardson proposed a typical sulfur-refining mechanism at the slag/metal
interface of CaO-SiO2-Al2O3 [1], sulfur has been known to be present in slag as stabilized sulfide or
sulfate ions (depending on the oxygen partial pressure). Therefore, sulfur could be removed from
the slag by transforming it into sulfides and sulfates through reduction and oxidation reactions, and
controlling the oxygen partial pressure as follows:

[S] +
(
O2−

)
=

(
S2−

)
+

1
2

O2
(
pO2
< 10−5atm) (1)

[S] +
3
2

O2 + O2− =
(
SO2−

4

) (
pO2
> 10−3atm) (2)

Because the typical partial pressure of oxygen in pyrometallurgy is known to be stable in
the sulfide region, studies have been mainly conducted on the reduction refining mechanism.
For electrochemical applications, using Equation (1), the following electro-reduction desulfurization
mechanism is proposed:

[S] + 2e− =
(
S2−

)
(3)

Several kinetic studies have been conducted to enhance the chemical slag-refining capacity by
accelerating the reaction of Equation (3) through the application of a direct electrical current [2–9].
Recently, it was confirmed that desulfurization can also be enhanced through voltage application at an
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electrochemical equilibrium. In other words, the electrochemical reduction of sulfur at the slag/metal
interface based on Equation (3) is well established. Similarly, in the case of oxygen, the following
electrochemical reaction is well known at the slag/metal interface:

[O] + 2e− =
(
O2−

)
(4)

Additionally, the reversibility of the process by reversing the electric potential has been
confirmed [10].

However, in the case of Equation (3), the electrochemical behavior of sulfur when reverse
(anodic) potential is applied is still unclear. Using Equation (3), some researchers have reported that
resulfurization occurs when a reverse (anodic) current is applied [3,4]. However, the results are in
a quasi-equilibrium state and some studies on electro-slag remelting (ESR) have reported improved
desulfurization with reverse current application.

Thus, there is a lack of consensus on the electrochemical reversibility of sulfur when a reverse
current is applied; furthermore, research on the application of a reverse voltage is limited.

Therefore, this study investigated the effect of a reverse (anodic) voltage on the behavior of sulfur
and suggested possible desulfurization mechanisms based on the results.

2. Materials and Methods

The composition of the slag used in this study is shown in Table 1. The experimental materials
and techniques for electrochemical refining used in this experiment are described in detail in our
previous study [11]. After experiments, the sulfur content of the metal and slag was analyzed using
an elemental analyzer (LECO CS-844). The silicon content of the metal was measured by inductively
coupled plasma optical emission spectrometry (ICP-OES, Agilent 735). Sulfur evaporation was checked
by performing inductively coupled plasma optical emission spectrometry (ICP-OES, Agilent 735) on
the sulfur absorbed in the hydrogen peroxide solution of the outlet gas.

Table 1. Composition of CaO-SiO2-Al2O3 (CSA) melts.

CaO
(wt%)

SiO2
(wt%)

Al2O3
(wt%)

Basicity of Slag
CaO/SiO2 (C/S) Ratio

(wt%)

Initial Concentration
of Sulfur in Metal

(wt%)

CSA 1 17.6 40 42.4 0.44 0.1
CSA 2 22 32.5 45.5 0.68 0.1
CSA 3 24.8 26.4 48.8 0.94 0.1

3. Results and Discussion

3.1. Cathodic Reaction of Sulfur

As a preliminary test, we verified the validity of Equation (3) in the slag composition of the
current study. In Figure 1, the original sulfur concentration in liquid Cu is 1000 ppm. When there
was no applied external voltage, the sulfur content in liquid Cu decreased to 684 ppm, 618 ppm and
527 ppm after slag refining for CaO/SiO2 (C/S) = 0.44, 0.68 and 0.94, respectively. It can be seen that
the sulfur partition ratio increases as the voltage increases in the negative direction by the cathodic
electro-desulfurization reaction (Equation (3)). At C/S = 0.94, the minimum concentration of sulfur in
the metal was 81.2 ppm corresponding to the external voltage of −1.5 V and the sulfur partition ratio
increased about 14 times. Using the Nernst equation, the correlation between the applied voltage and
sulfur partition ratio is expressed as:

log

LE
S

LC
S

 � 2F
2.3RT

× ∆E (5)
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where ∆E is the cell potential; LS = (wt%S)/[wt%S] is the sulfur partition between the slag and the
metal; LE

S and LC
S are the sulfur partition ratios due to the cathodic potential and chemical potential,

respectively; R = 8.314 JK/mol; F = 96.486 C/mol; and T is the temperature in K.
According to Equation (5), the sulfur partition ratio increases with increasing cathodic potential.

The experimental results and the theoretical results (green dashed line in Figure 1) showed a poor
correlation; additionally, the behavior of the partition ratio changed with the basicity of the slag.
The discrepancy between the theoretical value and experimental results might be attributed to an ohmic
drop (IR drop), bulk electrolysis and the dependence on the electrical conductivity and electrochemical
properties of the slag used as the electrolyte [11]. Therefore, as the basicity of the slag increased,
the electrical conductivity increased, reducing the effect of the IR drop.

