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Abstract

The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced
pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to
DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human
stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair
pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of
pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater.
Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation
at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and
note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells
to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated
cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was
highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and
reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a
need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their
pre-clinical and clinical use.
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Introduction

The self-renewal and differentiation properties of human

pluripotent stem cells (pluripotent cells), including both human

embryonic stem cells (hESCs) and induced pluripotent stem cells

(iPSCs), make them promising resources for regenerative medicine.

Nevertheless, before these cells can be used therapeutically, it is

critical to understand the potential risks linked to cellular

maintenance and transmission of genetic information. DNA repair

mechanisms are responsible for preserving genomic integrity in all

cell types. However, reduced repair capacities can lead to genomic

instability, which has been reported in some hESC lines [1,2] and

iPSC lines [3,4]. Therefore, determining the DNA repair capacities

for DNA repair pathways in pluripotent cells is a critical issue for

pre-clinical information, as well as for understanding how

pluripotent cells protect their genomes from damage.

Standard DNA repair pathways in mammalian cells include base

excision repair [5,6], nucleotide excision repair [7,8], homologous

repair, single-strand annealing, non-homologous end-joining repair,

mismatch repair [9], and direct DNA repair [10]. Base excision

repair corrects small DNA alterations, such as oxidized bases, uracil

or alkylating agent damage. Nucleotide excision repair, on the other

hand, removes mainly bulky lesions (e.g., cyclobutane pyrimidine

dimers) by excision of 27–29-mer oligodeoxyribonucleotides.

Nucleotide excision repair is further subdivided into global

genome-nucleotide excision repair and transcription coupled-

nucleotide excision repair. Homologous repair, non-homologous

end-joining, and single-strand annealing are three different

pathways that repair DNA double-strand breaks (DSBs)

[11,12,13]. Error-free homologous repair requires a homologous

DNA template, while non-homologous end-joining does not

necessarily require homology, making it error-prone. Although

single-strand annealing requires a homologous template, it is

mutagenic because it anneals two extensive regions of homology

that flank either side of a DSB, resulting in a deletion. Mismatch

repair scans the genome for mismatched bases or single-strand loops

and direct DNA repair primarily removes methylation adducts.

Although some repair pathways are error-prone, for all of these

mechanisms, inefficient repair can result in mutation or transloca-

tion, thus reducing the fidelity of genomic information transfer.
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Despite substantial progress in the field of pluripotent stem cells,

little is known about the response of pluripotent cells to mutagens

or their DNA repair capacities as compared to differentiated cells.

Furthermore, much of the available information concerning

mutation and DNA repair has been obtained using mouse

embryonic stem cells (mESCs) and not hESCs. mESCs have

some prominent differences that distinguish them from their

differentiated counterparts. mESCs lack a G1 checkpoint [14,15]

and more readily undergo P53-independent apoptosis than do

differentiated cells [16]. Therefore, mESCs are more susceptible to

apoptosis than differentiated mouse cells [17]. However, mESCs

are more resistant to and more efficient at repairing oxidative

damage than differentiated mouse cells [18]. With respect to

mutagenesis, spontaneous mESC mutant frequencies are 100-fold

lower than those of mouse embryonic fibroblasts [19] indicating

that mESCs have enhanced genomic stability compared to

differentiated counterparts. These data suggest that there may

be differences in genomic stability and DNA repair between

hESCs and differentiated human cells.

On the other hand, as compared to mESCs, hESCs have a

functional CDK2-dependent G1/S checkpoint [20,21]. However,

exposure of hESCs to high energy ionizing radiation at fluxes less

than 1 Gy induced apoptosis that was associated with damage

responses mediated by ATM, NBS1, CHEK2, and P53, in hESCs,

but not in fibroblasts [22,23]. Additional studies also suggest that

hESCs [24] and fibroblasts [17] exhibit different repair responses to

ionizing radiation [25] and that hESCs use homologous repair, not

non-homologous end joining, as the dominant DSB repair pathway

[23,26,27]. Single cell gel electrophoresis (comet assay) comparing

the number of DNA strand breaks following exposure to hydrogen

peroxide (H2O2), ultraviolet C (UVC) radiation (254 nm), c-

radiation, or DNA cross-linking agents, showed that breaks were

generally repaired faster in two hESC lines examined than in

differentiated human cell lines [25]. Taken together, these results

support the need to investigate further the response to DNA

damage, as well as the pathway-specific DNA repair capacities of

human embryonic and induced pluripotent stem cells. In particular,

data are lacking on the comparison of DNA repair over a range of

pathways in multiple human pluripotent stem cell lines. More

importantly, minimal data exist for reprogrammed iPSCs, which

could serve as better candidates for clinical use if they have similar

genomic stability as hESCs and maintain their pluripotency.

In this study, DNA repair was monitored in several pluripotent

and differentiated cell lines and DNA repair pathways to examine

sources of genomic instability in hESCs and iPSCs. These assays

encompassed nucleotide excision repair, base excision repair, non-

homologous end joining, single-strand annealing, and microsatel-

lite instability. Repair capacities from hESCs and iPSCs were

compared to each other and to those of non-pluripotent cells.

Evaluation upon exposure to DNA damaging agents such as

UVC, dimethylsulfate (DMS) and c-radiation indicated that

pluripotent cells exhibited less damage than non-pluripotent cells,

but despite lower damage levels, pluripotent cells were more prone

to a type of apoptosis that could be linked to anoikis [28]. This

investigation provides a basis for evaluating DNA repair capacities

in pluripotent cells and emphasizes the need to evaluate the DNA

repair capacity of each pluripotent cell line prior to laboratory and

clinical applications.

Materials and Methods

Cell lines
hESC lines H9, BG01 and BG01V were obtained from WiCell,

Bresagen (NovoCell) and GlobalStem, respectively. Neural stem

cell line NSC09, derived from H9, was obtained from Millipore.

Induced pluripotent stem cell line iPSC1, derived from human

foreskin fibroblast line CRL-2097 using lentiviral vectors, was

obtained from Dr. James A. Thomson (University of Wisconsin-

Madison) [29]. iPSC2, derived from a human lung fibroblast line

using the same retroviral introduced factors, was obtained from

Dr. Jiing-Kuan Yee (Beckman Research Institute). Non-pluripo-

tent IMR90 lung fibroblasts and CRL-2097 human foreskin

fibroblasts were purchased from ATCC, GM03348E human

foreskin diploid fibroblasts (HF02) were obtained from the Coriell

Cell Repository and HF55 (HF01) and HF51 human neonatal

foreskin fibroblasts were derived from discarded tissue provided by

Arcadia Methodist Hospital from an approved protocol (City of

Hope IRB# 92006). Pluripotent stem cell characterization is

presented in Figures S1 and S2.

Cell culture
All cell lines were cultured as recommended. Specifically,

hESCs (H9, BG01 and BG01V) and iPSCs (iPSC1 and iPSC2)

were cultured in mTeSR1 (StemCell Technology) on hESC-

qualified Matrigel (BD Biosciences) or on irradiated mouse

embryonic fibroblasts or human fibroblasts (HFs) in conditioned

hESC medium (DMEM/F12) (Cellgro, 10-092-CM4), supple-

mented with 20% knock-out serum replacement, 0.1 mM non-

essential amino acids, 2 mM L-glutamine, 20 ng/mL fibroblast

growth factor (bFGF) and 0.1 mM 2-mecaptoethanol. Medium

was changed daily, and cells were either mechanically harvested,

or passaged with Accutase. Rho-associated kinase (ROCK)

inhibitor Y-27632 was added transiently at 10 mM to the culture

medium to improve iPSC2 cell survival during passaging. Prior to

exposure to DNA damaging agents or transfection, pluripotent

cells were transferred to Matrigel, unless otherwise noted, to

remove differentiated fibroblast feeder cells. NSC09 cells were

cultured in Neurobasal Medium (Invitrogen, 21103-049) condi-

tioned with 2 mM L-glutamine, 0.1 mM non-essential amino

acids, 1X B27, Leukemia inhibitory factor (LIF, 1,000 U/mL) and

bFGF (20 ng/mL). Similar to above, medium was changed daily

and cells were passaged with Accutase. GM03348E cells (HF02)

were cultured in Minimal Essential Medium (MEM) a with

Glutamax-1 (Gibco, 32571-036) supplemented with 15% fetal

bovine serum (FBS) and 0.1 mM non-essential amino acids.

Medium was changed daily and cells were passaged with 0.05%

Trypsin-EDTA. IMR90 lung fibroblasts were cultured in MEM

containing Earle’s Salts and L-glutamine (Cellgro, 10-010-CV),

supplemented with 10% FBS, and passaged with 0.25% Trypsin-

EDTA. HF55 (HF01) and HF51 were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) (Cellgro, 15-017-CV) supple-

mented with 10% FBS and 2 mM L-glutamine and passaged with

0.25% Trypsin-EDTA.

