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A B S T R A C T   

Background: Treatment by immune checkpoint blockade (ICB) provides a remarkable survival benefit for multiple 
cancer types. However, disease aggravation occurs in a proportion of patients after the first couple of treatment 
cycles. 
Methods: RNA sequencing data was retrospectively collected. 6 tumour-immune related features were extracted 
and combined to build a lung cancer-specific predictive model to distinguish responses as progression disease 
(PD) or non-PD. This model was trained by 3 public pan-cancer datasets and a lung cancer cohort from our 
institute, and generated a lung cancer-specific integrated gene expression score, which we call LITES. It was 
finally tested in another lung cancer dataset. 
Results: LITES is a promising predictor for checkpoint blockade (area under the curve [AUC]=0.86), superior to 
traditional biomarkers. It is independent of PD-L1 expression and tumour mutation burden. The sensitivity and 
specificity of LITES was 85.7% and 70.6%, respectively. Progression free survival (PFS) was longer in high-score 
group than in low-score group (median PFS: 6.0 vs. 2.4 months, hazard ratio=0.45, P=0.01). The mean AUC of 6 
features was 0.70 (range=0.61-0.75), lower than in LITES, indicating that the combination of features had 
synergistic effects. Among the genes identified in the features, patients with high expression of NRAS and PDPK1 
tended to have a PD response (P=0.001 and 0.01, respectively). Our model also functioned well for patients with 
advanced melanoma and was specific for ICB therapy. 
Conclusions: LITES is a promising biomarker for predicting an impaired response in lung cancer patients and for 
clarifying the biological mechanism underlying ICB therapy.   

Introduction 

Immune checkpoint blockade (ICB) has demonstrated unprece-
dented clinical efficacy in the treatment of multiple cancer types. 
Several anti-programmed death (PD)-1/PD-ligand (L)1 inhibitors have 
been approved for the treatment of small cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC). When the treatment is effective, 
patients can achieve a durable clinical response and prolonged overall 

survival (OS) [1–5]. The 5- year survival rates were 42.9% for stage III 
NSCLC patients [6] and 16-30% for advanced-stage NSCLC patients, 
respectively [7,8]. However, the response rate is low. A proportion of 
patients do not respond to checkpoint inhibitors and may even develop 
progressive disease (PD), such as an enlarged tumour or distant metas-
tasis, after the first cycles of treatment [9]. Additionally, new patterns of 
progression, such as hyper progressive disease (HPD), limit the clinical 
application of ICB therapy [10]. 

Abbreviations: AUC, area under the receiver operating characteristic curve; GLCI, Guangdong Lung Cancer Institute; HR, hazard ratio; HPD, hyper progressive 
disease; HLA, human leukocyte antigen; ICB, immune checkpoint blockade; IPS, immunephenoscore; LOH, loss of heterozygosity; NSCLC, non-small cell lung cancer; 
OS, overall survival; PD-1, programmed death-1; PD-L1, programmed death -ligand 1; PD, progression disease; PFS, progression free survival; SCLC, small cell lung 
cancer; TIDE, tumour immune dysfunction and exclusion; TME, tumour microenvironment; TMB, tumour mutation load. 
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Although the US Food and Drug Administration has approved the 
assessment of PD-L1 expression and tumour mutation load (TMB), these 
traditional biomarkers are not perfect for predicting the benefit from 
checkpoint blockade [11,12]. The tumour-immune interactions in the 
microenvironment are diverse and complex, and it is not enough to 
consider only the protein expression of PD-1/PD-L1 pathway or the 
number of nonsynonymous mutation [13]. Liquid biopsy and dynamic 
change of circulating tumor DNA has become a new direction to explore 
predictive markers [14,15]. In addition to tumour cell biomarkers, im-
mune cell subtypes and immune regulatory factors should be considered 
when developing a multifactorial biomarker to improve the predictive 
efficacy of ICB therapy. Some studies have shifted their focus toward 
integrated biomarkers such as PD-L1 expression plus immune cell 
composition, or TMB combined with copy number alterations [16–19]. 
With the continuous advances in sequencing technology, recent studies 
have demonstrated that gene expression profiles via RNA sequencing 
display tremendous potential in the prediction for ICB treatment in 
multiple cancer types, by considering the complex tumour-immune 
interaction of the tumour microenvironment (TME) [20–23]. 

