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Abstract: Cancer is one of the major killers across the globe. According to the WHO, more than
10 million people succumbed to cancer in the year 2020 alone. The early detection of cancer is key
to reducing the mortality rate. In low- and medium-income countries, the screening facilities are
limited due to a scarcity of resources and equipment. Paper-based microfluidics provide a platform
for a low-cost, biodegradable micro-total analysis system (µTAS) that can be used for the detection
of critical biomarkers for cancer screening. This work aims to review and provide a perspective
on various available paper-based methods for cancer screening. The work includes an overview of
paper-based sensors, the analytes that can be detected and the detection, and readout methods used.

Keywords: paper-based sensors; cancer screening; disposable sensors; sensors; paper fluidics;
microfluidics

1. Introduction

Cancer is a major cause of death worldwide [1,2]. It is estimated to be the cause of
every 1 in 6 deaths [3,4]. According to the World Health Organisation (WHO), in the year
2020 more than 10 million people lost their life to cancer [5]. Worldwide, an estimated
19.3 million new cancer cases and almost 10.0 million cancer deaths occurred in 2020 [6].
Although the causes of cancer may vary depending on the type, it has been observed that
the incidence rate of disease is on the rise [7,8].Worldwide, by 2040, 28.7 million new cases
of cancer are projected to occur, a 47% rise compared to 19.3 million in 2020. An increase in
the global cancer burden in the next fifty years will come from low- and middle-income
countries (400% in low-income countries, 168% in middle-income countries, and 53% in
high-income countries) [9,10]. Though there are different treatment strategies that have
been developed and the disease is no longer ‘incurable’ [11–14], the success rate of the
treatment depends on the stage of disease progression [15–17]. An individual undergoing
treatment in the early stages of cancer has a many times higher chance of survival than in
the later stages [18,19]. Estimates suggest that approximately 30–50% of cancer deaths can
be prevented by early detection and treatment [20–22].

Although the incidence rate of cancer is higher in wealthy nations compared to low-
and middle-income countries, low- and middle-income countries have a lower survival
rate, partly due to the late presentation of the disease [23]. The barriers of cancer care in
developing countries are due to late-stage presentation, quality of care, affordability, and
a lack of access to advanced clinical resources. Late-stage presentation puts tremendous
burden on clinicians [10]. The premature death and loss of productive life in the working
population results in a significant economic impact on these countries.

In low- and middle-income countries, access to health care facilities is not readily
available [24–28]. The number of physicians in low- to middle-income countries can be as
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low as 0.1 to 2 per 1000 people. In many cases, they are heavily burdened, leading to long
waiting times [29]. In many low- and middle-income countries, cancer screening is not
covered under insurance, thus discouraging patients from undergoing cancer screening.

To address the issue of cancer screening in these countries, various strategies have
been developed [30]. These screening devices need to be easy to manufacture, low-cost,
portable, and should not require any special training. Paper-based sensors are gaining
significance in this field as they possess all the features of an ideal screening device [31–50].

Paper was invented by the Egyptians in the fourth century BC. It is one material
that has existed continuously since the beginning of Egyptian civilization. Paper-based
products are the most sold products in the world. For example, the Bible is the most sold
book in the world and is printed on paper. The question then becomes: can we print cancer
screening devices on paper to enable their use as low-cost sensors for cancer screening?
Paper-based sensors for cancer screening are akin to an at-home pregnancy test kit. These
kits will indicate whether a specific cancer biomarker is present in the person’s body. In
many cases, the result will be qualitative, i.e., yes/no type. However, novel sensors have
been developed that provide a quantitative output [51].

In case the test returns a positive result, the patient can consult medical professionals
so that exhaustive testing can be performed and the stage of the disease identified.

The most common sensing principle used in paper-based sensors for cancer screening
is ELISA, wherein the analyte is labelled and detected using a sandwich assay [52]. The
results are then readout using a plate reader to specify analyte concentration against a
standard curve [53–57]. Various other methods are also being explored for the development
of sensors.

This work reviews the various paper-based sensors that have been developed for
cancer screening. In the next sections, a brief introduction about paper-based sensors,
the analytes used for cancer screening, and the detection and read-out techniques used
are discussed.