Plasmids and antibodies
pCMS-end, pCMS-hom-stop, pEGFP, and pEYFP-tub were

gifts from Dr. R.H. Schiestl (UCLA) [30,31]. pRL-CMV was

purchased from Promega and pM1-Luc from Roche. Antibodies

were purchased from vendors as follows: Santa Cruz: rabbit anti-

OCT4; Millipore: mouse anti-Oct4, goat anti-SOX2, rabbit and

mouse anti-cH2AX; Abcam: rabbit anti-NANOG, mouse anti-

Dnmt3b; Developmental Studies Hybridoma Bank: mouse anti-

SSEA4; Cell Signaling Technology: rabbit anti-caspase 3;

Kamiya: mouse anti-CPD, mouse anti-6,4 photoproducts; Sigma

Aldrich: mouse anti-actin; Invitrogen: Alexa 488, 568 and 647

donkey anti-mouse, rabbit and goat IgG(H+L); and LiCor

Biosciences: IR Dye800 and 680 goat anti-mouse and rabbit

(secondary antibodies for dot blots and Western blots).
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Single Cell Gel Electrophoresis (Comet Assay). The comet assay

was performed using alkaline conditions, following the recom-

mended protocol of the Trevigen Comet Assay Kit. Images were

collected on an Olympus IX81 automated inverted fluorescence

microscope and comets (sample size = 100) were quantified by

measuring the %DNA in each comet tail, using CometScore

software (TriTek Corp).

DNA dot blot assay
Cells were exposed to UVC radiation (10 or 20 J/m2) from a

germicidal lamp as previously described [32]. After treatment, cells

were either harvested immediately to determine DNA damage or

allowed to repair for defined periods. Genomic DNA was extracted

using the DNeasy DNA extraction kit (Qiagen), following the

manufacturer’s instructions or by standard phenol/chloroform

extraction methods, as described [33]. Concentrations of cyclobu-

tane pyrimidine dimers (CPD) and 6,4 pyrimidine-pyrimidone

adducts (6,4-PP) were determined using immunological detection

with DNA South-Western dot blots [34,35]. Residual RNA was

removed by DNase-free RNase A (1 mg/mL), followed by a final

extraction with phenol:chloroform:isoamyl alcohol 1:1 and centri-

fugation (6666 g, 5 min, room temperature [RT]). DNA in the

aqueous phase was then precipitated by addition of 3 volumes of ice-

cold 100% ethanol, followed by a 70% ethanol wash. Genomic

DNA was air-dried and dissolved in 10 mM Tris-EDTA buffer

(pH 8.0) (several h, RT or overnight, 4u C). Concentrations were

determined using a NanoDrop spectrophotometer. For the DNA

dot blot assay, DNA samples were prepared at 1 ng/mL in DNA

denaturing solution (1.5 M NaCl, 0.5 M NaOH). A positively-

charged, nylon membrane (Roche) was hydrated and fixed in a dot

blot apparatus (BioRad) with a Convertible Filtration Manifold

System (Life Technologies). DNA (100 ng in 100 mL) was added

into three replicate wells for each sample and an equal volume of

150 mM NaCl, 50 mM Tris-HCl pH 7.6 (16TBS) was added to

all other wells not containing sample. After incubation (30 min), a

vacuum was used to draw out samples and the membrane was

washed (365 min) with 16TBS, using a vacuum to remove each of

the washes. The membrane was then air dried for 15 min, after

which it was incubated with 2% blocking solution (Roche), diluted

in 16TBS (1 h, RT). The membrane was incubated with primary

antibody (mouse anti-CPD or 6,4 photoproduct; 1:2000 (Kamiya)

prepared in 1% blocking solution (1 h, RT or overnight, 4u C),

washed 3 times for 5 min each with 16TBS-T (Tween-20, 1:1000),

and incubated with secondary antibody (near-IR dye 800 CW goat

anti-mouse IgG; 1:20,000) in 1% blocking solution (1 h, RT). After

incubation with secondary IR-antibody, the membrane was washed

again in 16 TBS-T (3 times, each for 5 min), and subjected to

infrared detection by a Li-Cor Odyssey Infrared Imager. The

images were quantified by TotalLab Analysis software (TotalLab

Ltd.). For DNA repair assays using antibody detection, the initial

ESS/Mb at time = 0 h obtained were: H9, 4.660.5; BG01,

6.360.1; iPSC1, 6.260.2; iPSC2, 3.260.2; human skin fibroblasts

(CRL-2097), 25.561.1; human lung fibroblasts (IMR90), 14.560.3;

and human foreskin fibroblasts (HF51), 13.960.4.

Live Cell Imaging. UVC-irradiated (or unirradiated) H9 cells,

on Matrigel-coated chamber slides, were imaged in the live cell

chamber (37u C; 5% CO2) of a Zeiss Axio Observer Z1 inverted

microscope and live-cell imaging station. DIC images were taken

at 30 min intervals. Images and movies were compiled with Image

Pro 7.0.

Annexin V apoptosis assay
Apoptosis was assessed using the Annexin V-FITC Apoptosis

Detection Kit I (BD Pharmingen). H9 cells, in cold 16PBS, were

irradiated with UVC and refreshed in mTeSR1 immediately after

exposure. Floating and adherent cells were collected separately at

3 and 22 h by centrifugation (5006 g, 5 min) or by exposure to

Accutase followed by centrifugation (5006g, 5 min), respectively.

Cell pellets were washed once with and resuspended in 0.5 mL 16
PBS prior to addition of 5 mL Annexin V-FITC and 5 mL

propidium iodide (PI). Control unstained, Annexin V only and PI

only cells were also prepared to establish gating parameters. FACS

analysis was performed on a MoFloTM MLS cell sorter and data

processed with Summit v4.3.

DNA fragmentation to detect apoptosis
H9 or iPSC2 cells (1–26106 cells) in 35-mm culture dishes were

irradiated with UVC (0 or 10 J/m2) in 16PBS and incubated in

fresh medium (3, 5, and 24 h, 37u C). Samples were collected as

control (0 J/m2) or treated (10 J/m2) at each time point.

Additionally, cells were treated with staurosporine (STS) (1 mM,

3 h, 37u C) as a positive control for apoptosis. Medium containing

floating cells and attached cells was centrifuged (10006 g, 5 min)

and collected as the floating fraction (F) or attached fraction (A).

DNA was isolated using DNeasy Blood and Tissue kit (Qiagen),

heated (10 min, 65u C), and immediately loaded onto a 1%

agarose gel for electrophoresis (100 V, 2 h).

Western blot analysis
H9 or iPSC2 cells (1–26106 cells) in 35-mm culture dishes were

irradiated in 16PBS with UVC (0 or 10 J/m2) and incubated in

fresh medium (3, 5 and 24 h, 37u C). Samples were collected as

control (0 J/m2) or treated (10 J/m2) at each time point.

Additionally, cells were treated with STS (1 mM, 3 h, 37u C) as

a positive control for apoptosis. The medium containing non-

adherent cells was centrifuged (5006 g, 10 min) to pellet floating

cells. To harvest protein, 100–200 mL RIPA buffer (50 mM Tris-

HCl [pH 7.4], 150 mM NaCl, 1% NP40, 0.25% Na-deoxycho-

late, 1 mM PMSF, protease inhibitor cocktail and phosphatase

inhibitor cocktail) was added to floating cell pellets and to the

remaining adherent cells, samples were incubated on ice (10 min)

and centrifuged (14,0006g, 10 min, 4Cu). Protein concentrations

were determined using a Coomassie Blue protein assay (BioRad)

[36]. Sample (50 mg) was combined with 56 SDS-PAGE loading

buffer and dH2O, heated at 95uC for 5 min and loaded onto a 4–

15% Mini Protean TGX SDS-PAGE gel (BioRad). Samples were

transferred to a 0.2 mm PVDF membrane at 25 V for 3 h, using a

wet electro-transfer method (0.2 M glycine, 25 mM Tris and 20%

methanol). The membrane was blocked in Li-Cor Odyssey

Infrared Imaging System Blocking Buffer (Li-Cor) (1 h, RT or

overnight, 4u C), followed by incubation with anti-actin (1:20,000)

and anti-caspase 3 (1:1000) primary antibodies (2 h, RT or

overnight, 4uC) in blocking solution (50% [v/v] Odyssey Blocking

Buffer/16TBS). After primary antibody incubation, membranes

were washed (365 min) in 16 TBS-T (Tris-buffered saline

containing Tween-20 [1:1000]) prior to addition of near-infrared

secondary antibodies, diluted 1:10,000, in blocking solution, as

described for the primary antibody. Incubation in secondary

antibody was conducted for 1 h at room temperature followed by

16TBS-T washes (365 min). Detection was carried out using an

Odyssey Imaging Station (Li-Cor) and band intensities were

quantified with TotalLab Analysis software (TotalLab Ltd.).