Different TME subtypes cause the heterogeneity of the response to 
immune checkpoint inhibitors [24,25]. Patients with an inflamed 
phenotype of the TME, such as high PD-L1 expression and CD8+ T cell 
infiltration, have the potential to achieve a durable clinical response, 
ultimately leading to longer OS [26]. In contrast, activation of regula-
tory T cells, overexpression of other compensatory immune checkpoints 
and a high frequency of myeloid-derived suppressor cells may constitute 
an unfavourable TME subtype [27,28]. After several cycles of ICB 
treatment, such patients could develop severe disease progression, 
which may even lead to a rapid increase in tumour volume, such as in 
patients with driver gene mutations [29,30]. Such patients are not only 
confronted with aggravated disease and high medical costs but may also 
suffer from immune-related adverse reactions, which may affect later 
anti-tumour treatment. 

As a result, there is an urgent need to identify patients that may not 
benefit clinically from ICB therapy. A more effective approach could 
help find a ‘‘PD signature’’. In the present study, we considered three 
key aspects of the TME: immune regulation, tumourigenesis, and 
tumour-immune interaction. We used transcriptional profiles of tumour 
tissue to establish a predictive biomarker for progression disease of 
checkpoint inhibitors, compared this with traditional biomarkers, and 
attempted to identify the mechanism underlying ICB treatment. 

Material and methods 

Participants and sample collection 

We collected archived fresh-frozen tumour tissue from 75 patients at 
Guangdong Lung Cancer Institute (GLCI) at baseline of ICB therapy, and 
subjected it to RNA expression profiling via RNA sequencing. 75 patients 
were randomly assigned to training (n=30) and testing cohorts (n=45) 
by a stratified fashion to keep the same label ratio. Because some pa-
tients have insufficient tumor tissue, only 55 of the 75 patients have 
enough tissue for NGS testing and 45 patients for PD-L1 immunohisto-
chemistry staining. The clinical-pathological characteristics and check-
point inhibitors of all 75 patients were summarized in Table 1. Tumour 
response and time to progression in individual patients was defined 
using the Response Evaluation Criteria in Solid Tumours, version 1.1. 
The cut-off date for last follow-up was September 2019. 

We included three high-quality public datasets in the training cohort 
(Supplementary Table 1). The patients in these datasets had been 
diagnosed as advanced stage and received checkpoint blockade treat-
ment, including for melanoma, bladder and gastric cancers [24,31,32]. 
Their RNA sequencing data are available online. 

DNA and RNA extraction, library preparation, and sequencing 

For the 75 tumour samples from GLCI, we co-extracted the genomic 
DNA and RNA using a kit (All Prep-DNA/RNA-Micro Kit; Qiagen) 
following standard protocols. Genomic DNA from whole blood was 
extracted using a kit (Blood DNA kit; AmoyDx) according to standard 
protocols and used the results to exclude germline mutations and 
calculate the TMB of the tumour tissue. DNA libraries were established 
after end-repairing, A-tailing, adaptor ligation and polymerase chain 
reaction with indexed primers, and then captured the libraries using a 
panel (Pan-cancer gene panel; AmoyDx; 448 cancer-relevant genes). 
Complementary DNA libraries were constructed using the additional 
steps of first- and second-strand synthesis, and USER Enzyme processing. 
Exome capture was conducted by hybridising the complementary DNA 
libraries with an RNA exome panel. All libraries were sequenced on a 
platform (NovaSeq 6000; Illumina) with 2 × 150bp pair-end reads. 