2. Paper-Based Sensors: Low-Cost Screening Devices for the Developing World

Advancements in microfluidics have led to their widespread usage in sensing appli-
cations. Microfluidics, as the name suggests, uses small fluidic channels where liquids,
proteins and cells can be manipulated through flow control [58]. The channels are designed
in such a way that various operations such as separation of phases, biological cells, the
size-based separation of particles, to name a few, can be performed. However, fabrication
of microfluidic devices may not be possible in low-income countries due to the lack of
availability of materials. Even poly dimethyl siloxance (PDMS)-based soft lithography
techniques require a master that can be expensive to make in low-income countries and
set-ups such as mask makers and lithography may not be readily available. Paper is a
low-cost alternative for sensors in the fight against cancer that may not need lithographic
processing. Droplet-based paper devices could be highly useful for biomarker detection.
Even microfluidic devices using screen-printing techniques can be printed on paper.

Paper-based sensors are devices that are fabricated on a paper substrate. These devices
are printed on a cellulose-based paper substrate using readily available printers, making
them easily accessible.

A typical paper-based sensor is based on exploiting the capability of paper to wick
liquid, leading to capillary action in the paper. A typical paper-based sensor is developed
on an hydrophilic paper substrate with wicking capabilities. Using surface treatment
methods, a hydrophobic barrier is created in order to guide the flow of liquid through the
specific path or channels.

The most commonly used paper in the fabrication of paper-based sensors is filter
paper. Due to its pores, it has sufficient wicking capabilities, providing a moderate flow
rate. Whatmann-branded filter paper manufactured by General Electric Health Care is the
most widely used filter paper due to its uniform pore size and distribution. In applications
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where filter paper is not suitable, nitro-cellulose paper is used as a substrate. The main
advantage of nitrocellulose substrate is its easy and efficient binding of proteins [59].

For example, nitrocellulose film is used for protein immobilization and filter paper
is used for its water absorption. In one particular study for detection of bladder cancer,
a glass-cellulose film was used for sampling, a nitro-cellulose film was used for protein
immobilization, and filter paper was used for sample transfer due to its adsorption capabil-
ities [60].

Table 1 highlights the different types of paper substrates that have been developed for
paper-based sensing applications.

Table 1. Paper substrates of interest for paper-based microfluidics.

Paper Type Properties Sensing Methods Applications/Notes/ References

Whatman Filter Paper
Grade 1

Size: 26 × 31 mm to 600 × 600 mm sheets or
10 mm to 150 cm circles.
Porosity: 11 µm
Nominal thickness: 180 µm
Medium retention and flow rate

Colorimetric, Surface Plasmon
Resonance SERS, Electrochemical,
Chemiluminescence,
Phosphorescence, Photometric,
Chromogenic sensing, Fluorescence,
Dye based sensing, Spectrometry

Analytical separation [61]
Electrophoretic separation [62]
Soil analysis [63–65]
Food testing [66]
Point of care testing [67]
Protein [68]
Atmospheric dust [69]
Gas detection [70]
HIV detection [71]
Explosive Sensing [72]
Automated DNA extraction and
amplification [73]

Whatman Filter Paper
Grade 2

Size: 460 × 570 mm to 580 × 680 mm or
42.5 mm to 500 cm circles.
Porosity: 8 µm
Nominal thickness: 190 µm
More retention than Grade 1 and slower
flow rate

Same sensing methods are
applicable as in Grade 1

Same applications as Grade 1 except slower
flow rate and higher retention due to smaller
pore size.

Whatman Filter Paper
Grade 3

Size: 26 × 31 mm to 600 × 600 mm or 23 mm
to 320 mm circles.
Porosity: 6 µm
Nominal thickness: 390 µm
More retention than Grade 1, 2 and slower
flow rate

Poor colorimetric sensing due to
slower flow rates

Same applications as Grade 1 except slower
flow rate. Poor for colorimetric sensing due
to lower color contrast

Whatman Filter Paper
Grade 4, 5, 6

Main difference is porosity; Grade 4: 25 µm
Grade 5: 2.5 µm and Grade 6: 3 µm.

Poor colorimetric sensing of Grade 5
and 6 is expected due to slower flow
rates.

Same applications as Grade 1 except slower
flow rate of Grade 5 and 6. Grade 4 suitable
for large particles monitoring in air.
Soil Suction Testing [74]

Whatman® Grade 903 W × L = 450 mm × 450 mm,
140 µm thickness, porosity: 4–7 µm

Compatible with most sensing
methods. Super refined cellulose

Whole-blood collection [75], HIV load, and
drug-resistance testing [76].
Element detection in neonatal blood spots
(NBSs) using sector-field inductively coupled
plasma-mass spectrometry [77].