Cell transfection
Optimal transfection conditions for H9, neural stem cells, and

other pluripotent cells were determined empirically by at least

three different programs using the Amaxa Nucleofector Kit II

(Lonza) for hESCs. Cells were harvested with Accutase, centri-
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fuged (1006 g, 10 min) and washed once with mTeSR1. Cell

number was determined and cells were resuspended in 100 mL

hESC Nucleofection Solution 2, mixed with 1–2 mg DNA/16106

cells and nucleofected with a set program (A-23 for H9 and iPSC1,

A-13 for BG01, and B-16 for iPSC2 and BG01V). Cells were

incubated in 500 mL pre-warmed RPMI 160 medium and

immediately transferred to Matrigel pre-coated multi-well plates

containing 1 mL mTeSR1 medium. Transfection of fibroblasts

was performed using Lipofectamine 2000 according to recom-

mendations from the manufacturer (Invitrogen).

Microsatellite instability assay
Template DNA was prepared as described for the DNA Dot

Blot Assay. The primers used in the assay are listed in Table S1

[37,38]. PCR conditions were: 5 U/mL Taq polymerase (BioRad),

0.25 mM dNTP mix, 1 mM primers, 40 ng DNA template in 16
reaction buffer, run in 10 mL reactions for 30 cycles (94u C, 50 sec;

56u C, 50 sec; 72u C, 1 min) after denaturing at 95u C for 5 min.

Product was analyzed on an ABI Prism 377 Sequencer and results

were scored with GeneMapper software.

Plasmid lesion assay
To determine the number of UVC radiation-generated lesions

in plasmids, pM1-Luc plasmid (10 mg per sample) was irradiated

with 200 J/m2 UVC and incubated (2 h, 37u C) with or without

1 mL T4 UV endonuclease (laboratory stock, 40 mg/mL). To

determine levels of damage induced by reactive oxygen species

photosensitization, pM1-Luc plasmid (10 mg per sample) in

10 mM sodium phosphate buffer (pH 7.4), containing 10 mM

methylene blue was exposed to visible light (100 Watts, 10 cm

distance, 3 min). Following exposure, plasmid was ethanol

precipitated and incubated (2 h, 37u C) with 0.5 mL (2 U)

formamidopyrimidine-DNA glycosylase (Fpg) (Trevigen). After

incubation with T4 UV endonuclease or Fpg, samples were

analyzed on 1% agarose gel. Damage sites were quantified with

ImageJ software and the number of breaks (n) per molecule was

calculated by the formula n = 2ln e, e being the fraction of the

remaining supercoiled DNA molecules [39].

Host cell reactivation (HCR) assay for nucleotide excision
repair and base excision repair DNA repair capacities

The Dual Luciferase Assay (Promega, E1910) was used to monitor

DNA repair capacities for nucleotide or base excision repair. Cells

were transfected (fibroblasts) or nucleofected (pluripotent and NSCs)

with 2.4 mg pM1-Luc (damaged or undamaged with UVC or

reactive oxygen species photosensitization as described in the

previous section) and 0.24 mg pRL-CMV (internal control) per

16106 cells, and harvested after 24 h to quantify Firefly and Renilla

luciferase activities. Briefly, transfected cells were washed with 16
PBS and lysed in 16 PLB buffer (passive lysis buffer supplied by

Promega) (250 mL/well in 12-well plates for pluripotent cells and 6-

well plates for non-pluripotent cells) on a shaking platform (20 min,

RT). Triplicate samples from each lysate (20 mL per well) were

transferred to individual wells of a 96-well plate, sequentially mixed

with 100 mL Luciferase Assay Reagent II (LAR II) and 100 mL Stop

and Glo in 96-well plates. Samples were analyzed with a Fluoroskan

Ascent FL (Thermo Electron Corporation). Each assay was

performed independently three times and the data combined

according to the manufacturer’s instructions (Promega).

HCR assay for double-strand DNA repair capacity
Prior to the HCR assay, pCMS-end (non-homologous end-

joining) and pCMS-hom-stop (single-strand annealing) plasmids

were cleaved with Xho I and Apa I, or with Xho I and Sac II

[30,31], respectively. The double restriction-digested, linearized

plasmids were confirmed as linear by verifying that the Escherichia

coli transformation efficiency was less than 0.1% as compared to

uncleaved plasmids. Cells were transfected (fibroblasts) or

nucleofected (pluripotent cells and NSCs) with pEGFP, pEYFP,

pCMS-end, pCMS-hom-stop, and double-digested pCMS-end or

pCMS-hom-stop and harvested by trypsin or Accutase 24 h later.

Upon harvesting, cells were stained with SYTOX red, to assess

cell viability, resuspended in 0.5 mL cold 16PBS and subjected to

FACS analysis using a MoFloTM MLS cell sorter. For each assay

performed, an untransfected control and simultaneous transfection

controls (pEGFP plasmid only and pEYFP-tub plasmid only) were

analyzed to establish the correct gating and compensation settings.

The laser settings used for GFP/YFP/Sytox Red were as follows:

GFP: laser excitation wavelength 488 nm (500 mW) with an

HQ500/10 emission filter, YFP: laser excitation wavelength

530 nm (50 mW) with an HQ600/30 emission filter, Sytox Red:

laser excitation: 647 nm (60 mW) with an HQ680/30 emission

filter. Data were analyzed using Summit v4.3 software (Dako

Colorado, Inc.).

Other techniques used are described in Materials and
Methods S1.

Results

DNA damage from UVC is less in pluripotent cells than in
fibroblasts

As a prelude to determining the DNA repair capacity for

nucleotide excision repair in pluripotent cells, we examined DNA

damage induced by UVC radiation (short wavelength, 100–

280 nm). The levels of cyclobutane pyrimidine dimer (CPD) DNA

adducts induced by UVC radiation were quantitatively measured

using antibodies. H9 and BG01 ES, iPSC1 and iPSC2 induced-

pluripotent, and IMR90 and CRL-2097 fibroblast cells were

irradiated with UVC (10 or 20 J/m2), genomic DNA was isolated

immediately after UVC exposure, and CPD adduct densities

established (Figures 1A and S4A). CPD enzyme sensitive sites

per megabase (ESS/Mb), an indication of adduct levels, were

determined via alkaline gel analysis of UVC-irradiated l DNA

[40] to standardize DNA samples (Figures S3A and S3B). The

numbers of CPD-ESS/Mb induced in pluripotent cells were 40–

50% less at 10 J/m2 and 50–70% less at 20 J/m2 than those in

both fibroblast lines evaluated (Figures 1A and S4A). Therefore,

pluripotent cells manifest lower CPD levels than fibroblasts

exposed to equal UVC fluxes.

Reactive oxygen species-induced DNA damage is less in
hESCs than in iPSCs and fibroblasts

Since UVC damage induced in pluripotent cells was less than

that induced in fibroblasts, we examined the effect of treatment

with other DNA damaging agents that require different pathways

for repair, including hydrogen peroxide (H2O2), which causes

damage that is repaired by base excision repair. Initially, hESCs,

iPSCs and fibroblasts were treated using an H2O2 concentration

(100 mM) that is sub-lethal to fibroblasts. Immediately after

treatment, cells were harvested, lysed and analyzed by the alkaline

comet assay. The relative levels of single-strand DNA breaks

(SSBs), indicative of initial DNA repair were quantified as the

percentage of DNA in the comet tail (%DNA Tail). Fibroblasts

and iPSCs showed substantial increases in the number of SSBs (8-

to 20-fold increase) after treatment as compared to untreated

controls, whereas H9 cells showed only a 3-fold increase

(Figures 1B and S4B). Similar to results for UVC radiation,
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H9 ESCs exposed to H2O2 incurred less damage than fibroblasts,

but, in contrast, iPSCs had damage levels similar to those for

fibroblasts.

In addition to generation of adducts repaired by the base

excision repair pathway, treatment with H2O2 can lead to DSBs.

Phosphorylation of Ser139 on histone H2AX is an early indicator

of DSB repair that is formed at nuclear foci [41]. Therefore, to

assess DSB formation as a result of H2O2 treatment in hESCs,

iPSCs and fibroblasts, immunohistochemistry was used to visualize

cH2AX foci formation. The number of cH2AX foci that were

observed in fibroblasts was greater than in hESCs and iPSCs,

indicating that fibroblasts had more strand breaks when exposed

to the same amount of H2O2 damage (Figure S5). In contrast to

results obtained with the comet assay, iPSCs showed 3- to 4-fold

fewer cH2AX foci than did fibroblasts. However, iPSCs exhibited

an ,5-fold increase in cH2AX foci, compared to untreated cells

and ,2-fold more cH2AX foci than hESCs. These data are

consistent with greater protection against reactive oxygen species-

induced damage in pluripotent cells than in fibroblasts, with the

highest protection observed in hESCs. The fold differences in

cH2AX foci observed between iPSCs and fibroblasts are greater

than those observed in the comet assay. This difference may be

because the cH2AX foci assay generally scores DNA DSBs,

whereas the alkaline comet assay monitors SSBs. These results

indicate that for the cell types examined, the number of DNA

strand breaks (either SSBs or DSBs) associated with base excision

repair caused by H2O2 exposure was less in hESCs than in iPSCs

or fibroblasts, and iPSCs had fewer or similar numbers of breaks as

fibroblasts, depending on the type of break.