Gene expression estimation 

We mapped RNA sequencing pair-end reads to Homo sapiens genome 
assembly GRCh37 (hg19) using STAR [33] software (version 020201) 
with transcriptome annotation (Genecode version 20) and performed 
gene quantification using RSEM software (version 1.2.28) [34]. 
Considering the different kinds of library preparation, we counted 
coding region reads to calculate transcripts per million at the gene-level. 

Table 1 
Clinical and pathological characteristics of lung cancer patients in training and 
testing cohorts.  

75 lung cancer patients in training and testing cohorts 

Age, mean ±standard 
deviation 

59.2±7.6 Performance status 
score, n (%)  

Sex, n (%)  0-1 66 
(88.0%) 

Male 60 
(80.0%) 

2-3 9 
(12.0%) 

Female 15 
(20.0%) 

Line of checkpoint 
inhibitors, n (%)  

Smoking history, n (%)  1st 23 
(30.7%) 

Never 29 
(38.7%) 

2nd 31 
(41.3%) 

Former/Current 46 
(61.3%) 

3th 10 
(13.3%) 

Pathology, n (%)  4th and beyond 11 
(14.7%) 

Adenocarcinoma 52 
(69.3%) 

Checkpoint inhibitors, 
n (%)  

Squamous carcinoma 13 
(17.3%) 

PD-1/L1 monotherapy 57 
(76.0%) 

Lymphoepithelioma-like 
carcinoma 

5 (6.7%) Chemo combination 12 
(16.0%) 

Small cell lung cancer 3 (4.0%) Double Checkpoint 
inhibitors combination 

6 (8.0%) 

others 2 (2.7%) Treatment response  
Stage, n (%)  PR 22 

(29.3%) 
IIIB 5 (6.7%) SD 25 

(33.3%) 
IVA 29 

(38.7%) 
PD 28 

(37.3%) 
IVB 41 

(54.7%)   
With brain metastasis    

Yes 17 
(22.7%)   

No 58 
(77.3%)    
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Calculation of other predictive biomarkers as previously reported 

PD-L1 expression was assessed via immunohistochemistry analysis 
by staining on a platform (BOND-MAX; Leica) using PD-L1 monoclonal 
antibody (E1L3N; AmoyDx), which is comparable to the approved 
antibody (22C3; Dako). The PD-L1 tumour proportion score (TPS) was 
evaluated by at least two pathologists independently. 

TMB was assessed using a targeted 448-gene next-generation 
sequencing panel and calculated as the total number of somatic muta-
tions divided by the panel size (1.16 MB). The following were excluded 
from the calculation: germline mutations, low frequency mutations 
(<5%), and mutation hotspots. 

To infer patients’ human leukocyte antigen (HLA) loss of heterozy-
gosity (LOH), we used FACETS software, an allele-specific copy number 
analysis tool that can annotate the genome for LOH based on targeted 
panel sequencing platforms [35,36]. The HLA LOH score was binary, 
with a value of 1 if the patient had LOH. Neoantigen recognition was 
predicted using the procedure described by Luksza et al., processed by 
NeoPredPipe software [37,38]. 

The IFN-γ gene expression score (IFNG) is the mean value of 18-gene 
signature, as previously reported.[20] Tumour Immune Dysfunction and 
Exclusion (TIDE) is a set of signatures related to T cell dysfunction and 
exclusion for predicting ICB response [39]. Immunophenoscore (IPS) 
defines an arbitrary 0–10 scale summing the weighted, averaged 
Z-scores of genes in the four categories of antigen processing, immune 
modulators, effector cells, and suppressor cells [40]. 

