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Abstract: The art of observing and describing behaviors has driven diagnosis and informed basic
science in psychiatry. In recent times, studies of mental illness are focused on understanding the brain’s
neurobiology but there is a paucity of information on the potential contributions from peripheral
activity to mental health. In precision medicine, this common practice leaves a gap between bodily
behaviors and genomics that we here propose to address with a new layer of inquiry that includes
gene expression on tissues inclusive of brain, heart, muscle-skeletal and organs for vital bodily
functions. We interrogate gene expression on human tissue as a function of disease-associated genes.
By removing genes linked to disease from the typical human set, and recomputing gene expression on
the tissues, we can compare the outcomes across mental illnesses, well-known neurological conditions,
and non-neurological conditions. We find that major neuropsychiatric conditions that are behaviorally
defined today (e.g., autism, schizophrenia, and depression) through DSM-observation criteria have
strong convergence with well-known neurological conditions (e.g., ataxias and Parkinson’s disease),
but less overlap with non-neurological conditions. Surprisingly, tissues majorly involved in the central
control, coordination, adaptation and learning of movements, emotion and memory are maximally
affected in psychiatric diagnoses along with peripheral heart and muscle-skeletal tissues. Our results
underscore the importance of considering both the brain–body connection and the contributions of
the peripheral nervous systems to mental health.

Keywords: autism; schizophrenia; mental depression; ataxia; fragile X; Parkinson’s disease; mitochondria;
gene expression; tissues; neurological disorders; nervous systems disorders

1. Introduction

Modern medicine is at an inflexion point [1], whereby advances in computational methods,
wearable sensing technology and open access to Big Data are reshaping the ways in which we inform
basic science and rapidly translate our knowledge to actionable treatments. Psychiatry is one of those
medical fields that is rapidly evolving, while adapting traditional models to help advance the main
goal of helping patients improve their quality of life. Along those lines, computational psychiatry [2],
a nascent subfield within psychiatry, is merging methods from Computational Neuroscience with
clinical approaches through successful collaborations. These new developments are bound to open
new frontiers in therapeutic treatments. Further, as part of a more general effort in the medical field,
precision medicine (PM) [1] has emerged as a new platform to combine expertise from multiple layers
of the knowledge network in order to ultimately design personalized targeted treatments (Figure 1A).
Integrating the personalized concept of PM with the new advances in computational psychiatry could
give us a new way to approach mental illness and help patients cope with lifelong changing needs.
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Figure 1. Roadmap to implement the precision medicine model for diagnoses and treatments of
mental illnesses. (A) PM’s interconnected knowledge network can contribute information about the
individual’s medical history, behaviors, environment, microbiome, and genetic makeup. Importantly,
the new proposed layer of digitized behaviors leveraging the wearable biosensors revolution can
transform medicine by creating truly personalized assessments. Additionally, the layer of behaviors
can be connected to nervous system functioning via fundamental levels of neuromotor control that
span along a phylogenetically orderly taxonomy. (B) This proposed taxonomy is based on levels of
maturation in autonomous neuromotor control, linked to three fundamental muscle types: autonomic
(by cardiac muscles), involuntary (by smooth muscles) and voluntary (by skeletal muscles). By linking
the fundamental muscle types to the levels of control in the nervous systems, digital behaviors can then
be mapped to bodily autonomy, bodily autonomy mapped to muscle types and muscle types mapped
to genes/proteins. Any measure of treatment effectiveness for mental illnesses can then map back to
improvements in observable behaviors embedded in activities of daily social life.

The task ahead is challenging because there is no proper roadmap to connect the layers of the
knowledge network in PM and produce personalized diagnoses and measures of treatment outcomes
that truly separate disease progression from treatment effectiveness according to age and development.
Part of the problem is that most brain science has focused on experimental assays and methods that
curtail natural movements. As such, our knowledge about the dynamics of natural behaviors is very
limited, particularly in reference to those aspects of behavior that remain hidden to the naked eye of the
clinician trained to observe specific expected behavioral landmarks of a psychiatric disorder conceived
exclusively as a mental illness. In so doing, the clinically trained eye may miss important information
that is perhaps common across different disorders of the nervous systems and rather relevant to help
improve the patient’s quality of life. For example, motor coordination and volitional control are critical
ingredients of autonomy in any natural behavior underlying activities of daily living. Yet, these are
not considered part of the diagnostics criteria for mental illnesses such as autism, schizophrenia and
depression, as per the Diagnostics Statistical Manual (DSM-5) [3] (and see Supplementary Materials).

Research on the underlying neurobiology of mental illnesses has revealed their associated
genetics [4] and/or helped characterize patterns of brain activity in response to external stimuli [5]
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(while curtailing naturalistic bodily motions to avoid instrumentation artifacts in imaging data or
in EEG, MEG, etc.). This central approach to brain science has left us with a paucity of information
about the possible contributions to mental illness from the peripheral nervous systems, and from
vital organs important for autonomous living. The peripheral activity, however, continuously feeds
back to the brain via afferent (body-to-brain) channels and is, in turn, dynamically updated through
efferent (brain-to-body) activity, self-generated by the system itself. This recursive loop, whereby
re-entrant information that is partly self-produced by the organism and partly influenced by external
environmental conditions, would provide important clues about truly evolving dynamics and stochastic
(variability) across all-natural behaviors. Approaching the problem through this lens could bring a new
quantifiable layer of granularity to basic research. This would include the design of age-appropriate
metrics reflecting the development of the organism as it ages and as it copes with a disorder [6,7].
The micro- and macro-motion data from the nervous systems biorhythms is the low hanging fruit that
we can easily attain by leveraging the wearable sensors revolution. Further, because these quantifiable
digitized activities and signals therein are partly self-generated, self-monitored and self-corrected by
and within the nervous systems, this quantitative approach has the potential to take us from a purely
correlational science to a science that is based on causal relations between nervous system activities
and external/contextual stimuli. In this sense, the new proposed approach to mental illness is amenable
to intervene and modify the system with well-informed, near-optimal means capable of improving
its performance.

Micro- and macro-motions that underly all aspects of human behavior depend on the intactness
of fundamental tissues, many of which have already been characterized in genomics according to cell
types [8]. Here, we propose to combine micro-level underlying aspects of behavior with the current
genomics knowledge to inform psychiatry of possible ways to improve quantification of nervous
system activities. Ultimately, we seek to compile this information to help build accommodations and
support for the patient population, while reconceptualizing mental illness as a physically quantifiable
disorder of the nervous systems.

The nervous systems already offer a taxonomy of function and control that is phylogenetically
ordered and well organized along several axes. Some of these axes are accessible today with
non-invasive means and, as such, we can obtain signals and build computational models to understand
mechanisms and translate them to actionable societal solutions. One possible orderly structure is
suggested in Figure 1B, where we propose to map levels of neuromotor control (voluntary, involuntary,
and autonomic) to fundamental types of muscles (skeletal, smooth, and cardiac) linked to commonly
sampled tissues in genomic datasets. Combining information about gene expression on tissues that
involve key components of the central nervous systems (the brain and the spinal cord), key organs
for vital bodily functions (including smooth muscle lining internal organs), muscle-skeletal tissues
and nerves, and cardiac tissues (for autonomic heart functioning), we explore the effects of removing
disease-associated genes, on the overall remaining genome expression on these tissues. As a first step
in this exercise, we reasoned that the genes associated with a given disorder ought to be important in
the functioning of certain systems, which in turn depend on certain tissues. We also reasoned that such
stochastic variations and combinations could be measured relative to the presence of all genes and to
the absence of genes across neurological or non-neurological conditions.

What is the tissue distribution of gene expression in neuropsychiatric disorders such as autism,
schizophrenia, and depression in relation to well-characterized neurological conditions? Is there
convergence in the remaining gene expression on the tissues upon removal of the genes associated with
that disease? Furthermore, how would the gene expression change across the tissues in non-neurological
conditions such as various forms of cancer, immunodeficiencies, endocrine system deficiencies and so
forth? How would it change in acquired disorders such as Post Traumatic Stress Syndrome (PTSD),
currently diagnosed through observation?