Whatman® FTA filter
paper cards N/A Highly sensitive for rapid nucleic

acid extractions and storage.

Nucleic acid extraction from cells [78]; fine
needle aspirates for cancer testing [79]; tissue
analysis [80]; and virus and bacterial
RNA detection and preservation [81].

Nitrocellolose membrane pore size : 0.2 µm Same sensing methods are
applicable as in Grade 1

Western Blotting [82]
Fabrication of Lateral Flow Assay [83]

Nanocellulose paper

Nanofibrillated cellulose
(NFC)
coated with layer of reactive
nanoporous silicone
nanofilament

Mainly restricted to applications
requiring
hydrophobic
substrate

Paper-based electronics [84]

Microcrystaline
Cellulose/
Polyvinyl
Alcohol Paper

Porosity: 90%, pore size (between 23 and
46 µm), thickness (from 315 to 436 µm), and
high light transmission under water (>95%) Similar to nanocellulose paper low-cost cell culture platform [85]

Omniphobic RF paper
“fluoroalkylated paper”
(“RF paper”) by vapor-phase silanization of
paper with fluoroalkyl trichlorosilanes

Resist wetting by liquids with a
wide range of surface tensions
correlates with the length and
degree of fluorination of the
organosilane and with the
roughness of the paper

Same as nanocellulose paper [48]

Photo paper Commercially sold by Epson, Canon etc. Same applications as Grade 1 Pumpless paper-based analytical devices [86]

For patterning of the microfluidic channels on paper substrate, various printing tech-
niques such as wax-printing, ink-jet printing, screen printing, lithography, plasma pro-
cessing, and manual pattern drawing have been explored. In a typical printing-based
fabrication process, a CAD model of the microfluidic channels is printed using wax/ink-
jet–printer on the substrate. Since the model is printed on only one side of the substrate,
the substrate is heated to cause the reflow of the hydrophobic ink/wax barrier over the
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complete cross-section of the substrate. These barriers act as microfluidic channels guiding
the flow of the fluid (Figure 1).

Figure 1. Workflow of the fabrication process for printing microfluidic channels on a paper substrate.

Although paper-based microfluidic channels can be used for most of applications
as conventional microfluidic chips, there may be concerns regarding the utility of paper
substrate for use in microfluidic applications requiring multiple layers of fluidic channels
for phase separation applications. For such applications Japanese paper, folding techniques
such as origami and Kirigami are being explored [87].

The low cost of substrate, the ability to print continuously, the ability to make arrays
of devices, and minimal capital requirements for the fabrication setup make paper-based
sensors an interesting candidate for use in mass screening process. Paper being a naturally
derived substance is biodegradable in nature. This will also reduce the environmental
impact due mass production and usage of screening kits.

3. Design and Working of a Typical Paper-Based Sensor

The paper-based sensor used for screening must be fast, accurate, reliable, and must have
a low limit of detection. A low limit of detection will allow for successful detection even
during the early onset of cancer. A typical sensing setup comprises the following elements:

• Analyte: It can be simply be defined as the chemical substance to be measured. In the
case of cancer screening, cancer specific biomarkers, tumour markers, antigen, and
proteins are essential analytes . More about the different types of analytes for cancer
screening in Section 4

• Labeling: In most of the biosensors, labeling plays an important role. For the detection
of the analyte, labels that attach to the molecule are used. The selection of label
depends on the detection method used.

• Recognition: The recognition element is used to convert the biological information into
signals. The most common detection method used in cancer screeing is enzyme-linked
immunoassay (ELISA). In Section 5, various recognition methods that have been used
for paper-based cancer screening are discussed.

• Readout: The readout method is used to obtain the outcome of the test. Some common
readout methods are electrochemical, optical, and colorimetric. Depending on the
detection technique used, the results obtained can either be qualitative (yes/no) type
or quantitative (numerical values).

The paper-based microfluidic platform is divided into different zones, with each zone
having a specific functionality, as shown in Figure 2. In the sampling zone, the sample is
placed on the paper substrate. While passing through the microfluidic channels, labeling
elements get attached to the analyte. In the detection zone, the analyte is detected and
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a signal is generated for the readout. In the case of colorimetry-based devices, there is a
special zone termed as ’control zone’. In case a test yields a positive or negative result,
there is a color change observed in the control zone.

Figure 2. Typical layout of a paper-based sensor with the different zones. Each zone performs a
specific function.