Dimethyl sulfate (DMS)-induced DNA damage is variable
and dependent on the pluripotent cell line

In addition to repair of reactive oxygen species-induced damage

that occurs via base excision repair, we also evaluated damage

generated by DMS. DMS generates principally 7-methylguanine

and 3-methyladenine [42] DNA damage and these adducts also

generate single-strand DNA breaks as intermediates during base

excision repair. Therefore, hESCs, iPSCs and fibroblasts were

incubated with DMS (0–100 mM) for 30 min and harvested

immediately for alkaline comet assay analysis. When treated with

10 mM DMS, pluripotent and differentiated cells exhibited similar

damage levels, quantified as %DNA Tail (Figures 1C and S4C).

However, at 50 mM DMS, the %DNA Tail differed between the

two iPSC lines, with iPSC1 producing larger comets than all other

cell lines evaluated, including the parental line CRL-2097,

whereas iPSC2 exhibited the lowest %DNA Tail. The %DNA

Tail of H9 cells was lower than those of iPSC1 and IMR90, but

comparable to that of CRL-2097 fibroblasts. At 100 mM DMS,

the differences observed in the %DNA Tail for all the cell lines

were less pronounced, but maintained a pattern similar to that at

50 mM DMS. Therefore, there were no clear differences in the

damage produced by DMS in pluripotent and non-pluripotent

cells. In contrast to H2O2-induced single-strand breaks, after DMS

treatment, the differences in single-strand breaks observed

depended on the cell line and not on whether the cells were

pluripotent or differentiated.

Global genome-nucleotide excision repair of UVC-
induced CPDs is faster in pluripotent cells than in
fibroblasts

Most CPD damage (,70%) in humans is repaired by global

genome-nucleotide excision repair [7]. To monitor global

genome-nucleotide excision repair, we exposed pluripotent cells

(H9, BG01, iPSC1 and iPSC2) and fibroblasts (IMR90, CRL-

2097 and HF51) to 10 J/m2 UVC radiation, collected adherent

cells at 0, 6, 12, and 24 h post-treatment, and isolated genomic

DNA for immunoblot analysis (Figures 2 and S6). We observed

that over 90% of adherent cells maintained intact cell membranes,

as determined by Trypan blue exclusion (data not shown). Despite

the presence of fewer CPD-ESS/Mb in pluripotent cells than in

fibroblasts immediately after irradiation, the DNA repair rate in

pluripotent cells was greater. Specifically, H9 and BG01 hESCs

were almost two times faster at repair (Figure 2A), and iPSC1 and

2 three times faster, than were fibroblasts (Figure 2B). Interest-

ingly, for hESCs, less than 10% of CPD repair had occurred

Figure 1. UVC-, hydrogen peroxide (H2O2)- and dimethylsul-
fate (DMS)-induced damage in pluripotent cells and fibro-
blasts. (A) Quantification of enzyme sensitive sites per mega base (ESS/
Mb) in dot blot analysis of UVC-induced (10 or 20 J/m2) CPD adducts in
pluripotent cells and fibroblasts. Values are mean6standard error of the
mean (SEM) (n = 3). (B) Quantification of the percent DNA in comet tails
for hESCs, iPSCs and fibroblasts treated with 100 mM H2O2. The sample
size is 100 cells for each cell type and treatment; values are mean6SEM
(n = 3). (C) Quantification of the percent of DNA in comet tails for hESCs
and human skin fibroblasts treated with the indicated concentrations of
DMS. The sample size is 100 cells for each cell type and treatment;
values are mean6SEM (n = 3).
doi:10.1371/journal.pone.0030541.g001
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within 6 h after irradiation, with most repair occurring between 6

and 12 h. This contrasts with the rate of repair in iPSCs, which

had repaired 20% of CPDs by 6 h, but had a linear type response

over the 24 h period examined. This difference in the CPD repair

kinetics could indicate differences in the mechanism of global

genome-nucleotide excision repair between hESCs and iPSCs. We

also monitored repair of 6,4 pyrimidine-pyrimidone photoprod-

ucts (6,4 PP), another UVC-induced DNA adduct. Repair of 6,4

PP was rapid for fibroblasts and pluripotent cells, with all of the

adducts removed in under 2 h (data not shown). Therefore, global

genome-nucleotide excision repair of CPDs induced by UVC

damage was significantly greater in pluripotent cells than in

fibroblasts, whereas no difference among the cell lines was

observed for 6,4 PP repair rates.

Transcription coupled-nucleotide excision repair of UVC-
induced damage is faster in pluripotent cells than in non-
pluripotent cells

Since pluripotent cells exhibit low DNA damage in response to

direct UVC treatment, we used host cell reactivation assays to

evaluate transcription coupled-nucleotide excision DNA repair

capacity in H9, BG01, BG01V, iPSC1, iPSC2, CRL-2097,

IMR90 and HF02 cells. Firefly luciferase plasmid (pM1-Luc)

was damaged with UVC radiation and levels of CPD damage

were determined by cleavage of supercoiled DNA with T4 UV

endonuclease (Figure 3A). An undamaged Renilla luciferase-

expressing plasmid (pRL-CMV) was used as a control to normalize

for transfection efficiency. The damaged firefly luciferase plasmid

and undamaged control Renilla luciferase-expressing plasmid

were co-transfected into the above-mentioned cells. At 24 h post-

transfection, cells were harvested, lysates prepared, and firefly and

Renilla luciferase activities determined using the cell extracts. The

relative luciferase activities were compared to those obtained using

undamaged pRL-CMV. The ratio of firefly and Renilla luciferase

activities generated in cells co-transfected with the damaged pM1-

Luc and control pRL-CMV was compared to the luciferase

activities generated in cells co-transfected with the undamaged

plasmids to reflect the ratio of repaired plasmid to intact plasmid

(Figure 3B), which is related to the cellular DNA repair capacity.

After transfection, the CRL-2097, IMR90 and HF02 fibroblast

cell lines had relative luciferase activities just under 80, 60, and

70%, respectively, similar to that of BG01V (70%), while H9 and

BG01 hESCs had relative luciferase activities between 80–100%.

In contrast, iPSC1 and iPSC2 induced pluripotent cells exhibited

significantly different relative luciferase activities, ,25% and 80%,

respectively. Therefore, a generalization on the UVC-transcrip-

tion coupled nucleotide DNA repair capacity with respect to

pluripotency is not possible. These results indicate that recovery of

the firefly luciferase activity is dependent on the cell line, with

BG01 and BG01V recovery slower than that for H9. Surprisingly,

although both iPSC lines were derived from fibroblasts and with

the same reprogramming factors, their DNA repair capacities

were notably different.

DNA repair capacity in base excision repair is cell line
dependent

Similar to UVC, little damage was observed following H2O2

exposure of hESCs. Therefore, to monitor transcription coupled-

base excision repair, we used a host cell reactivation assay

analogous to that used for transcription coupled-nucleotide

excision repair, described above, but using methylene blue and

visible light to generate principally 8-oxoguanine in vitro [43]. Total

8-oxoguanine in the pM1-Luc plasmid used for transfection was

estimated based on the DNA strand break frequencies induced

using Fpg (Figure 3C). Twenty-four hours after DNA damage

induction, H9, BG01V and iPSC2 exhibited superior base

excision repair, with over 50% of relative firefly luciferase activity

recovered, compared to CRL-2097, IMR90 and HF02 fibroblasts,

which recovered between 15 and 40% of relative firefly luciferase

activity (Figure 3D). Similar to transcription coupled-nucleotide

excision repair activity, the iPSC1 cell line displayed the lowest

repair efficiency. Surprisingly, the base excision repair capacity of

hESC line BG01 was more similar to that of IMR90 and iPSC1

than that of the H9 hESC line. Therefore, simple classification of

base excision repair solely on pluripotency is not possible.

Non-homologous end joining DSB DNA repair capacities
in pluripotent cells and fibroblasts are comparable

Non-homologous end joining is an error prone pathway for

repair of DSBs. Non-homologous end joining was monitored using

a transient transfection assay that did not require integration and

selection (Figure 4A) [31]. In this analysis the GFP+YFP

quadrant indicates cells that have undergone repair and produce

not only the control GFP, but also the protein from the repaired

YFP coding sequence. As a control, the FACS analysis of the

uncleaved pCMS-end plasmid transfected into BG01 cells showed

a strong GFP+YFP quadrant (Figure 4B, top panel). After

cleavage with Apa I and Xho I, the reporter plasmid was

transfected into BG01 cells, which showed significant YFP+GFP

signal recovery after repair (Figure 4B, bottom panel). The DNA

repair capacities associated with non-homologous end joining for

the different cell lines showed that aside from iPSC1, the percent

of non-homologous end joining repair in the cell lines investigated

was less than 60% (Figure 4C). In contrast, iPSC1 non-

homologous end joining repair was nearly 90%, a significant

difference when compared to the other pluripotent and fibroblasts

cells evaluated. The greater non-homologous end joining DNA

repair capacity of iPSC1 also differed from the lower DNA repair

Figure 2. Global-genome nucleotide excision repair of UV-
induced cyclobutane pyrimidine dimers (CPDs) in pluripotent
cells. Quantification of global genome-nucleotide excision repair of
UVC damage as percent of CPD repair in (A) ESCs and fibroblasts, and
(B) iPSCs and their parental fibroblast lines. Values are mean6SEM
(n = 3). The initial number of ESS/Mb following 10 J/m2 UVC treatment
in each cell line were: H9, 4.660.5; BG01, 6.360.1; iPSC1, 6.260.2; iPSC2,
3.260.2; human skin fibroblasts (CRL-2097), 25.561.1; human lung
fibroblasts (IMR90), 14.560.3; and human foreskin fibroblasts (HF51),
13.960.4.
doi:10.1371/journal.pone.0030541.g002
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capacities observed for this cell line in the nucleotide and base

excision repair host cell reactivation assays. Those lower DNA

repair capacities suggest that iPSC1 would manifest greater

genomic instability than the other pluripotent cell lines analyzed.