Take autism for example. Autism is an umbrella term for a very heterogeneous set of
neurodevelopmental disorders, but no gold-standard criteria include core neurological symptoms
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that could help us create early accommodations and support for the nascent nervous systems of the
infant (during pre-cognitive stages of neurodevelopment). The rule of thumb is to assume that the
child has odd, socially inappropriate behaviors and that they should be modified through operant and
cognitive conditioning techniques—often translated from lab animals to human babies, without any
type of collaboration with other fields studying infant development. Current methods of diagnoses
and treatments in autism are not based on normative neurodevelopmental data charts to understand
age-dependent departures from typical neurodevelopment. Without any systematic way to build
age-appropriate metrics in order to capture highly non-linear, stochastic patterns and rates of change in
the (rather accelerated) infant neurodevelopment, entire generations of infants, children and adolescents
have been exposed to such means of behavioral treatments and no information can tie these back to
the underlying genomic pool of this population.

In schizophrenia, delusions, avolition and catatonia are at the core of the disorder, but as in
autism above, no criteria in the DSM highlight the profound somatic sensory-motor issues that have
been found in patients [9]—even without the use of psychotropic medications known to alter motility.
Interestingly, historical accounts of psychiatry (in pre-Freudian times) show the reliance on motor
aspects of the behaviors that defined several mental illness from a neurological perspective [10].

Depression is also currently treated purely as a mental illness, but it may be important to
understand potential contributions to various forms of depression, from the peripheral nervous
systems and from the body in general. Genetic information may give us a way to link tissues affected in
these neuropsychiatric conditions with those affected in neurological conditions, for which treatments
and interventions of various forms may be effective. These may be in the form of drugs, or in the form
of physical, mindfulness and occupational therapies aimed at helping support the person’s bodily
autonomy and overall increase the chances for independent living.

We here offer a new lens to help balance psychiatric with neurological criteria derived from genomic
information specific to each disorder. In a first (crude) step of many to come, we start by comparing
well-known neuropsychiatric and neurological conditions, the results from eliminating the genes
associated with each disorder and quantifying the degree of convergence in the maximally affected
tissues, in relation to those resulting from eliminating the genes associated with non-neurological
conditions. We focus our discussion on possible ways to continue this path of inquiry and highlight
current caveats for future improved iterations of the proposed methods.

2. Materials and Methods

We combine the datasets from genes associated with mental illnesses with well-known neurological
disorders and with illnesses that are not directly associated with the nervous systems. We also include
genes associated with manifestations of acquired Post-Traumatic Stress Syndrome Disorder (PTSD).
Among mental illnesses defined by the DSM-5, we include autism, schizophrenia and mental depression
of different types, (e.g., general, bipolar and unipolar). Among neurological conditions, we include
ataxias (e.g., cerebellar, spinocerebellar, progressive, and gait) and Parkinson’s disease. Among
non-neurological disorders, we include colon cancer, breast cancer, diabetes, congenital heart disease,
hematologic neoplasm, and various autoimmune disorders (lupus systemic erythematosus, psoriasis,
and irritable bowel syndrome).

We use the genes, gene expression, and tissues from the Genotype-Tissue Expression project, GTEx
pPortal human RNA-seq (Transcripts Per Million (TPM), see Appendix A for note in TPM) as reference
specifically using the files denoted in Appendix B. In autism, we use the gene scoring module of the
Simons Foundation Autism Research Initiative (SFARI) scored according to evidence from the literature.
We also use ataxia genes, the X genes and the FX genes taken from various literature reviews [11,12].
Furthermore, we use genes associated with mitochondrial disorders [13] and genes identified in
Parkinson’s disease, taken from [14–19]. Besides the autism SFARI genes and the genes reported in
literature reviews, we take the genes associated with autism, schizophrenia and depression reported in
https://www.disgenet.org/home/ along with other genes from the above-mentioned non-neurological

https://www.disgenet.org/home/
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disorders. The latter will inform us of fundamental differences in gene expression between these
diseases and those which affect neuromotor control and basic functioning, as mediated by interactions
between the brain and the peripheral nervous systems (including the autonomic nervous system).

The SFARI autism categories that we used were those reported as of 03-04-2020. Quoting from
their site:

• CATEGORY 1 Genes in this category are all found on the SPARK gene list. Each of these genes
has been clearly implicated in Autism Spectrum Disorders, ASD—typically by the presence of
at least three de novo likely-gene-disrupting mutations being reported in the literature—and
such mutations identified in the sequencing of the SPARK cohort are typically returned to the
participants. Some of these genes meet the most rigorous threshold of genome-wide significance;
all at least meet a threshold false discovery rate of <0.1.

• CATEGORY 2 Genes with two reported de novo likely-gene-disrupting mutations. A gene uniquely
implicated by a genome-wide association study, either reaching genome-wide significance or, if not,
consistently replicated and accompanied by evidence that the risk variant has a functional effect.

• CATEGORY 3 Genes with a single reported de novo likely-gene-disrupting mutation. Evidence
from a significant but unreplicated association study, or a series of rare inherited mutations for
which there is not a rigorous statistical comparison with controls.

• SYNDROMIC The syndromic category includes mutations that are associated with a substantial
degree of increased risk and consistently linked to additional characteristics not required for an
ASD diagnosis. If there is independent evidence implicating a gene in idiopathic ASD, it will be
listed as “#S” (e.g., 2S, 3S). If there is no such independent evidence, the gene will be listed simply
as “S”.

The GTEx dataset is as the 06-05-2017 v8 release. For every gene in autism, ataxia, X, FX,
mitochondrial diseases, Parkinson’s disease, and the non-neurological diseases, we first confirmed the
presence of the gene in the GTEx dataset and then incorporated it into the analyses.

The genes from the DisGeNet portal were found by interrogation of their dataset under disease
type and saving the outcome to excel files containing all pertinent information. All sample files used in
our analyses are provided in Supplementary Materials.

2.1. Count Normalization

The GTEx matrix of RNA-seq genes along the rows (56,146) × the tissues (54) along the columns
was transposed (54 × 56,246), such that we expressed each tissue as a function of the gene expression
denoted by the count (TPM). Each individual count value was then normalized using Equation (1).

Normalized Count =
counti

counti +
AvrgGlobalCount
MaxGlobalCount

(1)

Here, counti is the count value of the genei, AvrgGlobalCount is the overall average of the matrix of
values taken along the columns and the rows. MaxGlobalCount is the maximum count value, also taken
globally across the matrix values. Figure 2 shows the original count numbers (Figure 2A) and the
normalized version (coined micro-movement spikes (MMS)) in Figure 2B. Figure 2C shows the MMS
derived from the fluctuations in counts normalized by Equation (1), while Figure 2D shows the
histograms of the peaks (marked in red dots) for different tissues and genes scored by the SFARI.



J. Pers. Med. 2020, 10, 144 6 of 26
J. Pers. Med. 2020, 10, x FOR PEER REVIEW 6 of 26 

 

 
Figure 2. Analytical methods. (A) Sample raw data consisting of the log count (TPM) for different 
scored genes expressed in the brain frontal cortex (Brodmann Area 9). (B) Histograms of the log count 
TPM for each case in (A). (C) Upon removal of the Simons Foundation Autism Research Initiative 
(SFARI) autism genes, we obtain micro-fluctuation spikes in the normalized count, with deviations 
taken relative to empirically estimated mean, global averaged count, and global maximal count in 
Equation (1). (D) Histograms of the normalized micro-fluctuation spikes. 

2.2. Gene Removal 

For each of the disorders of interest in Appendix B Tables A1 (mental illness and neurological) 
and A2 (non-neurological), we remove the genes associated with each condition from the human 
GTEx dataset. These disease-gene associations are as reported in the various databases (the SFARI, 
DisGeNet https://www.disgenet.org/home/ and the literature meta reviews). We then treat the 
resulting count series as a random process. We use the exponential distribution to characterize it and 
to assess the differential expression across the tissues relative to non-removal in the original human 
genome. 

The question that we ask is: given the known neurological phenotypes, is there convergence 
between the most-affected tissues upon associated gene removal and the changes in the tissues that 
will be obtained by the removal of genes associated with mental illnesses? Furthermore, is there 
convergence with the outcome from removing the genes associated with non-neurological illnesses? 
Appendix B Tables A1 and A2 show the number of genes removed in each respective case as well as 
the source of the reported genes associated with each condition/disease. 