Feature selection and LITES model construction 

To avoid the ’large p, small n’ problem, all potential gene expression 
biomarkers of ICB reported in the literature were selected as candidate 

features for our model, which we called LITES. We integrated three 
categories of features to predict the clinical benefit of patients from ICB, 
including immune regulation, tumorigenesis, and tumour-immune 
interaction, which can be further divided into six subclasses (Fig. 1, 
Supplementary Table 2). We used the z-score-normalized expression of 
candidate genes in each pathway or gene set separately. In view of 
tumour heterogeneity (including the immune microenvironment, path-
ological mechanisms, etc.), gene expression features were also separated 
into pan-cancer and lung cancer-specific subgroups, with the upper 
limits of these set to 2 and 5, respectively, according to our grid search 
results (Supplementary Table 3, Supplementary Fig. 1A). 

Feature selection in each subclass and critical hyper-parameter 
optimization were conducted with the training cohort (n=147). The 
performance of LITES was validated through Leave-One-Out Cross- 
Validation. In the training stage, the above process was repeated for 
each individual sample, and the area under the receiver operating 
characteristic curve (AUC) was used to evaluate the performance of our 
prediction model (AUC=0.825, Supplementary Fig. 1B). Next, the final 
model was built according to all samples in the training cohort. Sup-
plementary Table 4 lists the genes selected for LITES. For a binary 
response prediction of ICB treatment, a logistic regression algorithm 
tuned by 3-fold internal cross-validation was applied to each tumour 
dataset and candidate gene set. The final predicted score is calculated by 
two steps: 1) The median rank ranking of each gene set is used as the 
predicted score. 2) The median rank ranking of the predicted scores of 
the six gene sets is used as the final score. 

The cut-off point of gene expression score in LITES model 
The cut-off point of gene expression score in LITES model was 

determined by minimizing the value of 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − sensitivity)2
+ (1 − specificity)2

√

,which is similar to the method of 

Fig. 1. Flow chart of the establishment of the predictive model, LITES. 
A) The model training process. We considered 3 key aspects of the tumour microenvironment and combined 6 tumour-immune-related features in the mode. We built 
the integrated tumour-immune expression score of LITES using the method of Leave-One-Out Cross-Validation (LOOCV) and the RNA sequencing data of multiple 
types of cancer. 
B) The model validation process. To build the lung cancer dataset, we retrospectively collected fresh tumour tissue and unstained tumour slides. LITES gave 
promising prediction of the clinical response to checkpoint blockade treatment and achieved better performance than single biomarkers, such as programmed death- 
ligand (PD-L1) expression and tumour mutation burden. 
AUC: area under the curve; GLCI: Guangdong Lung Cancer Institute; HR: hazard ratio; ICB: immune checkpoint blockade; IHC: immunohistochemistry; PD-L1: 
programmed death-ligand 1; PD: progressive disease; PTEN: phosphatase and tensin homolog; ROC: receiver operating characteristic. 
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Yuden index. Patients with high score was considered as non-PD 
responder to ICB therapy and those with low score as PD responder. 
The cut-off point was adjusted to zero, which is convenient for bar plot 
drawing. 

LITES model with melanoma test datasets 

To investigate the predictive performance of LITES in melanoma 
patients who received ICB therapy, we replaced the lung cancer-specific 
gene set in the model with a melanoma-related candidate gene set, 
considering the difference in tumour biology. We then used RNA 
sequencing data from three public datasets and the lung cancer dataset 
in the present paper as melanoma-specific training dataset [24]. Finally, 
we adopted the same LITES hyperparameters to construct a 
melanoma-specific ICB predictor. 

The gene-set enrichment analysis 
The gene expression that correlated with LITES with significance at 

the 0.05 level was selected to perform the GSEA analysis (Supplemen-
tary Table 5). Using the R software package clusterProfiler,25 we iden-
tified the top 30 biologically functional Gene Ontology terms with P 
value < 0.05 that corrected using the Benjamini-HochTberg method. 