Taken together, the non-homologous end joining DNA repair

capacities indicate that non-homologous end joining is similar

among hESC and fibroblast cell lines.

Single-strand annealing DSB repair DNA repair capacities
are lower in pluripotent cells than in fibroblasts

Single-strand annealing is a form of homologous recombination

that involves annealing of extensive regions of homology that flank

a DSB [44], which causes a deletion between the homologous

segments, and hence is inherently mutagenic [45]. Using an assay

similar to that described for non-homologous end joining, single-

strand annealing was measured using a transfection-based assay in

which the YFP coding sequence was restored by homologous

regions spanning ,300 bp on either side of the YFP-coding

sequence (Figure 5A). Results from this assay using BG01 hESCs

showed that transfection with uncleaved control plasmids

generated almost no cells that co-expressed YFP and the control

GFP proteins (Figure 5B, top panel). But a significant number of

BG01 cells transfected with cleaved pCMS-hom-stop expressed

YFP and GFP, representative of their single-strand annealing

DNA repair capacity (Figure 5B, bottom panel). Comparison of

the FACS analyses yielded a measurement of the single-strand

annealing repair percentage (Figure 5C). The single-strand

annealing DNA repair capacities of all pluripotent cells were

consistently lower than those of fibroblasts. That DNA repair

capacity was significantly lower (,2-fold) in BG01 and both iPSC

lines, suggests that single-strand annealing was not a preferred

repair pathway for pluripotent cells. Therefore, the lower single-

strand annealing repair capacities observed for pluripotent cells

suggest that pluripotent cells develop fewer mutations due to that

pathway as compared to differentiated cells.

One iPSC line manifests microsatellite instability
Microsatellite instability (MSI) is often associated with defects in

mismatch repair or DNA polymerase errors, which have been

closely linked to genetic diseases that predispose individuals to

cancer. Generally, identification of MSI requires comparison to

reference cells that serve as an indicator of change from a starting

point. Therefore, we surveyed five autosomal markers of MSI in

eight cell lines, as four groups based on the relation among the cell

lines (pairs consisted of CRL-2097/iPSC1, IMR90/iPSC2, H9/

NSC9, and BG01/BG01V) (Figure 6). To evaluate differences or

defects in microsatellites, the selected primer sets (Table S1)

spanning regions near either mismatch repair genes (MSH2 [MutS

Homologue 2], MLH1 [MutL Homologue 1]) or tumor

suppressor genes (NF1 [neurofibromin 1], APC [adenomatous

polyposis coli]) were used [37,38]. The iPSC1 line, at passage 24,

exhibited two loci with MSI, APC and hMLH1 (marked by black

Figure 3. Transcription-coupled nucleotide and base excision repair in pluripotent cells determined using host cell reactivation. (A)
Determination of the number of ESS/pM1-Luc plasmid induced by 200 J/m2 UVC (see Materials and Methods for details). The weak band seen
between supercoiled (SC) and nicked (N) DNA is the linear form. (B) Host cell reactivation assay for CPD repair. Unirradiated or UVC irradiated (200 J/
m2) pM1-Luc plasmid was co-transfected with untreated pRL-CMV plasmid (ratio of pM1-Luc/pRL-CMV was 2.4 mg/0.24 mg in 16106 cells). Dual firefly
and Renilla luciferase activities were performed at 24 h post-transfection. The relative luciferase activities were compared to undamaged pRL-CMV
activities. Values are mean6standard deviation (SD) (n = 3). (C) Determination of the number of ESS/pM1-Luc plasmid induced by methylene blue
and visible light treatment (see Material and Methods for details). (D) Host cell reactivation assay for 8-oxo-G repair. pM1-Luc treated with methylene
blue/visible light was co-transfected with undamaged pRL-CMV using the same conditions as described in (B). Cells were isolated 24 h post-
transfection and the firefly and Renilla luciferase activities determined. Values are mean6SD (n = 3). TC-NER, transcription-coupled nucleotide excision
repair; BER, base excision repair.
doi:10.1371/journal.pone.0030541.g003
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arrows). Additionally, BG01V, an aneuploid hESC line, had a shift

in a microsatellite for the APC gene as compared to BG01 early

passage cells. Overall, these MSI data show that even in iPSC1,

which is karyotypically and spectral karyotypically normal (Figure
S2), MSI is observed. Therefore, using these MSI loci is a

potentially valuable tool for evaluating pluripotent cell genomic

stability, as both lines that had MSI also had associated differences

in either chromosomal segregation (BG01V) or in DNA repair

capacities (iPSC1).

UVC-induced apoptosis in pluripotent cells
During pilot experiments for UVC radiation exposure, we

noted that pluripotent cells (hESCs and iPSCs) were more sensitive

than fibroblasts, and that by 24 h post-treatment many pluripotent

cell colonies had disappeared from the culture, whereas the

fibroblasts underwent arrested replication [46]. In contrast to

pluripotent cells, the arrest of fibroblasts was not accompanied by

changes in cell death or morphology. Interestingly, the apparent

pluripotent cell death following UVC exposure was characterized

by detachment of cells from Matrigel, suggesting that UVC

irradiation disrupted cell-cell or cell- extra cellular matrix

interactions and that UVC fluxes of 10 J/m2 were lethal for

pluripotent cells, whereas fibroblasts could recover following arrest

after the same dose of UVC [47]. To further examine this

phenomenon, we observed 10 J/m2 UVC-treated and untreated

colonies over 18 h using time-lapse microscopy. H9 cells that were

not irradiated with UVC proliferated and expanded, whereas

UVC-irradiated colonies showed increasing numbers of detached,

non-viable cells starting 3.5 h post-treatment (Figure 7A). Time

lapse movies of this process revealed floating cells after UVC

treatment (H9 hESCs) that were not observed in the controls

(Movies S1 and S2).

To study this observation in more depth and determine cell

fate after release of the H9 cells (80% confluent) from the

colonies, cells were exposed to 10 J/m2 UVC radiation and

harvested at 3 and 22 h post-treatment. Having reasoned that cell

death was possibly associated with cell surface death receptors

[48], we used FACS analysis to examine detached and adherent

cells stained with Annexin V-FITC and propidium iodide (PI).

Annexin V-FITC detects cell surface phosphatidylserines and

indicates early apoptosis, whereas PI detects DNA (Figure 7B).

The untreated H9 cells had minimal dead cells and therefore

were omitted from the analysis (,2%). At 3 h post-treatment,

17% of non-adherent cells were still viable and had intact

membranes, whereas 29.2% cells were entering early apoptosis.

However, from 3–22 h post-treatment, the percentage of

Figure 4. Double-strand break repair assay for non-homologous end joining using HCR. (A) Schematic drawing of host cell reactivation
assay for non-homologous end joining repair. Non-homologous end joining is assessed by cleaving the pCMS-end plasmid (Xho I/Apa I) to generate a
non-religatable DSB between the promoter and the YFP-coding region prior to transfection. Repair of the DSB by non-homologous end joining
reconstitutes a link between the promoter and YFP coding region while GFP serves as an expression control. Uncleaved pCMS-end served as a
positive control (100% recombination efficiency). The absolute recombination efficiency was calculated as the fraction of cells that recombined (YFP+
and GFP+YFP cells) over the total number of transfectants (YFP+,GFP+, plus GFP+YFP cells), then corrected for the ‘‘recombination efficiency.’’ The
efficiency for non-homologous end joining was calculated as follows: ([GFP+]+[YFP+])/([GFP+]+[YFP+]+[GFP+YFP])end-cleaved divided by
([GFP+]+[YFP+])/([GFP+]+[YFP+]+[GFP+YFP])end. (Adapted from [31]) (B) Representative FACS data for determination of the non-homologous end-
joining DNA repair capacity in BG01. Transfected cells were harvested and assayed 24 h post-transfection. The upper panel shows FACS data for the
control plasmid transfection data compared to the dual cleaved (Xho I/Apa I) plasmid in the bottom panel. (C) Quantification of non-homologous
DSB repair capacity using host cell reactivation assays in hESCs, hESC-derived NSCs, iPSCs and fibroblasts. Values are mean6SEM (n = 3). *, statistically
significant as determined by unpaired Student’s t-test between iPSC1 and IMR90/iPSC2 with 2-tailed P value = 0.02 and 0.03, individually.
doi:10.1371/journal.pone.0030541.g004
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Annexin V-FITC-stained H9 cells increased in both floating and

adherent cells, indicative of apoptosis. We also investigated the

effect of ROCK inhibitor (10 mM) on the apoptotic response.