2.3. Stochastic Analyses 

Since the count values for each tissue can be conceived as a random series of numbers, we use 
maximum likelihood estimation (MLE) to model the numbers representing the counts, as generated 
by the exponential distribution using Equation (2) 

xy e λλ −=  (2) 

Here, x represents the normalized count value (as per Equation (1)) and y represents the value 
from the exponential distribution. We seek the value of the rate parameter λ to model this random 
counting process, which we use to represent the gene expression in the tissue. To that end, we 

estimate the likelihood ( )1 2| , ,..., nL x x xλ  where the series of counts xi, with i ranging from 1 to n, 

represent the normalized counts (according to Equation (1)) across all genes for one tissue. Appendix 

Figure 2. Analytical methods. (A) Sample raw data consisting of the log count (TPM) for different
scored genes expressed in the brain frontal cortex (Brodmann Area 9). (B) Histograms of the log count
TPM for each case in (A). (C) Upon removal of the Simons Foundation Autism Research Initiative
(SFARI) autism genes, we obtain micro-fluctuation spikes in the normalized count, with deviations
taken relative to empirically estimated mean, global averaged count, and global maximal count in
Equation (1). (D) Histograms of the normalized micro-fluctuation spikes.

2.2. Gene Removal

For each of the disorders of interest in Appendix B Table A1 (mental illness and neurological) and
Table A2 (non-neurological), we remove the genes associated with each condition from the human
GTEx dataset. These disease-gene associations are as reported in the various databases (the SFARI,
DisGeNet https://www.disgenet.org/home/ and the literature meta reviews). We then treat the resulting
count series as a random process. We use the exponential distribution to characterize it and to assess
the differential expression across the tissues relative to non-removal in the original human genome.

The question that we ask is: given the known neurological phenotypes, is there convergence
between the most-affected tissues upon associated gene removal and the changes in the tissues that
will be obtained by the removal of genes associated with mental illnesses? Furthermore, is there
convergence with the outcome from removing the genes associated with non-neurological illnesses?
Appendix B Tables A1 and A2 show the number of genes removed in each respective case as well as
the source of the reported genes associated with each condition/disease.

2.3. Stochastic Analyses

Since the count values for each tissue can be conceived as a random series of numbers, we use
maximum likelihood estimation (MLE) to model the numbers representing the counts, as generated by
the exponential distribution using Equation (2)

y = λe−λx (2)

Here, x represents the normalized count value (as per Equation (1)) and y represents the value
from the exponential distribution. We seek the value of the rate parameter λ to model this random
counting process, which we use to represent the gene expression in the tissue. To that end, we estimate
the likelihood L(λ|x1, x2, . . . , xn) where the series of counts xi, with i ranging from 1 to n, represent the
normalized counts (according to Equation (1)) across all genes for one tissue. Appendix B shows the

https://www.disgenet.org/home/


J. Pers. Med. 2020, 10, 144 7 of 26

steps to find λ. Further, this is computed for each of the 54 tissues. We then rank the departure of λ
(resulting from gene removal) from the λ obtained for the full human genome (see below). This is
explained in Figure 3.
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Figure 3. Sample metrics used for the stochastic analyses of a data sample (using 2697
schizophrenia-associated genes reported in DisGenNet portal and in the literature). (A) Effect of removing
the schizophrenia genes from the GTEx human genome set expressed across 54 tissues. Tissues are
sorted in ascending order, by the absolute difference ∆λ between gene expression on the 54 tissues
before and after removal. The red square highlights the top 13 median-ranked tissues shown in the
panel below and the dark and light blue circles mark the top two tissues affected (the brain amygdala
and brain putamen in the basal ganglia. (B) The exponential distribution curve is fit to the sorted
normalized count representing the gene’s expression in TMP on the top median-ranked affected tissues
(as in Figure 2C, taking the peaks highlighted in red and fitting the exponential distribution to the
frequency histogram, as in Figure 2D) before (black line) and after (red line) the removal of the genes
associated with the disease. The absolute value difference between the curves is the ∆λ used to rank
the tissues by the effect size. (C) The fitting of the gamma distribution yields the shape and scale
parameters used to compute the gamma moments. The axes represent the mean, the variance, and the
skewness of the distribution of the normalized values and the color map represents the Earth Mover’s
Distance values measuring the difference between the resulting exponential frequency histograms in
(B). The size of the circle is proportional to the kurtosis and the color-filled circles represent the tissue
(54 in the left panel) with the original gene expression from GTEx (our reference template) vs. the open
circles representing the stochastic shift, i.e., upon the removal of the genes associated with the disease
in DisGenNet. The right panel contains the top-ranked tissues (13) according to the median values of
the ∆λ.

2.4. Stochastic Analyses—Visualization of Change Relative to the Normative Data of the Full Human Genome

Using MLE, we also obtain for each of the 54 tissues, the frequency histograms of the normalized
counts across all genes and fit the continuous gamma family of probability distributions with shape
(a) and scale (b) values in order to obtain the gamma moments and plot them on a parameter space.
We do this to visualize the spread of the tissues and their shift upon gene removal. To that end, we plot
the mean, the variance, and the skewness across the x, y and z axes, respectively. We plot the size of the
marker representing the tissue proportional to the kurtosis value, and we color the marker based on
the change relative to the original genome count (i.e., containing all the genes, without removal).
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To measure the stochastic shift between the tissues from the full genome and those upon removal
of the genes identified with each known neurological condition, we take the absolute difference between
the MLE λ for the full GTEx genome and that for the genome upon removal of the genes associated
with each condition, disorder or disease, as shown in Figure 3.

We median rank the ∆λ for each tissue, sorting ∆λ in ascending order across the 54 tissues.
Then we create four median-ranked blocks and plot the maximally affected block of tissues
(Figure 3A). The highest-ranked group is then compared across all conditions—mental illness vs. those
neurologically defined vs. those non-neurologically defined. We annotate the neurological functions
that such tissues are known to maximally disrupt. Further, we determine whether there is convergence
between the tissue outcome in mental illnesses, upon removing the associated genes from the human
genome-tissue model, and the outcome upon removing those genes tied to the other known disorders
of the nervous systems. We repeat this interrogation process using the genes associated with disorders
in the DisGeNet portal, including autism, schizophrenia, depression, the neurological disorders in
Appendix B Table A1, and the non-neurological disorders in Appendix B Table A2.

To assess tissue outcome upon removal of genes associated with various non-neurological diseases,
we follow these procedures and compare these to the above results. These diseases include colon
cancer, breast cancer, psoriasis, diabetes, congenital heart disease, hematologic neoplast and systemic
lupus. Appendix B Table A2 describes the number of genes associated with each of these diseases and
the sources.

We also examine other mental illnesses described by the DSM. These include schizophrenia,
depression, unipolar depression, and bipolar depression. We determine whether there are tissues that
overlap with those affected in the neurological disorders. Lastly, we examine mitochondria-related
disorders and PTSD using these methods. We reasoned that these may be disorders that have
potentially affected tissues across a broader range of functions, including those from the brain and
other bodily organs.

3. Results

3.1. Autism, Ataxia and FX Have Convergence in Maximally Affected Tissues by the Removal of
Associated Genes

The maximally affected tissues upon gene removal, according genes stochastic expression (count
in Transcripts Per Million (TPM)), are depicted in Appendix B Table A3. Tissue gene expression was
modelled by the exponential distribution y = λe−λx, with x as the gene combination expressed in the
tissues, and λ as the exponential rate parameter. The ∆λ between the neurotypical template case from
the GTEx portal (containing all genes) and the modeled disorder case (upon removal of the SFARI
genes) provides a sense of the departure from the normative case. This difference, taken for the removal
of the SFARI genes, is depicted in Figure 4A, with samples of maximally affected tissues in Figure 4B
that are known to be critical for motor control, regulation, adaptation/learning, and coordination.