Statistical analysis 

In the present study, we obtained the P-values of differential gene 
expression and distribution via the one-sided Mann-Whitney U-test. 
Correlations between LITES features and their P-values were assessed 
via the Pearson correlation coefficients. We performed Kaplan–Meier 
analysis to compare the progression free survival (PFS) and overall 
survival (OS) of patients in high- and low-score groups using a two-sided 

log-rank test. 

Data sharing 

The processed DNA mutation calling and RNA expression data can be 
obtained from the corresponding author. 

Results 

LITES is a better predictive biomarker for unfavourable response to ICB 
therapy 

LITES achieved an AUC value of 0.86 in the validation cohort of lung 
cancer patients (Fig. 2A). According to the best cut-off value of gene 
expression score calculated by LITES, patients were divided into two 
groups. Patients with a high (low) score were predicted to have a non-PD 
(PD) response. Of the 29 predicted non-PD patients, 24 responded to 
anti-PD-1/L1 therapy with a partial response or stable disease, and of the 
16 predicted PD patients, 12 responded with PD, reflecting a sensitivity 
and specificity of 85.7% and 70.6%, respectively (Fig. 2B). The AUC 
value of LITES was higher than those of PD-L1 TPS, TMB and other 
predictive biomarkers, demonstrating a substantial advantage with 
respect to predictive accuracy (Fig. 2C). Moreover, we performed 
Kaplan-Meier analysis to examine the predictive value of LITES in sur-
vival improvements. Patients with a high score exhibited a much longer 
PFS than those with a low score in training and validation cohorts 
(median PFS = 19.7 vs. 3.0 months, hazard ratio [HR] = 0.28, P =
0.003; median PFS = 6.0 vs. 2.4 months, HR = 0.43, P = 0.01; Fig. 2D 
and 2F). The high-score group also had longer OS in these two cohorts 
(median OS = 27.5 vs. 7.0 months, HR = 0.26, P = 0.01; median OS =
15.9 vs. 6.0 months, HR = 0.42, P = 0.02; Fig. 2E and 2G). 

Fig. 2. Classification performance of the LITES predictor on an independent lung cancer validation set. 
A) Receiver operating characteristic (ROC) curve for the performance of LITES in prediction of checkpoint blockade response in the independent lung cancer 
validation dataset with a 95% confidence interval (CI). 
B) Waterfall plot of LITES scores in patients with different clinical responses from to immune checkpoint blockade. 
C) Comparison of area under the curve (AUC) values between LITES and conventional biomarkers. 
D) Kaplan–Meier plots of progression free survival (PFS) in the lung cancer training cohort. 
E) Kaplan–Meier plots of overall survival (OS) in the lung cancer training cohort. 
F) Kaplan–Meier plots of progression free survival (PFS) in the lung cancer validation cohort. 
G) Kaplan–Meier plots of overall survival (OS) in the lung cancer validation cohort. 
HR: hazard ratio; PD: progressive disease; PR: partial response; SD: stable disease. 
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We summarized the detailed information of the 75 lung cancer pa-
tients from GLCI, including both the training (n = 30) and testing co-
horts (n = 45), and divided them into two groups based on the LITES 
prediction results: non-PD and PD (Fig. 3). PFS and OS was higher in the 
non-PD group than in the PD group. PD-L1 expression and TMB 
appeared to be evenly distributed between the two groups and had no 
relationship with the response to anti-PD-1/L1 therapy. The non-PD 
group had more smokers than the PD group and the treatment regi-
mens were similar between the groups. 

We further investigated the association of the gene expression score 
calculated by LITES with PD-L1 expression and TMB. No difference in 
PD-L1 expression or TMB was observed between the high- and low-score 
groups (Supplementary Fig. 2A). Also, there was no correlation between 
LITES score and TMB or PD-L1 expression (Supplementary Fig. 2B). 
These results indicate that LITES is a predictive biomarker for ICB 
therapy, independent of PD-L1 expression and TMB. These two bio-
markers contain complementary information for tumor microenviron-
ment. Perhaps when we combined the LITES model and these 2 metrics, 
it would give a better prediction for checkpoint blockade. Because some 
patients had no results on these two markers, it is impossible for further 
analysis of the predictive value of the combination with LITES model in 
our study. But it should be furtherly investigated. 