ROCK inhibitor enhances the survival of hPSCs by improving

cell-cell and cell-extra cellular matrix interactions [49,50]. At

22 h post-treatment with the ROCK inhibitor, treated and

untreated H9 cells were compared, and the adherent cells did not

show significant differences in apoptosis between the two groups

(Figure 7B). Similarly, there was no difference in the number of

floating cells, regardless of whether cells were treated with the

ROCK inhibitor.

To confirm that pluripotent cells were undergoing apoptosis,

H9 and iPSC2 cells were exposed to 10 J/m2 UVC and genomic

DNA was isolated separately from floating (F) and adherent (A)

cells at 6, 12 and 24 h post-treatment. Genomic DNA was

examined by agarose gel electrophoresis, and compared to an

untreated negative control and a staurosporine-treated (1 mM, 3 h)

positive control (Figures 7C and S8A). At all time points,

floating cells, and adherent cells to a lesser extent, exhibited DNA

ladders, indicative of apoptosis caused by endonuclease cleavage of

genomic DNA.

The activated caspase 3 form is created by cleavage of

procaspase 3 into 12 kDa and 17 kDa forms. The production of

the cleaved procaspase 3 forms has been associated with anoikis.

Anoikis is a form of apoptosis that anchorage dependent cells

undergo when those detach from the extracellular matrix [51] and

has been observed in hESCs [28]. Therefore, to examine further

the apoptotic pathway involved in this process, we investigated

procaspase 3 cleavage using Western blot analysis of protein

extracts derived from either adherent or floating cells at 3, 5, and

24 post-UVC treatment (Figures 7D and S8B). At all three time

points, the procaspase 3 in floating cells was completely cleaved

Figure 5. Double-strand break repair assay for single-strand annealing using host cell reactivation. (A) Schematic drawing of host cell
reactivation assay for single-strand annealing repair. Single-strand annealing is assessed by cleaving the pCMS-hom-stop plasmid (Xho I/Sac II) to
generate a DSB with incompatible ends between the 59 and 39 YFP coding regions prior to transfection. YFP signal was observed only when the
correct reading frame was restored by single-strand annealing (adapted from [31]) (B) Representative FACS data for determination of single-strand
annealing DNA repair capacity in BG01. The single-strand annealing efficiency is calculated as follows: ([GFP+]+[YFP+])/([GFP+]+[YFP+]+[GFP+
YFP])hom-stop subtracted from ([GFP+]+[YFP+])/([GFP+]+[YFP+]+[GFP+YFP])hom-stop-cleaved. Uncleaved pCMS-hom-stop served as zero percent
recombination efficiency in the single-strand annealing assay. The absolute recombination efficiency was calculated as the fraction of cells that
recombined (YFP+ and GFP+YFP+ cells) over the total number of transfectants (YFP+,GFP+, plus GFP+YFP+ cells), then corrected for the
‘‘recombination efficiency.’’ (C) Quantification of DSB repairs in hESCs, hESC-derived neural stem cells, iPSCs and fibroblasts through the single-strand
annealing repair pathway by HCR assay. Values are mean6SEM (n = 3). *, statistically significant as determined by unpaired Student’s t-test between
IMR90 and iPSC1, iPSC2, BG01 with 2-tailed P values of 0.007, 0.006, and 0.004, respectively.
doi:10.1371/journal.pone.0030541.g005
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into the active 12 kDa and 17 kDa forms. For the adherent cells,

background cleavage of procaspase was noted at 3 and 5 h post-

UVC treatment. However, in contrast to the floating cells, even at

24 h post-UVC treatment, procaspase 3 still formed a significant

percentage of the total procaspase+caspase 3 in the adherent cells

(Figure 7D), indicating that the remaining adherent cells were

viable.

We also examined procaspase 3 cleavage in iPSC2 cells. As

anticipated, the non-adherent cells showed a high percentage of

caspase 3 cleavage (Figure S8B). However, surprisingly, a high

percentage of iPSC2 cells manifested caspase 3 cleavage products

at all time points in adherent cells, suggesting that the apoptotic

response in iPSC2 cells was more sensitive to UVC-induced

apoptosis than that of hESCs.

In addition to evaluating apoptotic response after UVC

damage, we also noted that cells exposed to 50 and 100 mM

DMS also detached underwent cell death associated with

apoptosis (data not shown). Furthermore, such changes observed

in hESCs and iPSCs exposed to c-radiation as low as 1 Gy were

recently reported [22]. In contrast to the apoptotic response

caused by UVC, DMS, and c-radiation, there was no indication of

apoptosis upon H2O2 exposure in either pluripotent cells or

fibroblasts. Thus, the low tolerance for DNA damage that triggers

apoptosis is not observed for all damaging agents.

Discussion

We have shown that the DNA repair capacities of hESCs and

iPSCs are greater for nucleotide excision repair and base excision

repair, than are those of non-pluripotent cells. However, when

evaluating DSB repair, the DNA repair capacities of non-

homologous end-joining in pluripotent cells were statistically

indistinguishable from those for non-pluripotent cells, except for

one iPSC line. In contrast, the DNA repair capacity for single-

strand annealing, which is inherently mutagenic, was lower for all

pluripotent cell lines and highest in the fibroblast lines. Moreover,

induction of DNA-damage in pluripotent cells by UVC and H2O2

was lower than in fibroblasts. However, in pluripotent cells, despite

the reduced level of DNA damage and the rapid repair kinetics in

the global genome-nucleotide excision repair pathway, exposure to

UVC and DMS initiated apoptotic cell death, resulting in cell

detachment at doses that are non-lethal to fibroblasts. The

summarized data, comparing only data for each cell line for each

assay (Figure 8), demonstrate the complexity of studying DNA

Figure 6. Microsatellite instability assay in pluripotent cells and differentiated cells. Comparable cell lines are grouped in black boxes, and
shifts in the peaks corresponding to microsatellite instability (MSI) are marked by black arrows. The X axis shows the scan number and the Y axis
shows intensity of 6-FAM. Red peaks are internal controls to indicate the locations of microsatellites. CRL-2097 are human skin fibroblasts used to
generate iPSC1, IMR90 are human lung fibroblasts used to generate iPSC2, H9 are hESCs used to generate NSC9, and BG01V are an aneuploid variant
hESC isolated from BG01.
doi:10.1371/journal.pone.0030541.g006
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repair in different pluripotent cell lines, and the need for

characterization of these lines prior to experimental use.

DNA damage induced by UVC and H2O2 is lower in
pluripotent cells than in differentiated cells

Using either adduct detection by lesion specific antibodies or the

comet assay, we showed that UVC and H2O2 induce less DNA

damage in hESC lines as compared to differentiated fibroblasts

(Figure 8). iPSC lines, however, only had less damage after UVC

irradiation, and otherwise exhibited similar levels of damage to

those of differentiated fibroblasts. Despite the differences in DNA

damage caused by UVC and H2O2, little difference was noted for

DMS treatment. The reasons for the reduced damage levels in

hESCs are unclear at this time. One possible explanation is the

colony structure of pluripotent cells may shield some cells from

exposure to DNA damaging agents. The consequences of

oxidative and methylating agent exposure in pluripotent cells also

require further investigation, because, in addition to possible

exposure differences, apoptosis and repair could also depend on

colony architecture. Because repair metabolism causes DNA

damage due to the development of reactive oxygen species and

methylation [52,53,54,55], future characterization of the factors

that reduce DNA damage in pluripotent cells is an area that merits

further examination.