The ∆λ median ranking quantified the difference between neurotypical tissue gene expression vs.
tissue gene expression upon removal of the genes corresponding to the disorders in question, with four
groups ordered by the size of ∆λ. This λ quantity was first obtained relative to the neurotypical
population tissues, i.e., including all the counts (gene expression) from all genes, in order to model an
exponential process. The computation of λ using maximum likelihood estimation (MLE) is explained
in Appendix A. It does not assume any order of the counts, but rather seeks to identify the resulting
λ for each tissue, treating the gene count (expression) as a random, memoryless stochastic process.
Typically, the exponential distribution is used to model times between events, but here we used it
to model the fluctuations in the values of the counts across the genes, as they randomly fluctuate
their expression across each of the 54 tissues reported in the GTEx portal. We note this to underscore
that the results spontaneously self-emerge from the random combination of the genes involved (with
and without removal), rather than from the clinical criteria used to denote gene relevance to autism,
or the evidence from the literature used to determine their association. There is in fact no scoring of
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such relevance for the genes associated with the other neurological disorders under consideration
(e.g., ataxias and Parkinson’s disease) or for the autistic disorders reported in the DisGenNet portal.
Using those genes instead of the SFARI genes reveals tissues in Appendix B Table A4, where we report
the convergence.
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Figure 4. Convergence between autism and known neurological disorders shown by comparison of
maximally affected tissues after removing genes associated with the disorder in autism (from the SFARI),
autistic disorders (A,B) (from the DisGeNet portal) vs. ataxia (C) and fragile X (D) (See Appendix B
Tables A3 and A4).

Removal of the SFARI genes, ranked by change in gene expression, reveals brain tissues linked
to the CNS, in brain subcortical tissues linked to motor control (basal ganglia, striatum), memory
(hypocampus), emotions (amygdala) and regulation (hypothalamus); and the spinal cord. This is also
generally the case for the removal of the DisGeNet genes associated with autistic disorders and with FX
and ataxia. Congruent with the outcome from the removal of the SFARI genes from the GTEx genome,
the DisGeNet gene removal also affected the tissues associated with CNS function. Important tissues
for systemic organ functioning such as those containing smooth muscles, cardiac and skeletal muscles
in the taxonomy proposed in Figure 1B were also affected (commonly) across these disorders. Figure 4
shows a summary of the results, visualizing the stochastic shifts. Appendix B Tables A3 and A4 show
the tissues ranked in descending order and color coded according to CNS (brain and spinal cord in
blue), heart related (pink), muscle-skeletal (green), and peripheral vital organs (gray). Most tissues in
autism and the neurological disorders are from the CNS, followed by PNS-related tissues in the heart
and muscle-skeletal and with vital organs towards the end of the ∆λ ranking.

Supplementary Figures S1–S3 show these results separately for each neurological condition.
We note in Supplementary Materials that removal of the SFARI autism syndromic genes from the GTEx
genome reveals maximal differences in tissues of organs with smooth and cardiac muscles linked to
involuntary and autonomic function in the proposed taxonomy of Figure 1B.

Removal of the overlapping SFARI genes and neurological disorders also reveal brain tissues
linked to motor control, memory, emotions, and regulation. This is depicted in Figure 4. Given the
congruence between the tissues maximally affected by removing the SFARI autism genes from the
GTEx database and those from the neurological conditions, we next ascertain the extent to which these
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genes overlap with those used from ataxias in the literature. To that end, we divide them into the
autosomal dominant, the autosomal recessive and the X-chromosome genes. Figure 5A shows the
result upon removal of overlapping genes between the SFARI autism set and ataxias (dominant and
recessive and X-chromosome sets) from the literature. Appendix B Table A3, Column 3 lists the tissues,
while Appendix B Table A5 also has the scoring from the SFARI autism genes. Supplementary Materials
Table S2 lists the phenotypic information of the disorders associated with these genes, as described
by the clinical literature. Figure 5B lists the PD gene that overlaps with the SFARI autism genes,
also depicted in Appendix B Table A5 along with the score ranking from the SFARI portal.
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Figure 5. Gene expression on maximally affected tissues (color bar coded in log TPM) upon removal
of overlapping genes between the SFARI autism set and ataxias (dominant and recessive and
X-chromosome sets) from the literature (A) and (B) from Parkinson’s disease. The horizontal axis lists
the tissue names and the vertical axis lists the gene names.

We note that removing this subset of 14 overlapping genes from the SFARI autism set (Appendix B
Table A5) does not change the primary result, whereby the most-affected tissues upon removal of the
SFARI autism set from the GTEx dataset are those associated with subcortical brain structures critical
for motor control, adaptation/learning, regulation, coordination and autonomic function as well as
memory and emotion. This is shown in Figure 5A,B and in the third column of Appendix B Table A3.
In Figure 4D, we also plot the top-ranked tissues affected by the removal of the FX genes reported in
the DisGeNet portal from the GTEx dataset. Supplementary Figures S19–S22 further provide details
on X-chromosome genes in Figure 5A implicated in autism according to the SFARI genes portal.

The result that convergence in the ranked descending order of the CNS (brain and spinal cord
tissues), followed by heart-related tissues, muscle-skeletal tissue and lastly peripheral vital organs for
systemic functioning in the SFARI autism and well-known neurological disorders from the literature
is also congruent with the results using the genes associated with these conditions in the DisGeNet
portal. There, we interrogated autistic disorders, ataxias and fragile X, confirming the overlap in genes,
their expression on the 54 tissues of the GTEx database and the orderly levels of tissues maximally
affected by the removal of the associated genes. We grouped the tissues by CNS, heart, muscle-skeletal
and peripheral vital organs to follow the proposed taxonomy of Figure 1B.

In the remaining sections of this paper, we consistently use this tissue grouping to simplify
visualization of the Appendix B tables and data presentation. Figure 6 shows the results for different
types of ataxias and FX, while Appendix B Table A6 summarizes the top-ranked affected tissues in
different types of ataxias. These are color coded according to the tissue grouping, approximating the
taxonomy proposed in Figure 1B.
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(A) Gait ataxia; (B) spinocerebellar ataxia; (C) cerebellar ataxia; (D) progressive cerebellar ataxia.

3.2. Removal of Genes Associated with Schizophrenia and Multiple Forms of Mental Depression Reveals
Convergence with Neurological Disorders

The removal of the DisGeNet genes associated with mental illnesses such as schizophrenia,
depression, bipolar depression and unipolar depression from the normative GTEx genome resulted in
convergence of maximally affected tissues involved in the CNS, especially those brain regions necessary
for neuromotor control, memory, and emotion. This is depicted in Appendix B Table A7 and Figure 7.
Several of these tissues were also found to be affected upon removal of the SFARI genes and the genes
associated in DisGeNet with autistic disorders. Furthermore, these are maximally affected tissues in
the well-known neurological conditions depicted in Figures 4 and 5 and Appendix B Tables A3–A5.
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3.3. Removal of Genes Associated with Non-Neurological Disorders Reveals Other Non-CNS Tissues

In addition to the examination of mental illnesses and neurological disorders, we also interrogated
the GTEx genome upon removal of genes associated with various non-neurological disorders.
These included various forms of cancers, inflammatory and autoimmune disorders and other tissues
related to the heart, the circulatory and the endocrine systems. Appendix B Tables A8 and A9
summarize the results of this interrogation and Figures 8 and 9 show the ∆λ-ranking graphs.
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reveal primarily non-CNS tissues involving peripheral vital organs for systemic functioning, followed
by heart-related and muscle-skeletal tissues. As before, the interrogation of the GTEx genome is based
on the genes associated with diseases in the DisGeNet portal. (A) Colon cancer; (B) irritable bowel
syndrome; (C) congenital heart disease and (D) hematologic neoplast. Color code as in previous tables.
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Figure 9. Maximally affected tissues in non-neurological diseases. (A) Systemic Lupus Erythematosus;
(B) Psoriasis; (C) Breast Cancer; (D) Diabetes. These are depicted in Appendix B Table A10
median-ranked according to the ∆λ values obtained from the absolute difference between the tissues
according to the full genome in the GTEx database and the GTEx genome without the genes associated
with each disease, according to the queries to the DisGeNet portal.
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The results of the maximally affected tissues upon the removal of the genes associated with these
non-neurological disorders revealed a very different picture than those upon removal of the genes
associated with the mental illnesses (autism, schizophrenia and the depressions) and those associated
with the known neurological conditions (the various forms of ataxia, FX and Parkinson’s disease).
Namely, the CNS-related tissues were less affected in these non-neurological diseases than those related
to the PNS (muscle-skeletal and ANS heart), and those linked to peripheral bodily organs were the
most visibly affected. The exception was diabetes, maximally affected tissues in peripheral organs,
but also CNS and PNS tissues in the tail of the top ∆λ-ranked tissues. We next interrogate the genome
in relation to mitochondrial disorders of several kinds and acquired PTSD.