4. Analytes for Cancer Screening

For cancer detection, biomarkers play an important role. According to the National
Cancer Institute (NCI), biomarkers are defined as “a biological molecule found in blood,
other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition
or disease” [88]. Though biomarkers may be generated due to various factors such as
somatic mutations, transcriptional changes, or post-translational modifications, they an
important differentiators for an affected individual compared to a healthy individual [88].
A handful of biomarkers have been approved for cancer detection. For example, high
levels of carcino embryogenic antigen may mean the presence of cancer. Similarly, CA
125 is a protein that is detected in blood for ovarian cancer. Lysophosphatidic acid, leptin,
osteopotin, and insulin-like growth factor receptor 2 are used as a biomarker for ovarian
carcinoma. Early prostate cancer antigen 2 is used as a novel biomarker for prostate
cancer [89]. Biomarkers are not only useful for the detection of screening of cancer, they are
also used in monitoring the effectiveness on any treatment or therapy. Various biomarkers
are present in blood, saliva, urine, stools, etc., making it possible to obtain samples for
analysis in a non-invasive or minimally invasive manner. There are various biomarkers
that are used for cancer screening, including antigens, micro-RNAs, proteins, antibodies,
and tumor cells. For example, the antibody–antigen interaction creates a signal that is
measured qualitatively or quantitatively on a paper substrate.

5. Recognition Element

Recognition elements are responsible for the recognition of target analytes (ex: re-
ceptors) and their conversion into a signal, which can be qualitative, semi-quantitative,
or quantitative [90]. An ideal recognition element has a highly specific binding affinity
towards the analyte of interest [90]. Recognition elements can either be natural or artificial
bio-molecules that are synthetically obtained [90–94]. When the target analyte molecule
attaches to the recognition element, it undergoes a biochemical reaction producing a
signal [90]. In some cases, for the detection of analyte, labeling agents such as nanoparticles
are attached to the analyte molecule [90].
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5.1. Antibodies

Antibodies are a type of natural bio-receptor that can be derived from living organisms [90].
Monoclonal antibodies are widely preferred in cancer screening applications due to their
high specificity to the target antigen [95,96]. Through the development of hybridoma tech-
nology, it is possible to obtain a reliable and uniform supply of monoclonal antibodies [96].
This has also led to better reliability and accuracy of sensors using monoclonal antibodies.
Covalent binding of antibodies to cellulose paper discs has been developed for colorimetric
immunoassays. The antibodies were coated on the amine-functionalized cellulose paper
discs. Through a glutaraldehyde cross-linking agent, the antibodies showed enhanced
binding activity to the target when compared to the periodate oxidation method [97]. Other
methods for antibody immobilization on a paper with shelf-life up to 12 months have been
described [98,99]. Polyclonal antibodies have multiple binding sites, each specific to a par-
ticular antigen. Although they are cheaper to produce compared to monoclonal antibodies,
they are not suitable for sensing applications due to the multiple binding sites [100].

For the detection of analytes, the principle of enzyme linked immunosorbent assay
(ELISA) is applied in sensor design. Nanoparticles such as gold are used as antibody carriers
and signal enhancers for ELISA. In the range between 0 and 60 U/mL, the ELISA assay
adopting gold nanoparticles as an optical signal enhancer resulted in higher sensitivity and
shorter assay time when compared to classical ELISA procedures. This was used to detect
breast cancer biomarkers [101].

A sensor for the detection of prostate-specific antigens (PSA) used multiwalled carbon
nanotubes (MWCNT) activated with anti-PSA antibody for the detection [102] . Due to the
site-selective interaction between the antigen and the antibody there was a change in the
resistance. This change in resistance could be measured using a benchtop multi-meter [102].
This method was found to be cheaper and faster than the ELISA method used in cancer
diagnosis [102]. Similarly, single-wall carbon nanotube based biosensors have been used in
the identification of cancer antibody–antigen interactions in blood samples using electrical
conductance measurements. Following the measurements, a classification algorithm was
implemented to differentiate between cancer and controls with 90% accuracy [103–105].

In a colorimetric sensor for the detection of pancreatic cancer biomarker (PEAK1), gold
nanoparticles that were used as a labeling element acted as a color dye catalyst to produce
colorimetric signals [106]. A photothermal-effect-based sensor used a graphene oxide
(GO)-gold–anti-EpCAM antibody composite as the recognition element for the detection
of MCF-7 cancer cells specific antigen [107]. After laser irradiation at the test zone, the
temperature contrast was recorded for the detection of cell numbers (Figure 3) [107].