Global genome-nucleotide excision repair capacity, but
not transcription-coupled nucleotide excision repair, is
enhanced in pluripotent cells as compared to fibroblasts

A previous study evaluating strand breaks, as assessed by comet

assay, showed that repair was faster in pluripotent than in non-

pluripotent cells [25], but that study did not quantify adduct levels

or viability after mutagen treatment. In this report, we have

quantified UVC adduct formation and repair, and showed that the

difference in the global genome-nucleotide excision repair rate is

linked mainly to faster CPD adduct repair in pluripotent cells,

because 6,4 PP was rapidly repaired in both pluripotent cells and

the control lines. In pluripotent cells, global genome-nucleotide

excision CPD repair rates were 2- to 4-fold higher than those in

fibroblasts (Figure 8). In fibroblasts, transcription-coupled

nucleotide excision repair rates are faster than global genome-

Figure 7. UVC-induced apoptosis in hESCs. H9 cells were treated (or not) with UVC radiation (10 J/m2). (A) Time lapse photomicrographs
(differential interference contrast) of live cell cultures at 30 min intervals. Bars are 50 mm. The 3 upper panels show a control colony that was not
exposed to UVC radiation. The 3 lower panels show a colony exposed to UVC radiation. The dark field in the upper panels represents the adherent
attached colonies. The lower panels show that, at 3.5 h, a large number of cells from the colony are no longer adherent but float in the media. (B)
FACS quantification of viable, Annexin V-FITC stained (early and late apoptotic) cells, and necrotic cells from either floating or adherent cells at either
3 or 22 h post-irradiation. The effect of ROCK inhibitor (Ri; 10 mM) on apoptosis was evaluated at 22 h in both adherent and floating cells. There were
few if any floating cells prior to UVC exposure. Both floating and adherent cells were collected at indicated time points, labeled with the apoptosis
markers Annexin V-FITC and propidium iodide and subjected to FACS analysis. Representative FACS data is in Figure S7, along with gating to indicate
the different quadrants as live, early apoptotic, late apoptotic, and necrotic. (C) DNA fragmentation analysis of UVC-irradiated H9 cells. M, DNA
markers; STS, staurosporine; F, floating cells; A, adherent cells. (D) Caspase 3 cleavage in adherent and floating cells. Upper panel: Western blot of
caspase 3 cleavage in H9 cells treated with 10 J/m2 UVC (3, 5, and 24 h) or staurosporine (3 h. uncleaved (Uncl.); cleaved (Cl.); floating cells (F);
adherent cells (A). Note that there were no floating cells prior to treatment. Lower panel: analysis of Western blots comparing uncleaved procaspase 3
(Uncl.) and cleaved (Cl.) bands for caspase 3.
doi:10.1371/journal.pone.0030541.g007
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nucleotide excision repair rates [56,57,58]. However, the tran-

scription coupled-nucleotide excision DNA repair capacity in

pluripotent cells did not exceed a 2-fold difference. Consequently,

because the increased global genome-nucleotide excision DNA

repair capacity is greater in pluripotent cells, the mutation

frequency in pluripotent cells should be lower compared to that

observed in fibroblasts. Because global genome-nucleotide excision

repair rates are increased relative to transcription-coupled

nucleotide excision repair rates in pluripotent cells, we anticipate

that factors specific for global genome-nucleotide excision repair,

possibly XPC-HR23 recognition, are responsible for faster repair

rates.

Base excision repair is faster in pluripotent cells than in
non-pluripotent cells

The base excision repair rates of the pluripotent cell lines

investigated demonstrated greater heterogeneity than did their

transcription-coupled nucleotide excision repair rates (Figure 8
and Table S2). Specifically, the lowest DNA repair rate was 13-

fold less than the highest. Whereas H9, BG01V, and iPSC2 had

base excision DNA repair capacities that were greater than those

of the differentiated cells, BG01 and iPSC1 had lower DNA repair

capacities than the differentiated cells. Moreover, the aneuploid

line BG01V manifested a base excision repair DNA repair

capacity that was 3-fold higher than that of the parental BG01

line. For both transcription-coupled nucleotide excision repair and

base excision repair, the DNA repair capacity values were lowest

in the iPSC1 line derived from CRL-2097, which indicates this

line is more subject to genomic instability. The variability in the

base excision repair capacities of the different lines was not

separable into predictable categories of pluripotent and differen-

tiated cells. Thus, that underscores the necessity to evaluate DNA

repair capacity for each cell line prior to use in research or clinical

settings.

DSB repair is a source of differences between hESCs and
iPSCs

Some studies have used stably-transfected DSB reporter assays

in pluripotent cells to assess DSB repair [26,27]. This type of

system has the advantage of monitoring chromosomal events, but

requires the generation of stable transfectants that host the

reporter assay. At this time, introduction and selection of the

stably-transfected reporter assay systems is still non-trivial in

pluripotent cells and has been used for only the aneuploid BG01V

line [26]. The advantage of the host cell reactivation systems is that

less time is required for the assay, permitting a rapid comparison of

a larger number of cell lines with respect to non-homologous end-

joining and single-strand annealing. Currently, it is unclear if the

source tissue of the fibroblasts (foreskin and lung) or the vectors

used in re-programming account for the substantially different

DNA repair capacities observed in the two iPSC lines. This

highlights the importance of standardizing reprogramming

protocols and minimizing additional variables that could contrib-

ute to differences exhibited during characterization.

In contrast to the results for transcription-coupled nucleotide

excision repair and base excision repair, all cell lines examined,

except for iPSC1, showed similar DNA repair capacities for non-

homologous end-joining. Interestingly, despite having the lowest

DNA repair capacity for transcription coupled-nucleotide and

base excision repair, iPSC1 displayed the highest non-homologous

end-joining DNA repair capacity. More surprisingly, although

both iPSC1 and iPSC2 were obtained from human fibroblasts

(foreskin and lung, respectively) using the same transcription

factors to induce pluripotency, the non-homologous end-joining

DNA repair capacity of iPSC2 is ,3-fold less than that of iPSC1.

Therefore, although the same transcription factors were used to

induce both iPSC lines, each cell line had significantly different

non-homologous end-joining repair characteristics. The lower

values for single-strand annealing in all pluripotent cells could be

associated with those cells having reduced the mutagenic

consequences from repair using that pathway.

Two pluripotent cell lines with microsatellite instability
also manifest DNA repair capacity differences from other
pluripotent cells

MSI is generally considered a marker for mismatch repair

defects and/or DNA synthesis, which can lead to DNA mutations

that are linked to human disease [59,60,61,62,63]. Since the

various pluripotent lines exhibited such drastic repair capacity

differences, MSI was evaluated as a candidate for these

inconsistencies. Among the hESC lines, BG01V manifested MSI

at a single locus. The major differences observed in BG01V are at

the chromosomal level [64], but we also identified one locus

adjacent to APC, a tumor suppressor gene, that differed between

BG01 and BG01V. However, screening for short tandem repeat

(STR) sequences did not reveal differences between these lines

[65], which suggests that the MSI screening loci used in this report

are more sensitive than STR analysis for genomic stability

assessment. Although spectral karyotyping showed that the iPSC

lines used in these experiments are normal, additional analysis of

induced pluripotent lines showed that the iPSC1 line manifested

greater MSI at two loci as compared to the parental line.

Therefore, the differences in iPSC1 DNA repair capacity,

compared to the other cell lines investigated, could be due in

part to factors linked to MSI, emphasizing the need to examine

pluripotent cells through other methods.

The therapeutic merits of hESCs and iPSCs are currently under

evaluation and some differences among hESCs and iPSCs have

been identified. Reports have indicated that iPSCs have less

efficient growth and differentiation capacities than hESCs [66],

distinct methylation and de-methylation patterns in non-coding

RNAs [67], and variations in X-chromosome reactivation [68],

suggesting that hESCs and iPSCs also have epigenetic differences.

Another study showed that hESCs and iPSCs are heterogeneous,

Figure 8. Summary of DNA repair rates/capacity in multiple
DNA repair pathways in all cell lines investigated. Y axis shows
the logarithmic phase of fold difference of pluripotent cells over IMR90
fibroblasts. Dotted lines are used to separate the repair pathways and
direct comparisons should be limited to within the pathways. Values are
mean6SD. DNA repair capacities were evaluated at 24 h after
treatment or transfection.
doi:10.1371/journal.pone.0030541.g008
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depending on their derivation source [69], and it is possible that

DNA repair pathway reprogramming is dependent on the cells of

origin. Our data indicate that hESCs and iPSCs have differences

in DNA repair that can be monitored by a series of assays that

encompass a range of DNA repair pathways. Based on our results,

further work that determines the genomic stability of iPSCs is

required that evaluates methods for induction of iPSCs as well as

the cells of origin. The decreased repair capacities observed in the

pathways studied, along with the increased MSI, suggests that

iPSC1 is more prone to errors from nucleotide and base excision

repair than are the other lines investigated, including iPSC2. The

comparisons of MSI in the karyotypically abnormal line (BG01V)

and the karyotypically normal iPSC1, indicate that screening for

MSIs could provide rapid evaluation of genomic stability. The

reduced DNA repair capacities manifested mainly by iPSC1, track

with its MSI, suggesting that determination of MSI at these loci

could also help to illuminate defects in other repair pathways.

Pluripotent cells are subject to increased apoptosis after
exposure to DNA damaging agents

Apoptosis occurs naturally in pluripotent cells grown in

mTeSR1, and is enhanced by depletion of basic fibroblast growth

factor [28]. Our study indicates that pluripotent cells also undergo

apoptosis after low levels of exposure (e.g., 5 J/m2 UVC) or

concentrations (e.g., 50 mM DMS) of some DNA-damaging

agents. However, for H2O2, no apoptotic response was observed,

indicating that not all damaging agents elicit the same

programmed cell death. In addition, we showed that for up to

24 h after UVC radiation the majority of the adherent hESCs

have intact membranes that lack evidence of apoptosis, but that

iPSCs exhibit increased apoptotic sensitivity within 3 h post-

irradiation, resulting in cells being released from colonies. To the

best of our knowledge, although apoptosis has been reported in

human pluripotent cells in response to c-radiation [22,23,70] no

previous data have addressed low-level UVC induced apoptosis in

human pluripotent cells. Due to the lower energy of UVC

radiation compared to c-radiation, the observation of apoptosis

was unexpected. Moreover, although ROCK inhibitor can

enhance pluripotent stem cell attachment [49], its failure to rescue

UVC-induced apoptosis in H9 cells suggests that the hypersensi-

tivity to UVC-induced cell death does not involve the Rho-

myosin-actin-caspase pathway, but some other apoptotic trigger,

possibly CHK1 and/or CHK2 [20]. Further research is warranted

to identify the mechanism in the pathways involved.