3.4. Removal of Genes Associated with Mitochondrial Diseases Reveals that Heart-Related Tissues Are
Maximally Affected but PTSD Is Mixed

Removal of genes associated with mitochondrial disorders of various types from the GTEx genome,
according to the genes in the DisGeNet portal, reveal a mixture of tissues associated with peripheral
vital organs for systemic functions, heart-related and muscle-skeletal- and CNS-related tissues. The top
half of the highest-ranked tissues in mitochondrial disease shows affected tissues related to the
heart, muscle-skeletal and peripheral organs, while the bottom half shows more involvement of
brain-related tissues in subcortical regions of motor control. In contrast, mitochondrial myopathies
show a predominance of CNS-related tissues, including the brain and spinal cord, with top ∆λ-ranked
tissues related to the heart and muscle-skeletal tissues. Mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS) show a predominance of tissues associated with peripheral vital
organs for systemic function and heart-related tissues. Only two brain regions for motor control and
emotion are present in the bottom-ranked tissues of the most-affected tissues.

The case of acquired PTSD also reveals a mixture of tissues from brain, heart, and peripheral
organs. There, we see maximally affected tissues linked to subcortical regions of the brain involved in
motor control, adaptation, learning, and coordination intermixed with tissues linked to peripheral
bodily organs (like the kidneys) and the autonomic systems’ heart. Furthermore, we also see tissues
linked to the hypothalamus, a regulatory brain structure. Figure 10 shows the graphs of the ∆λ

difference, which was median ranked, as in the previous cases, for these disorders.
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We summarize the results across all 54 tissues (in alphabetical order from left to right) in Figure 11.
Here, a color map depicts the values of ∆λ normalized for each disease (along the rows) across
the tissues (columns) by dividing by the maximum ∆λ value of each row. The patterns reveal that
the maximally affected tissues (upon genes removal) are common to both neurological disorders
and mental illnesses. They correspond to the brain tissues involved in motor control, adaptation,
and learning (basal ganglia, striatum, substantia nigra), tissues in involved in emotion (amygdala),
memory (hippocampus) and systemic regulation (hypothalamus). They also reveal that whole blood
tissue is not as affected in the mental illnesses as in the neurological disorders (marking a point of
divergence that warrants further investigation). Heart-related tissues and muscle-skeletal tissues
are also shared between these mental illnesses and neurological disorders when the genes specific
to each disorder are removed from the GTEx genome. Interestingly, the pancreas is an example of
a peripheral bodily organ with tissues that are commonly affected across most of the disorders and
diseases interrogated here. Yet they have lower weight the neurological disorders compared to the
non-neurological diseases under examination.
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of 0.8 shows that the overlap across mental illnesses, neurological disorders and non-neurological 
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Figure 11. Summary of disorders/diseases (27 rows) x tissues (54 columns) in alphabetical order.
Entries are ∆λ (difference with respect to the gene expression values from the full GTEx genome)
values normalized by the maximum across the tissues for each row (disorder/disease). The first row
is the 0–∆λ difference reference from the full genome. Red arrows mark the maximally affected
tissues across all diseases, showing mental illnesses on the top, followed by neurological disorders,
then non-neurological, including several types of cancer, autoimmune disorders, and diabetes. Black
lines delineate blocks of diseases (along rows) and blocks of gene expression on tissues (along columns).

The non-neurological diseases reveal less involvement of the CNS-related tissues but highly
overlap with the heart and muscle-skeletal tissues. Tissues linked to the kidneys, liver and pancreas are
also maximally affected by genes’ removal in these diseases. Colon cancer shows an interesting pattern
whereby the pancreas reveals maximal normalized ∆λ values. Figure 12 summarizes the patterns in
binary form by turning ON (yellow) values above 0.8 considered high and OFF those below (blue).
This cut off is chosen to further highlight overlap and differences across diseases based on high ∆λ.

The patterns revealed by the high values of the normalized ∆λ quantity, show convergence
of maximally affected brain tissues in mental illnesses with the neurological disorders but not
with the non-neurological disorders (except for diabetes which does affect some brain regions.)
The mitochondrial diseases do not show the same intensity of the CNS-related ∆λ values as the mental
illnesses and the neurological disorders, but they do share the heart and muscle-skeletal patterns with
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all the examined diseases and disorders. This is interesting, given that some of the children with various
forms of mitochondrial disorders may receive diagnoses of autism. In summary, there is clear overlap
between mental illness and neurological disorders, suggesting involvement of the central nervous
systems in both. We also see major contributions from the peripheral nervous systems, particularly
the heart, the muscle-skeletal tissues and, to a lesser degree, tissues of peripheral organs. The latter
are most affected in the non-neurological diseases. Figure 13 shows the most-affected tissue in each
disease/disorder (also depicted in Appendix B Table A11).
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in GTEx (open circles). The most-affected tissue in each disorder/disease under consideration was
selected according to the maximum ∆λ value, the absolute difference between the empirically estimated
λ using MLE of the exponential distribution rate parameter for the full GTEx genome and for the
genome minus the genes associated with each disease/disorder. Since the exponential distribution is a
particular case of the continuous gamma family of probability distributions (when the gamma shape
parameter is 1), we also used MLE to estimate the shape and scale gamma parameters and the four
gamma moments, plotted here in a five-dimensional parameter space. Along the x axis, we plot the
empirically estimated gamma mean; along the y axis, we plot the gamma variance; along the z axis, we
plot the gamma skewness and the kurtosis is used to represent the size of the marker (more kurtotic
distributions have higher value, i.e., larger circle). The fifth dimension is the color representing the
∆λ (see also Figure 3C, visualizing one single disease and all 54 tissues or summarizing the top 13
median-ranked tissues as those most affected).

4. Discussion

This work interrogated the human genome by removing genes associated with various diseases
and comparing the outcome from the remaining gene expression on 54 tissues commonly examined in
the GTEx portal. These tissues involve parts of the central nervous systems (the brain and the spinal
cord) and parts of the peripheral nervous systems (the muscle-skeletal tissue and the heart tissues
as part of the autonomic nervous system), which we grouped in Figure 1B. Other tissues are from
peripheral vital organs for systemic bodily functions (whole blood, pancreas, liver, kidneys, lungs, etc.).

We compared mental illnesses such as autism, schizophrenia, and various types of mental
depression (including unipolar and bipolar), with well-known neurological disorders such as different
types of ataxias, fragile X and Parkinson’s disease. We found convergence between the tissues
maximally affected by the removal of disease-associated genes across these mental illnesses and
neurological disorders. CNS-related tissues in subcortical regions of the brain related to motor
control, motor learning, motor coordination, and motor adaptation, as well as memory and emotion,
were predominantly maximally affected by the corresponding gene removal across both the mental
illnesses and the neurological disorders. This convergence demonstrates overlap between psychiatric
and neurological conditions with specific involvement of motor, memory, emotional and regulatory
axes. In autism and FX, we obtained congruent results on maximally affected tissues. The results
were consistent using removal of the genes from the SFARI autism database and using the genes upon
querying the DisGeNet portal. In addition to the genes reported by querying DisGeNet, we also used
the genes reported in the literature for schizophrenia and depression, and for Parkinson’s disease.
We found congruence in all cases.

To further test our hypothesis that these mental illnesses are disorders of the nervous systems and
that removing the gene pool associated with them gives rise to overlapping tissues related to CNS
functioning, we also queried DisGeNet about other non-neurological diseases. We found that in such
cases, the predominance of maximally affected tissues was on tissues associated with peripheral vital
bodily organs related to the disease, such as pancreas, kidney, liver, and colon transverse in colon
cancer. Furthermore, several of these diseases had maximally affected heart-related tissues and whole
blood. Other cases also revealed a predominance of peripheral organs. We lastly, interrogated the
genome in relation to mitochondrial diseases and acquired PTSD. In these cases, we hypothesized and
confirmed a mixture of tissues related to peripheral organs (for mitochondrial diseases) and the CNS
(for PTSD).