Predictive synergy observed when combining multiple features 

We next examined the predictive performance of the 6 biological 
features and investigated their interrelationships. The mean AUC of the 
features was 0.70 (range = 0.61-0.75) and when all 6 features consti-
tuted the LITES model, the AUC increased to 0.86, suggesting that the 
combination of these features yielded synergistic effects for the predic-
tion of response to ICB therapy (Fig. 4A). Furthermore, we found that 
these features had significant discriminatory power between the non-PD 
and PD subgroups. Patients responding to ICB with PD has a lower score 
than those responding as a partial response or stable disease (Fig. 4B). 

Cox regression analysis revealed a favourable clinical benefit regarding 
PFS in patients with a high score in 3 of the 6 features: exhausted CD8+
T cell, macrophage and extracellular matrix related features (Fig. 4C). 
Subsequently, we identified the interrelationships among the features. 
The immune checkpoints-related feature was highly associated with that 
of exhausted CD8+ T cell (r = 0.54, P < 0.001), while the phosphatase 
and tensin homolog pathway was closely associated with that of the lung 
cancer-specific signatures (r = 0.42, P < 0.001); both of these re-
lationships were expected due to their functional similarities (Fig. 4D). 
These results provide strong evidence for the necessity of combining 
multiple tumour-immune-related features for prediction of the clinical 
benefit from ICB therapy. 

LITES captured diverse aspects of tumour microenvironment 

In the LITES model, we identified the gene members in the 6 func-
tional feature groups (Supplementary Table 4). Among them, several 
key immune biomarkers, including CD8A (CD8+ T cell), CXCL9 (T cell 
migration and differentiation), HLA-DPB1 (tumour antigen cross- 
presentation), and CD276 (an immune costimulatory molecule of the 
B7 gene family), which has been reported to play a critical role in ICB 
response,[22,40] were included in LITES. Moreover, the oncogenes 
NRAS and PDPK1 were incorporated in the feature of lung 
cancer-specific gene set. Patients with higher expression of such genes 
tended to have worse clinical responses to ICB (PD vs. non-PD, P <
0.001; P = 0.01; Fig. 5A). 

To understand the composition of immune cells in the TME, we 
inferred the relative abundance of 64 immune and stromal cell types via 
xCell online software.[41] We found that CD8+ T cell abundance was 
highly correlated with the LITES score as expected, but the former was a 
weak predictor (AUC = 0.60, Fig. 5B). Additionally, comprehensive 
stroma score was moderately associated with LITES score, with an AUC 
value of 0.57 (Fig. 5C). We then evaluated the correlations between the 
LITES score and individual genes, and performed a functional 

Fig. 3. Clinical and pathological information of patients and LITES model predictions. 
CTLA-4: cytotoxic T-lymphocyte-associated protein-4; PD-L1: programmed death-ligand 1; PR: partial response; RECIST: Response Evaluation Criteria in Solid 
Tumours; SCLC: small cell lung cancer; SD: stable disease. 
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enrichment analysis of related genes. Positively correlated genes were 
mainly involved in the immune regulation pathway and extracellular 
structure, while negatively correlated genes were enriched in cell pro-
liferation, cell division and DNA repair (Fig. 5D). 

The validation in melanoma cohorts and prognostic specificity for ICB 
therapy 

To investigate the predictive performance of LITES in melanoma 
patients that received ICB therapy, we replaced the lung cancer-specific 
gene set in the LITES model with the melanoma-related candidate gene 
set. We tested LITES in Chinese (n = 60) and Australian (n = 41) met-
astatic melanoma cohorts that had RNA sequencing data available. 
LITES achieved acceptable AUC values (0.78 and 0.70, respectively) 
with these datasets without tuning hyper-parameters (Fig. 6A, 
Methods). Melanoma patients with a high score had longer PFS and OS 
than those with a low score (Fig. 6B to 6D). The cancer-specific gene-set 
was important to the model development and could further improve the 
predictive efficacy of the model no matter in lung cancer cohort or in 
melanoma cohort. 