These results are very consistent with those obtained in our previous study [11]. Thus,
the electro-desulfurization demonstrated in Equation (3) was verified in the slag composition of
the current experiment.
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3.2. Anodic Reaction of Sulfur

Based on the aforementioned results, assuming that Equation (3) is a reversible reaction,
the resulfurization reaction demonstrated in Equation (6) (in which the sulfur produced by the
reoxidation of sulfide ions in the slag is dissolved into the metal) can be expected.(

S2−
)
= [S] + 2e− (resulfurization) (6)

In this case, according to the theoretical correlation based on the Nernst equation, the sulfur
partition ratio would be expected to decrease with voltage (green dashed line in Figure 2). However,
after applying the reverse voltage, the sulfur partition ratio increased with voltage. At C/S = 0.94,
the minimum concentration of sulfur in the metal was 170 ppm corresponding to the external voltage of
1.5 V and the sulfur partition ratio increased about three times. Therefore, Equation (6) was excluded.
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After evaluating the amount of residual sulfur in the slag and metal after the experiment, the results
revealed that the mass balance of sulfur was constant in the cathodic potential region but decreased in
the anodic potential region (Figure 3). This is probably due to sulfur evaporation. In particular, in the
case of C/S = 0.94, the maximum removal efficiency of residual sulfur due to sulfur evaporation was
confirmed to be 38%. To confirm this, the gas from the outlet was passed through a 3% H2O2 aqueous
solution for absorbing sulfur gas [12,13]. An increase in collected sulfur was observed as the applied
anodic potential increased.
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The sulfur evaporation in the slag is known to occur in the form of SO2 gas according to the
following two reactions [14–16]: (

S2−
)
+

3
2

O2 = SO2(g) +
(
O2−

)
(7)
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(
SO2−

4

)
= SO2(g) +

1
2

O2 +
(
O2−

)
(8)

Based on Equations (7) and (8), and considering the case where sulfide and sulfate ions are stabilized
by Ca2+ cations in the slag, the thermodynamic stable phase of sulfur is shown in Figure 4 [17].Materials 2020, 13, x FOR PEER REVIEW 5 of 8 
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Equation (7) indicates that the sulfide ions at an oxygen partial pressure pO2
= 3 × 10−16atm

(black dot in Figure 4) are oxidized to SO2 during the sulfate conversion process. Therefore, if an
anodic potential is applied, the following anodic sulfur evaporation reaction (in which sulfide ions in
the slag are oxidized to generate S2) can be predicted and S2 will be converted to SO2 according to the
oxygen partial pressure: (

S2−
)
=

1
2

S2(g) + 2e− anodic sulfur evaporation (9)

1
2

S2(g) + O2 = SO2 (10)

Then, because the sulfur concentration is locally reduced at the slag interface and an additional
chemical driving force is provided, sulfur is expected to move from the metal into the slag to increase
the sulfur partition ratio.

Equation (8) indicates that the sulfate ion in the slag was vaporized with SO2 in the process of
being converted to sulfide as the oxygen partial pressure decreases. Therefore, if an anodic potential is
applied, the following anodic desulfurization reaction in which sulfate ions are locally generated at the
slag/metal interface can be predicted based on Equation (2):

[S] + 4O2− =
(
SO2−

4

)
+ 6e− anodic desulfurization (11)

Sulfate ions locally generated at the slag metal interface (blue dot in Figure 4) vaporize in the
process of being converted to sulfide at an oxygen partial pressure pO2

= 3× 10−16atm (black dot in
Figure 4) as they move to the bulk slag.

A similar electrochemical reaction mechanism exists for silicon:

[Si] + 4O2− =
(
SiO4−

4

)
+ 4e− (12)

The Si concentration measured in the metal is shown in Figure 5 as a function of the applied
anodic potential. It can be seen that the concentration of Si decreased when the anodic potential was
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applied. It is well known that Equation (12) works in the cathodic potential region as well [3,8,11,18].
This is because the stable phase of silicon ions in the slag is always determined only with ortho-silicate
according to Pauling’s rule [19].

As a result, in the case of sulfur, the reversibility of the reaction was not satisfied. This is because
sulfur evaporation occurs due to its instability. This increases during the conversion between the two
equilibrium phases of sulfur in the slag when an anodic potential is applied.

In addition, as shown in Figure 6, the anodic electro-desulfurization using the instability of sulfur
in the slag results in a slight change its concentration. This means that the stability of sulfur in the
slag is maintained after the anodic refining process, as compared to the previous cathodic refining
process, which implies that slag recycling may be possible. Additionally, in the previous cathodic
electro-desulfurization process, Si, Ca, and Al in the slag were reduced and contaminated with the
molten metal [3,4,11], whereas our anodic electro-desulfurization process yielded high-purity metals,
as shown in Figure 5.
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4. Conclusions

In this study, we proposed the mechanisms of anodic electro-desulfurization (Figure 7) which are
described as follows:

(a) When an anodic potential is applied, the sulfide ions are oxidized to S through the reaction
described by Equation (6). Because the produced S rapidly dimerizes and vaporizes in the form
of S2 gas at high temperature, sulfide ions are locally scant at the slag/metal interface. Therefore,
additional chemical potential is generated and sulfur is further removed from the metal.

(b) When an anodic potential is applied, sulfate ions are produced locally at the slag/metal interface
according to Equation (8). The produced sulfate ions are converted to sulfide ions because of
the low oxygen partial pressure (pO2

= 3× 10−16atm) during their migration to the bulk slag.
In this process, an intermediate product, SO2 gas, is present and thus sulfur evaporation occurs.
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Based on the aforementioned mechanisms, this study confirms the improvement of the sulfur
partition ratio when an anodic potential is applied. Currently, a study is being conducted to
quantitatively evaluate the electrical effect of the anodic potential and to confirm sulfur evaporation
directly. Thus, the present study is expected to provide a basis for further work on novel
anodic electro-desulfurization.
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