In the case of mitochondrial diseases, the heart-related tissues were revealed as the most affected
along with muscle-skeletal tissue. Furthermore CNS-related tissues were more affected by gene removal
in mitochondrial myopathies (i.e., the amygdala and the anterior cingulate cortex), as compared to
MELAS or mitochondrial disease. The common thread across all three types of mitochondrial-related
disorders was the heart-related tissues. The case of acquired PTSD showed a mixture of CNS-related
tissues, tissues related to bodily peripheral organs, and heart-related tissues. The kidney and pancreas
were also affected in PTSD. When we examined the maximum ∆λ for each disorder/disease under
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examination, we found that the basal ganglia was maximally affected in autism, unipolar depression,
spinocerebellar ataxia, and PTSD), while the heart left ventricle tissue was maximally affected in
depression, ataxia, cerebellar ataxia, gait ataxia and fragile X tremor ataxia syndrome (FXTAS).
This result indicates overlap between the psychiatric mental illnesses and the neurological disorders.
It also shows the importance of examining mental illnesses in a more systemic way that includes the
autonomic nervous system of the PNS.

This test on non-neurological illnesses served as a control to show that removal of the genes
associated with each disorder did have specificity with the disorder and yet a very different outcome
when comparing the mental illnesses to the non-neurological disorders. Among the top tissues
affected across non-neurological diseases, the pancreas was maximally affected by the removal of
disease-associated genes in breast and colon cancer, while the liver was maximally affected in diabetes.
The heart left ventricle was maximally affected across autoimmune disorders such as psoriasis, lupus
systemic erythematosus, and irritable bowel disease (IBD). The heart was also maximally affected in
hematologic neoplast, congenital heart disease, mitochondrial disease and MELAS, in contrast to the
mitochondrial myopathies which showed the liver as the maximally affected tissue.

This exercise demonstrated that despite the stochastic nature of gene expression, upon removal
and random recombination, there is convergence across psychiatric and neurological disorders,
thus potentially rendering both as disorders of the nervous systems. In both cases, we found a strong
prevalence of the CNS, but also found important differences in tissues from the PNS, including the
heart and the muscle-skeletal tissues involved in both mental illnesses and neurological disorders.
Because of these convergences, and the fact that there are treatments and accommodations to help
persons with neurological disorders, it may be possible to leverage some of those types of bodily-based
supports to help persons with mental illnesses. Behaviors that are described by observation to define
mental illnesses can now be connected with underlying tissues involved in voluntary, involuntary,
and autonomic function across the CNS and the PNS and mapped to the genome, thus closing
the present gap between behaviors and genomics in the precision medicine knowledge network.
In this sense, the present methods offer a new way to interrogate the genome and link tissues with
behavioral phenotyping.

A surprising finding here is the potential contributions of peripheral structures and organs to
mental illness. Tissues of the autonomic nervous systems were maximally impacted by the removal of
the genes associated with these mental illnesses, as was the muscle-skeletal tissue among the top-ranked
illnesses. Tissues associated with subcortical brain regions necessary for motor control, learning,
adaptation, and coordination (basal ganglia and striatum) were highly impacted by the removal of
the genes in both mental illnesses and neurological disorders, along with those tissues important for
memory (hippocampus), emotion (amygdala) and regulation (hypothalamus). Surprisingly, we did
not see cerebellum-related tissues among the most affected by the removal of the genes (even in ataxias)
where we do know that the cerebellum plays a large role [20–23]. This was also the case in autism,
where we know the cerebellum has been implicated [24,25].

Lastly, the autoimmune disorders that we examined had very different brain tissue patterns
from the mental illnesses and neurological conditions but shared the heart-related tissues and the
muscle-skeletal tissue. In this sense, the contributions from the peripheral systems to mental illnesses
and to autoimmune disorders seem important. However, blood tissue marked a departure of
neurological disorders from mental illnesses, as it was maximally affected in neurological disorders
but not in the mental illnesses. Overall, these gene removals revealed surprising results that invite
rethinking how we may want to describe, diagnose, and treat mental illnesses in general.

Caveats and Future Directions

Although we found evidence that the mental illnesses and neurological disorders have remarkable
overlap in the types of brain tissues that are maximally affected by the removal of their corresponding
associated genes, we recognize that gene removal is a crude way to interrogate the human genome
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and its expression of the 54 tissues of the GTEx database. Future work will aim at developing more
sophisticated methods to explore gene overexpression and to build simulations of the use of these
methods in, e.g., combination with dynamic transcriptome evolution during neuronal differentiation
in the development of cell lines from induced pluripotent stem cells. This will be important to move
beyond a static approach and be able to assess asynchronous gene expression behaviors over time when
cell lines differentiate into neuronal types. Full transcriptome dynamic interrogation longitudinally,
over time, is now possible using these stochastic analyses in combination with the various data
repositories featuring disease-associated genes.

The present work merely scratches the surface on possible new ways to interrogate the human
genome in relation to diseases of all types (not just mental or neurological) in order to possibly build
comparative models of outcomes in tissues that can be related to behavioral phenotypic manifestations
of the clinical disorder. In this sense, the work presented here can help bridge the gap between
behavioral description of a mental illness, or a neurological disorder, and its genetic underpinnings via
the affected tissues. Combining this approach with the new wave of digital biomarkers that describe
human behavior digitally at a microscopic level [9,26–29], using objective means and a finer level
of granularity beyond naked eye detection, could help us redefine many psychiatric disorders and
medical conditions under the precision medicine paradigm.

5. Conclusions

We here offer a new roadmap to reframe psychiatry using the precision medicine paradigm.
The new stochastic approach can initiate the steps to connect behavioral phenotypic description from
clinical observation and digital characterizations therein, with the underlying neurobiology of mental
illnesses. Borrowing knowledge from neurology and brain science, it will be possible to shift psychiatry
from an art to a quantitative objective science under the tenets of precision medicine by integrating all
layers of the knowledge network. This would help design personalized targeted treatments utilizing
the person’s genome, localizing the most-affected tissues defining central nervous system functions
and distinguishing those from tissues related to vital organs for systemic functions. This new approach
could potentially mark the beginning of a transformative era in mental health.

6. Patents

E.B.T. holds the US Patent “Methods and Systems for the Diagnoses and Treatments of Nervous
Systems Disorders” combined in this paper as micro-movement spikes (MMS) data type and continuous
gamma probability distribution family empirical estimation.
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Appendix A

TPM explanation from the site: “Transcripts Per Million (TPM) is a normalization method for
RNA-seq, should be read as for every 1,000,000 RNA molecules in the RNA-seq sample, x came from
this gene/transcript. For each transcript in the gene model, the number (raw count) of reads mapped is
divided by the transcript’s length, giving a normalized transcript-level expression. The distribution
of ambiguous reads (between transcripts of the same gene, or between different genes) is handled
by OmicSoft’s RSEM implementation. The sum of ALL normalized transcript expression values is
divided by 1,000,000, to create a scaling factor. Each transcript’s normalized expression is divided
by the scaling factor, which results in the TPM value. Gene-level TPM’s are calculated by summing
up the transcript-level TPM for each gene. In this scaling, the sum of all TPMs (transcript-level
or gene-level) should always equal 1,000,000. For cells that have approximately the same number
of transcripts-per-cell, the TPM expression values can be compared between these cells to estimate
relative abundance. For a given sample, TPM values will linearly scale with FPKM values for genes or
transcripts, but FPKM will not add up to 1,000,000, so TPM can also be thought as FPKM, scaled to
sum to 1,000,000”.

Derivation of Maximum Likelihood Estimation of the rate parameter in the Exponential Distribution:
We estimate the likelihood L(λ|x1, x2, . . . , xn), where xi is the series of counts representing the gene

expression on each given tissue and i ranges from 1 to n, the number of genes.

L(λ|x1, x2, . . . , xn) = λe−λx1λe−λx2 . . . λe−λxn

= λn
(
e−λx1e−λx2 . . . e−λxn

)
= λn

(
e−λ(x1+x2+...+xn)

) (A1)

To obtain the maximum likelihood, we take the derivative of the likelihood in Equation (A1) and
set it to 0 (since the derivative is 0 at the maximum likelihood value).

d
dλ

L(λ|x1, x2, . . . , xn) =
d

dλ
λn
(
e−λ(x1+x2+...+xn)

)
(A2)

We take the log here because the derivative of the function and the derivative of the log of the
function equals 0 at the same point. So, for the purposes of finding where the derivative is 0, the original
function in Equation (A2) and the log of it are interchangeable.

d
dλ log

(
λn
(
e−λ(x1+x2+...+xn)

))
= d

dλ logλn + log
(
e−λ(x1+x2+...+xn)

)
d

dλn logλ− λ(x1 + x2 + . . .+ xn) = 0
n 1
λ − (x1 + x2 + . . .+ xn) = 0
λ = n

(x1+x2+...+xn)

(A3)
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Further, with this result in Equation (A3), we can obtain the maximum likelihood estimate of each
λj, given all the 56,146 genes expressed with some random value for each of the j = 1 : 54 tissues.