To confirm LITES as a prognostic biomarker specific to ICB, we 
applied it to 128 and 934 NSCLC patients from the CTONG1308 study 
and The Cancer Genome Atlas, respectively. No patients in either cohort 
received any ICB therapy during their entire treatment course.[23] As 
expected, there was no difference in OS between patients with a high or 
low score (CTONG1308, P = 0.34; The Cancer Genome Atlas, P = 0.45; 
Fig. 6E and F). 

Discussion 

Researchers have recently been trying to establish new predictive 
models for checkpoint blockade to improve the unfavourable perfor-
mance of traditional markers. They have used combinations of existing 
biomarkers, such as CD8+ T cells, PD-L1, TMB and microsatellite 
instability, to classify patients’ TMEs into different subtypes [42,43]. 
With the help of machine learning, many studies have attempted to 
build a comprehensive signature with genetic variation and gene 
expression profiling. Several predictive models for pan-cancer patients 
have been published that was expected to screen patients who had the 
potential to benefit greatly from anti-PD-1/PD-L1 therapy [20,21,40]. 
Although tumour-specific prediction models have been reported for 
melanoma and NSCLC patients, these remain in their infancy [44]. 

With regard to the mechanism of PD-1/L1 pathway blockade [45], 
we used RNA sequencing data of multiple cancer types to build our 
predictive model. In our view, single biomarker cannot meet the need 
for improving response prediction for anti-PD-1/PD-L1 therapy. There-
fore, in this study we considered 6 tumour and immune-related features, 
each of which represented one characteristic of the complex TME, and 
we finally built the integrated tumour-immune expression score. Due to 
the synergistic effect of these features, our model achieved superior 
performance in predicting response in patients treated with ICB therapy. 
LITES can distinguish whether patients will develop PD response after 
first cycles of ICB treatment with an AUC value of 0.86. Of the 16 pa-
tients predicted to have PD, 12 did not respond to anti-PD-1/L1 therapy, 
with a specificity of 85.7%. With superior performance over PD-L1 
expression and TMB, LIES could identify an unfavourable response of 
patients using only RNA sequencing data of their tumour tissue. 

Fig. 4. Predictive power of individual features of ITES and their interrelationships. 
A) Heatmap plot illustrating the predictive scores of each feature for each patient. Each row and column represent a feature and a patient, respectively. The bar plot 
shows the AUC value of each feature. 
B) Violin plot showing the feature scores of the PD and non-PD groups. 
C) Coefficients from Cox regression analysis to evaluate the performance of various features for predicting progression-free survival, where the error bars indicate 
95% confidence intervals. 
D) Heatmap plot specifying the correlation coefficient between each pair of features. 
CI: confidence interval; HR: hazard ratio. 
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Fig. 5. Biological explanations of the LITES model. 
A) Violin plot showing the NRAS and PDPK1 gene expression score in PD and non-PD groups, respectively. 
B) Correlation between LITES score and the abundance of cell types in the immune microenvironment. 
C) Receiver operating characteristic (ROC) curves for CD8+ T cell abundance and stroma score in predicting checkpoint inhibitors response in lung cancer patients. 
D) The enrichment map of Gene Ontology terms that significantly correlated with LITES score. 
AUC: area under the curve; CI: confidence interval; NEG: negative; POS: positive. 