The apoptotic response of pluripotent cells to low level UVC

may protect the genomic stability of the entire population by

sacrificing damaged cells in a timely fashion and raises the

question of evolutionary preservation in this instance, because

damage tolerance in hESCs could lead to mutations if proliferation

continues. Therefore, there is a paradox involved in genomic

stability of pluripotent cells: DNA repair is often rapid in

pluripotent cells as compared to differentiated cells, but exposure

to relatively low levels of DNA-damaging agents results in cell

death. In fact, the low level of UVC-induced damage tolerated by

pluripotent cells shows that these cells are almost as sensitive to

UVC as some human fibroblasts from individuals with defective

nucleotide excision repair genes [71]. Thus, our data suggest that

pluripotent cells efficiently repair damage, but will undergo cell

death in the short damage response interval identified in this study

rather than risk the possibility of transmitting a mutation or

genetic rearrangement if the damage is not repaired. That the

higher energy c-radiation also results in apoptosis at low radiation

fluxes (less than 2 Gy [22,23], and our unpublished results]) argue

against peripheral damage of colonies as a provocation of

apoptosis. In the future, identification of the agents that induce

apoptosis and apoptotic signaling will yield important insight

concerning mechanisms of cell death in pluripotent cells.

Conclusion
We have demonstrated that, in general, hESCs excel in global

genome-nucleotide excision repair as compared to non-pluripotent

cells. Using the assays described, we have shown that pluripotent

cells and differentiated cells have similar repair capacities in non-

homologous end joining, whereas pluripotent cells have attenuated

DNA repair capacities in the single-strand annealing as compared

to differentiated cells. Despite these generalities, DNA repair

capacities for individual pluripotent cell lines show complexity that

requires inspection of these and any other lines considered for

clinical use. Furthermore, our investigation has shown that

pluripotent cells are more prone to apoptosis than their

differentiated progenitors, despite enhanced repair rates when

exposed to UVC. This is consistent with pluripotent cells limiting

mutations in their progeny. In the future, the identification of

factors that enhance pluripotent cell genomic stability while

limiting apoptosis will enable wider use of these cells. Most

importantly, our work highlights that even though iPSCs may

display a normal karyotype, microsatellite instability, which

indicates general genomic instability, may predict alterations in

DNA repair responses of pluripotent cells to various DNA

damaging agents as compared to karyotypically normal counter-

parts that lack MSI. Taken together, these results identify a critical

area that must be studied before the use of induced pluripotent

cells can be explored further for regenerative medicine. Based on

our results, requirements for pre-clinical screening for genomic

instability in hESCs, and especially iPSCs, would benefit from the

inclusion of assays to monitor transcription-coupled nucleotide

excision repair, non-homologous end-joining, and single-strand

annealing, as well as microsatellite instability.

Supporting Information

Figure S1 Characterization of hESCs and iPSCs. (A)

Immunohistochemical staining of pluripotent cell markers in

hESCs and iPSCs. The indicated cell colonies were immuno-

stained for SSEA4 (green), NANOG (red), SOX2 (purple), and

DAPI (blue). Bars are 50 mm. (B) Immunohistochemical staining

of bona fide pluripotent cell markers in iPSCs. iPSC colonies were

immunostained for DNMT3B (green), SOX2 (red), and DAPI

(blue). Bars are 30 mm. H9, iPSC1 (shown in 1A), as well as BG01

and iPSC2 (not shown) were all positively stained for the

pluripotency markers (ES cell-specific transcription factors) Nanog,

SOX2, and SSEA4. Both iPSC1 and iPSC2 also stained positive

for DNMT3B (1B), confirming that they are bona fide iPSCs [1].

(TIF)

Figure S2 Karyotypes of investigated pluripotent cell
lines. (A) H9 passage p 110, (B) BG01 p 54. BG01V (not shown)

is a karyotypically abnormal (49, +12, +17 and XXY) long term

cell culture variant originally isolated and characterized from

BG01 cultures [2], and (C) iPSC2 p 11, as assessed by G-banding

and (D) iPSC1 p 24, as assessed by spectral karyotyping (SKY)

analysis. Both iPSC1 and iPSC2 were derived from human skin

fibroblasts (CRL-2097) [3] or human lung fibroblasts (IMR90),

respectively. The karyotypes examined for all these cells

manifested 46 chromosomes in greater than 90% of the metaphase

cells analyzed until at least p 110 for H9, p 54 for BG01, p 24 for

iPSC1 and passage 11 for iPSC2.

(TIF)
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Figure S3 Analysis of CPD incidence in UVC-irradiated
l DNA. UVC-irradiated Bacteriophage l DNA was subjected to

alkaline gel analysis (A) and quantification (B) of UVC-induced

enzyme sensitive sites per mega base (ESS/Mb) was conducted.

Hind III-digested lamda DNA are used as DNA markers.

(TIF)

Figure S4 UVC, H2O2 or DMS-induced damage in
hESC, iPSC and fibroblast cells. (A) Dot blot of UVC-

induced (10 or 20 J/m2) CPD adducts in pluripotent cells and

fibroblasts, quantified in TotalLab. (B) Comet assays of hESCs

(H9), iPSCs (iPSC1), or human skin fibroblasts (CRL-2097) treated

with H2O2 (100 mM). Untreated cells were used as controls. (C)

Comet assays of hESCs (H9), iPSCs (iPSC2), or human skin

fibroblasts (IMR90) treated with DMS (50 mM).

(TIF)

Figure S5 Evaluation of cH2AX foci formation in
response to treatment with H2O2. (A) Fluorescence images

of hESCs (H9), iPSCs (iPSC1) and fibroblasts (CRL-2097) stained

for cH2AX foci after treatment with 100 mM H2O2 (4uC for

30 min). The expanded cell shows the foci as examined in the

individual cells. Controls are untreated samples. Bars are 20 mm.

(B) Quantification of percent of cells with greater than 4 cH2AX

foci.

(TIF)

Figure S6 Dot blot assay data for global genome-
nucleotide excision repair of UVC-induced cyclobutane
pyrimidine dimers. Dot blot images of CPD repair time course

in (A) hESC (H9 and BG01), (B) iPSC (iPSC1 and iPSC2) and (C)

fibroblast (CRL-2097 and IMR90) cells following 10 J/m2 UVC

treatment. Only adherent cells were used in the assay. Quantifi-

cation of enzyme sensitive sites per mega base was determined

using standards loaded on each individual blot.

(TIF)

Figure S7 FACS analysis of the H9 cell states post UVC
irradiation (10 J/m2). At the time points indicated, floating (F)

and adherent (A) H9 cells were collected by centrifugation or

accutase treatment followed by centrifugation and incubated with

Annexin V-FITC and/or PI. Cells are divided by quadrants into

live (FITC2, PI2), early apoptotic (FITC+, PI2), late apoptotic

(FITC+, PI+) or necrotic (FITC2, PI+) sections. The quantifica-

tion is shown in Figure 7B.

(TIF)

Figure S8 UVC-induced apoptosis in induced pluripo-
tent stem cells. (A) DNA fragmentation analysis of UVC-

irradiated iPSC2 cells. STS, staurosporine; S, supernatant; F,

floating cells; A, adherent cells (B) Caspase 3 cleavage in adherent

and floating cells. Upper panel: Western blot of caspase 3 cleavage

in iPSC2 cells, treated with 10 J/m2 UVC (6, 12 and 24 h) or

staurasporine (3 h), using near-infrared detection. Uncleaved

(Uncl.); Cleaved (Cl.); Floating cells (F); Adherent cells (A). Note

that there are no floating cells prior to treatment. Lower panel:

analysis of Western blots comparing uncleaved (Uncl.) and cleaved

(Cl.) bands for caspase 3.

(TIF)

Table S1 Microsatellite markers for MSI analysis.

(DOC)

Table S2 Summary of DNA repair rates/capacities of hPSCs

and HFs in multiple DNA repair pathways investigated. The

rates/capacities for all the lines are relative to the rates/capacities

in IMR-90 fibroblasts (1.0). Values are mean 6 Standard

Deviation. Note that the repair rates are directly comparable

down a column and not across rows.

(DOC)

Movie S1 hESC colony monitored over a 24 h period. Note

colony growth over the period.

(AVI)

Movie S2 hESC colony exposed to 10 joules/m2 UVC and

monitored over a 24 h period. Note the presence of detached (i.e.,

floating cells) following exposure.

(AVI)

Materials and Methods S1

(DOC)
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