Appendix B

Table A1. Gene distributions used in the removal process and literature sources.

Neurological Number of Genes Source
Parkinson’s disease 17 Lit Review [14,16–19]

Ataxia Autosomal Recessive 70 Lit Review [11,12]
Ataxia Autosomal Dominant 46 Lit Review [11,12]

X-chromosome 6 Lit Review [11,12]
Fragile X (SFARI scores) 73 1 (17,11,30,15) SFARI Genes Module

Fragile X Syndrome 194 DisGeNet
FXTAS 62 DisGeNet
Ataxia 813 DisGeNet

cerebellar Ataxia 421 DisGeNet
gait Ataxia 159 DisGeNet

Progressive cerebellar Ataxia 134 DisGeNet
Spinocerebellar Ataxia 145 DisGeNet

Neuropsychiatric (DSM) Number of Genes Source
autism (SFARI scores) 906 1 (144,216,468,78) SFARI Genes Module

Autistic Disorder 1043 DisGeNet
schizophrenia 2697 Lit Review [30–35] and DisGeNet

Mental depression 1468 DisGeNet
depression Unipolar 641 DisGeNet
depression Bipolar 116 DisGeNet

1 SFARI scores for autism and FX genes were also used to assess each scored module separately. FXTAS stands for
fragile X tremor ataxia syndrome.

Table A2. Genes associated with non-neurological diseases.

Non-Neurological Number of Genes Source
Colon Cancer 3669 DisGeNet

Diabetes Mellitus (non-insulin
dependent) 3134 DisGeNet

Estrogen Receptor-Positive Breast
Cancer 510 DisGeNet

Congenital Heart Disease 267 DisGeNet
Hematologic Neoplasm 827 DisGeNet

Systemic Lupus Erythematosus 1883 DisGeNet
Psoriasis 1308 DisGeNet

Irritable Bowel Syndrome 1483 DisGeNet
Mixed Number of Genes Source

Mitochondria 41 Lit Review [13]
Mitochondrial Myopathies 121 DisGeNet

Mitochondrial Diseases 284 DisGeNet
MELAS Syndrome 81 DisGeNet

PTSD 418 DisGeNet
MELAS (a form of dementia) stands for mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes.

The data file name from the GTEx portal https://www.GTExportal.org/home/datasets used in this
paper is GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.csv (accessed on 18
September 2020).

The data file name from the SFARI genes is located at https://gene.sfari.org/database/human-
gene/ and named SFARI-Gene_genes_03-04-2020release_03-05-2020export.csv (accessed on 18
September 2020).

https://www.GTExportal.org/home/datasets
https://gene.sfari.org/database/human-gene/
https://gene.sfari.org/database/human-gene/
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Table A3. The 13 top median-ranked tissues in descending order of ∆λ value, the most-affected tissues
upon removal of the SFARI genes (906) linked to autism from the human GTEx database in column
1. Ataxias, X-chromosome, fragile X, Parkinson’s disease and mitochondrial disease extracted from
the literature and column 3 is the same as in column 1 while removing from the SFARI autism set
14 genes that overlap with ataxias and PD (see those genes listed in Supplementary Table S2). Tissues
are grouped by CNS (brain and spinal cord in blue); muscle-skeletal (green), heart (pink) and peripheral
organs (gray). SFARI autism (11/13 (84.6%) CNS, 1/13 (7.6%) heart and 1/13 (7.6%) peripheral organ);
neurological disorders (10/13 (76.9%) CNS, 2/13 heart (15.3%) and 1/13 (7.6%) muscle-skeletal); SFARI
autism without the overlapping genes from the neurological disorders (11/13 (76.9%) CNS, 1/13 (7.6%)
heart and 1/13 (7.6%) peripheral organs).

SFARI Autism Ataxias, X, FX, PD, Mitochondria SFARI Autism without
Overlapping Ataxia, PD Genes

Putamen Basal Ganglia Hippocampus Putamen Basal Ganglia
Substantia Nigra Amygdala Substantia Nigra

Amygdala Substantia Nigra Amygdala
Hippocampus Heart Left Ventricle Hippocampus

Caudate Basal Ganglia Whole Blood Caudate Basal Ganglia
Anterior Cingulate Cortex Muscle Skeletal Nucleus Accumbent Basal Ganglia

Nucleus Accumbent Basal Ganglia Nucleus Accumbent Basal Ganglia Anterior Cingulate Cortex
Hypothalamus Putamen Basal Ganglia Hypothalamus

Brain Cortex Anterior Cingulate Cortex Brain Cortex
Frontal Cortex Brain Cortex Frontal Cortex

Heart Left Ventricle Hypothalamus Spinal Cord
Spinal Cord Heart Atrial Appendage Heart Left Ventricle

Pancreas Caudate Basal Ganglia Kidney Cortex

Table A4. Most-affected tissues upon removal of the DisGeNet genes associated with autistic disorders
(1043) from the human GTEx database (column 1); ataxia (813 genes) in DisGeNet (column 2) and FX
(194 genes) in DisGeNet (column 3). Convergence between autism and neurological disorders is noted
in the shaded tissues color coded as in Table A4, based on CNS, heart, and peripheral organs.

DisGeNet Autistic Disorders DisGeNet Ataxia FX DisGeNet
Substantia Nigra Heart Left Ventricle Hippocampus

Nucleus Accumbent Basal Ganglia Amygdala Whole Blood
Caudate Basal Ganglia Hippocampus Caudate Basal Ganglia
Putamen Basal Ganglia Whole Blood Substantia Nigra

Hippocampus Putamen Basal Ganglia Putamen Basal Ganglia
Amygdala Substantia Nigra Muscle Skeletal

Heart Left Ventricle Anterior Cingulate Cortex Nucleus Accumbent Basal Ganglia
Spinal Cord Muscle Skeletal Anterior Cingulate Cortex

Hypothalamus Heart Atrial Appendage Amygdala
Pancreas Caudate Basal Ganglia Brain Cortex

Heart Atrial Appendage Nucleus Accumbent Basal Ganglia Heart Left Ventricle
Anterior Cingulate Cortex Brain Cortex Kidney Medulla

Kidney Medulla Hypothalamus Frontal Cortex
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Table A5. Overlapping genes between ataxias (dominant and recessive genes) and Parkinson’s disease
with the genes from the SFARI portal. Scores in parenthesis refer to the scoring of the gene according
to the SFARI site (see Methods for explanation on each category). Syndromic is (4). Supplementary
Figures S5–S18 provide the GTEx violin plots of these gene expressions in the top-ranked tissues
unveiled by our analyses. Supplementary Table S2 compiles additional information on the genes from
various sources in the clinical literature.

SFARI Autism and
Ataxia Dominant

SFARI Autism and
Ataxia Recessive

SFARI Autism and
(Early Onset) PD

CACNA1C (1) KCNJ10 (2) RAB39B (3)
SCN2A (1) WWOX (2)

ATP1A3 (3S) GRID2 (3)
CCDC88C (3) LAMA1 (3)

ITPR1 (3) PEX7 (3)
SYNE1 (3S)

CYP27A1 (4)
SNX14 (4)

Table A6. Most-affected tissues upon removal of the DisGeNet genes associated with different types
of ataxias, color coded by CNS (brain and spinal cord), heart-related, muscle-skeletal, and peripheral
vital organ for systemic functioning. Predominance of CNS is evident, followed by heart-related and
muscle-skeletal and peripheral organs.