Fig. 6. LITES predictor performance on two melanoma cohorts and its association with clinical outcomes. 
Receiver operating characteristic (ROC) curves for LITES in predicting response to checkpoint inhibitor with two external melanoma datasets (A). Kaplan–Meier plots 
of (B) progression-free (PFS) and (C) overall (OS) survival for the Chinese melanoma cohort, and OS for the (D) Australia melanoma, (E) CTONG 1308 study, and (F) 
The Cancer Genome Atlas database cohorts. 
AUC: area under the curve; CI: confidence interval; HR: hazard ratio; NR: not reached. 
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Although we used pan-cancer sequencing data to establish LITES, to 
ensure its effectiveness with lung cancer, we ensured that 1of its 6 fea-
tures was the lung cancer-specific gene set. In the validation cohort, the 
results yielded good performance in predicting an unfavourable clinical 
response. When the lung cancer gene set was replaced by the melanoma 
gene set, the predictive power of LITES in the melanoma validation 
cohort was also acceptable (AUC = 0.70-0.78). Although broader 
coverage led to some loss in the accuracy of prediction, the results 
demonstrated that the predictive power of the other 5 features was 
stable. 

Increasing studies focused on the utility of circulating tumor DNA 
(ctDNA) as a dynamic biomarker for ICB therapy [46,47]. Particularly, it 
could be determined by the status of ctDNA if stage III patients after 
definitive chemoradiotherapy should receive immunotherapy [48]. 
Recently, Barzin et al. from the Memorial Sloan Kettering Cancer Center 
reported a predictive model for checkpoint blockade based on 
non-invasive liquid biopsy in NSCLC. The outcome was very promising 
(AUC = 0.93) and allowed a decision on whether to continue treatment 
depending on the result of a first blood drawing (HR = 0.14). Our model 
yielded good performance in predicting a PD response, which could 
prevent ICB treatment from even beginning. In clinical practice, testing 
with next-generation sequencing at the baseline of treatment is neces-
sary for genetic variation profiling. Current technologies can support 
simultaneous DNA and RNA sequencing from a single sample of tumour 
tissue. The cost for patients to complete DNA and RNA sequencing and 
the requirements for specimens will be reduced. While obtaining the 
NGS results, patients could avoid disease aggravation and potential 
immune-related adverse reactions before ICB treatment based on the 
predicted result from our model. 

By functional enrichment analysis, we found that the genes and 
pathways incorporated in LITES were related with many immunoregu-
latory factors in the TME, including DNA repair, immune regulation, and 
extracellular matrix. In other words, these factors also play critical roles 
in the tumour-immune reaction. Additionally, we found that patients 
with higher NRAS or PDPK1 expression tended to have poor response to 
anti-PD-1/PD-L1 therapy. Previous studies have found that patients with 
certain genetic variations, such as EGFR and STK11 mutations, have 
unfavourable or impaired responses to immunotherapy [49,50]. NRAS 
mutations could leave NRAS encoding protein in a state of continuous 
activation, leading to uncontrolled cell proliferation and tumour for-
mation [51], and PDPK1 mutation played a role in cancer cell invasion 
and dissemination [52]. Studies have shown the predictive role of NRAS 
mutation on ICB therapy in melanoma, but its predictive power was 
inconsistent among the studies [53–55]. More exploration is needed to 
clarify the roles of the NRAS and PDPK1 oncogenes in immunotherapy, 
and their potential mechanism. 

Note that our study has some limitations. First, the number of lung 
cancer patients included and validated in our study was limited; we plan 
to test the model in a prospective study. Second, our pool of features was 
dynamically selected based on prior biological knowledge; these could 
be stabilised and improved when additional data becomes available. 

In conclusion, LITES is an ICB predictor that integrates several 
tumour-immune related features and can effectively screen lung cancer 
patients who may not get benefit from ICB treatment. Compared to 
existing single biomarkers, LITES considers cancer-specific biological 
mechanisms to improve its predictive performance. Although LITES was 
trained based on multiple datasets across different cancer types, trying 
to ensure its predictive efficacy and generalisability, it still need large 
sample size of lung cancer patients for further validation. 
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