Gait Ataxia Spinocerebellar Ataxia Cerebellar Ataxia Progressive-C Ataxia
Heart Left Ventricle Caudate Basal Ganglia Heart Left Ventricle Liver

Substantia Nigra Brain Amygdala Substantia Nigra Heart Left Ventricle
Hippocampus Substantia Nigra Hippocampus Whole Blood

Muscle Skeletal Putamen Basal Ganglia Amygdala Heart Atrial Appendage
Caudate Basal Ganglia N Accumbens BG Whole Blood Putamen Basal Ganglia

N Accumbens BG Ant Cingulate Cortex Putamen Basal Ganglia Substantia Nigra
Whole Blood Hippocampus Hypothalamus Hippocampus

Brain Amygdala Heart Atrial Appendage Ant Cingulate Cortex Brain Amygdala
Kidney Cortex Hypothalamus Caudate Basal Ganglia Muscle Skeletal

Putamen Basal Ganglia Brain Cortex N Accumbens BG Kidney Cortex
Ant Cingulate Cortex Frontal Cortex Brain Cortex Caudate Basal Ganglia

Hypothalamus Heart Left Ventricle Kidney Cortex N Accumbens BG
Heart Atrial Appendage Kidney Cortex Muscle Skeletal Ant Cingulate Cortex

Table A7. Most-affected tissues upon removal of the DisGeNet genes associated with schizophrenia
(2697) from the human GTEx database; depression genes (1468); unipolar depression genes (641); and
bipolar depression genes (116). Convergence between schizophrenia and depression is high, with
maximally affected CNS tissues (10/13), followed by heart-related and muscle-skeletal tissues. Unipolar
and bipolar depression also show systemic effect of vital peripheral organs (N stands for Nucleus, Ant
for Anterior, and BG for Basal Ganglia).

Schizophrenia Depression Unipolar Depression Bipolar Depression
Amygdala Heart Left Ventricle Putamen Basal Ganglia Hippocampus

Putamen Basal Ganglia Heart Atrial Appendage Caudate Basal Ganglia Putamen Basal Ganglia
Heart Left Ventricle Hippocampus Hippocampus Amygdala

Hippocampus Muscle Skeletal Substantia Nigra Caudate Basal Ganglia
Substantia Nigra Putamen Basal Ganglia Kidney Cortex Muscle Skeletal

Caudate Basal Ganglia Caudate Basal Ganglia Amygdala Substantia Nigra
Ant Cingulate Cortex Amygdala Heart Left Ventricle Spinal Cord

N Accumbens BG Pancreas Kidney Medulla Esophagus Muscularis
Hypothalamus Kidney Medulla Brain Cortex Adrenal Gland
Muscle Skeletal Substantia Nigra N Accumbens BG Frontal Cortex

Pancreas Kidney Cortex Colon Transverse Minor Salivary Gland
Brain Cortex Ant Cingulate Cortex Ant Cingulate Cortex Colon Sigmoid

Frontal Cortex N Accumbens BG Heart Atrial Appendage Ant Cingulate Cortex
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Table A8. Most-affected tissues upon removal of the DisGeNet genes associated with colon cancer
(3669) from the human GTEx database; irritable bowel syndrome genes (1483); congenital heart disease
genes (267); and hematologic neoplast genes (827). Color code as in previous tables.

Colon Cancer Irritable Bowel
Syndrome

Congenital Heart
Disease Hematologic Neoplast

Pancreas Heart Left Ventricle Heart Left Ventricle Heart Left Ventricle
Whole Blood Pancreas Heart Atrial Appendage Whole Blood

Stomach Kidney Cortex Kidney Cortex Liver
Adrenal Gland Liver Whole Blood Heart Atrial Appendage

Colon Transverse Muscle Skeletal Kidney Medulla Pancreas
Prostate Heart Atrial Appendage Substantia Nigra Muscle Skeletal

Small Intestine T Kidney Medulla Hypothalamus Kidney Cortex
Spleen Whole Blood Prostate Hippocampus

Minor Salivary Gland Adrenal Gland Hippocampus Kidney Medulla
Fallopian Tube Adipose Viseral Oment Muscle Skeletal Esophagus Mucosa

EBT Lymphocytes Esophagus Mucosa Adipose Visceral O EBT Lymphocytes
SkinNoSunExposed S Colon Transverse Minor Salivary Gland Substantia Nigra

Liver Stomach Pancreas Putamen Basal Ganglia

Table A9. Most-affected tissues upon removal of the DisGeNet genes associated with lupus systemic
erythematosus (1883) from the human GTEx database; psoriasis genes (1308); breast cancer (510);
and diabetes genes (3134). The top half of the highest-ranked tissues show no convergence with
CNS-related tissues found in the mental illnesses and neurological disorders interrogated in this work.
Instead, heart-related tissue, muscle-skeletal tissue and tissues related to peripheral vital organs for
systemic functioning are found. The bottom half of the top ∆λ-ranked tissues are a mixture of tissues in
peripheral bodily organs and brain-related tissues. The latter are from motor control, coordination,
and adaptation subcortical areas and from emotion, memory, and regulatory areas. Color code as in
previous tables.

Systemic Lupus
Erythematosus Psoriasis Breast Cancer Diabetes

Heart Left Ventricle Heart Left Ventricle Pancreas Liver
Whole Blood Liver Heart Left Ventricle Pancreas

Liver Whole Blood Heart Atrial Appendage Heart Atrial Appendage
Heart Atrial Appendage Muscle Skeletal Kidney Medulla Heart Left Ventricle

Pancreas Heart Atrial Appendage Muscle Skeletal Kidney Medulla
Muscle Skeletal Pancreas Whole Blood Kidney Cortex
Kidney Cortex Kidney Cortex Ant Cingulate Cortex Putamen Basal Ganglia
Hippocampus Putamen Basal Ganglia Esophagus Mucosa Substantia Nigra

Kidney Medulla Caudate Basal Ganglia Kidney Cortex Hippocampus
Esophagus Mucosa Adipose Visceral O Adrenal Gland Caudate Basal Ganglia
EBT Lymphocytes Substantia Nigra Esophagus Muscularis Amygdala
Substantia Nigra Esophagus Mucosa Hypothalamus N Accumbens BG

Putamen Basal Ganglia Hypothalamus Putamen Basal Ganglia Hypothalamus
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Table A10. Most-affected tissues upon removal of the DisGeNet genes associated with mitochondrial
disease (284) from the human GTEx database; mitochondrial myopathies genes (121); mitochondrial
encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) (81); Post-Traumatic Stress Disorder
genes (418).

Mitochondrial Disease Mitochondrial
Myopathies MELAS PTSD

Heart Left Ventricle Liver Heart Left Ventricle Caudate Basal Ganglia
Muscle Skeletal Heart Left Ventricle Liver Kidney Medulla

Pancreas. Muscle Skeletal Kidney Cortex Kidney Cortex
Heart Atrial Appendage Hippocampus Pancreas Pancreas

Kidney Cortex Whole Blood Heart Atrial Appendage Putamen Basal Ganglia
Whole Blood Ant Cingulate Cortex Kidney Medulla Heart Left Ventricle

Kidney Medulla Brain Amygdala Putamen Basal Ganglia Hypothalamus
Ant Cingulate Cortex Substantia Nigra Esophagus Mucosa Substantia Nigra

Putamen Basal Ganglia Heart Atrial Appendage Brain Amygdala Heart Atrial Appendage
N Accumbens BG Putamen Basal Ganglia Adipose Visceral Omen N Accumbens BG

Adrenal Gland Spinal Cord Artery Coronary Hippocampus
Hippocampus Pancreas Stomach Colon Sigmoid

Caudate Basal Ganglia Hypothalamus Colon Traverse Amygdala

Table A11. Most-affected tissue in each disease/disorder according to the maximum ∆λ value (See
Figure 13 in the main text).

Disease/Disorder Maximally Affected Tissue

Autism DisGeNet BrainSubstantiaNigra
ASD NoAtaxias BrainPutamenBasalGanglia
Autism SFARI BrainPutamenBasalGanglia
Schizophrenia BrainAmygdala

Depression DisGeNet HeartLeftVentricle
Bipolar Depression BrainHippocampus

Unipolar Depression BrainPutamenBasalGanglia
ATAXIA DisGeNet HeartLeftVentricle

SpinoCerebellar ATAXIA BrainCaudateBasalGanglia
Cerebellar ATAXIA HeartLeftVentricle

ProgressiveCerebellar ATAXIA Liver
Gait ATAXIA HeartLeftVentricle

FAXTAS HeartLeftVentricle
FX BrainHippocampus

PTSD BrainCaudateBasalGanglia
Diabetes Liver

BreastCancer Pancreas
ColonCancer Pancreas

HematologicNeoplast HeartLeftVentricle
CongenitalHeartDisease HeartLeftVentricle

IBD HeartLeftVentricle
LupusSystemicErythomatosus HeartLeftVentricle

Psoriasis HeartLeftVentricle
MItochondriaDisease HeartLeftVentricle

MELAS HeartLeftVentricle
MitochondriaMyopathies Liver
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