Figure 3. Working of photothermal effect based sensor for MCF-7 cancer cell detection. (Reproduced
with permission from [107] Copyright 2016, Elsevier).
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5.2. Aptamers

Aptamers are single-stranded nucleic acids that are folded into a specific architec-
ture [108,109]. Due to their specific binding of the target proteins, they are used for sensing
applications [108,110]. Their size and chemical stability make them widely preferred for the
detection of proteins and small molecules [110,111]. Their low cost makes them a preferred
alternative to antibodies in sensing applications [111]. For example, carbon-nanotube-based
RNA apatamer sensors were developed for detecting IL6 in blood samples. Apatamer
sensors based on field effect transistor arrays suggested a shift in drain current versus
gate voltage for 1 pg and 1 ng of IL-6 exposure. The concentration of 1 pg falls below the
diagnostic gray zone for cancer (2.3 pg–4 ng/mL), which is an indicator of early-stage
cancer [112].

For the design of aptamer-based sensors, various strategies such as sandwich, target-
induced structure switching, or competitive replacement modes have been used for biosen-
sor design [111]. Electrochemical sensing is the most preferred sensing method with
aptamer as the recognition element; however, other methods such as optical sensing have
also been explored [110].

In a fluorescence-based paper-based sensor designed for the detection of multiple
types of cancer cells, graphene oxide-coated with mesoporus-silica-labelled high-specificity
aptamers was used as a labeling element [113]. Using the excitation wavelength of 350 nm,
a color change was produced that could be observed through naked eye [113].

6. Sensing and Readout Methods

For achieving higher utility of paper-based sensors, the readout method used should
be cost-effective and portable. The method provides fast and accurate results without a
requirement for extensive handling by experts.

In most of the cases, qualitative readout methods should suffice. However, with focus
on providing health professionals with important data at the point-of-care, qualitative
readout methods are also gaining significance. Although there are various readout methods
for sensing applications, electrochemical and optical are the most widely used readout
methods for paper-based sensing applications. With advancements in smartphone and
machine learning technologies, there have been works that use smartphones for signal
interpretation and readout.

6.1. Modified Electrodes

For electrochemical sensing, the potential difference between the electrodes is propor-
tional to the concentration of the analyte. In paper-based sensors, the working electrode
is modified such that the binding of the analyte produces an electrical signal through a
change in resistance, current, capacitance, or impedance.

Various nanocomposites have been used for the fabrication of modified electrodes.
These nanocomposites perform a dual function: recognition and amplification. Amino func-
tional graphene (NH2-G)/thionine (Thi)/gold nanoparticles (AuNPs) nanocomposites are
coated with recognition elements such as üimmobilized anti-CEA [114] and anti-NSE [115]
for the detection of specific analytes. The sensor could provide fast results with a low limit
of detection of 10 pg/mL [114]. In a more recent work, an aptasensor with two working
electrodes capable of the simultaneous detection of CEA and NSE has been developed.
Along with the NH2-G/Thi/Au nanocomposite, Prussian blue (PB)- poly (3,4- ethylene-
dioxythiophene) (PEDOT)- AuNPs nanocomposite was used for the fabrication of the
second electrode, which was coated with immobilized CEA and NSE aptamers [116]. The
device worked on the principle of electrochemluminescnce and could achieve fast and
accurate detection of CEA and NSE with a limit of detection of 2 pg/mL and 10 pg/mL,
respectively (Figure 4) [116].
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Figure 4. Mechanics of modified electrode paper-based apta sensor. (Reproduced with permission
from [116] Copyright 2019, Elsevier).

6.2. Electrochemical

In electrochemical sensing method, the analyte generates an electrical signal propor-
tional to its concentration [90]. The signals may be generated through a biorecognition
event, modified electrodes, or enzyme mediated electrodes [90,117]. For electrochemical
detection, the sensor should have three electrode systems with reference, working, and
counter electrodes. For measuring the signals, electrochemical devices such as electrochem-
ical workstations or bench-top multimeters are used.

Various routes such as the use of labeling agents or modified electrodes may be used
for generating electrical output from biological signals. In a sensor developed for the
detection of cancer antigens, a marker for ovarian cancer, a reduced graphene oxide/gold
nanoparticle/thionine nanocomposite was used as working electrode [118].

For the reliable detection of signals, signal amplification techniques are used. In
paper-based sensors for the detection of CEA using horseradish peroxidase (HRP)–O-
phenylenediamine–H2O2 as a detection element, graphene was coated on the substrate for
accelerating the electron transfer and amplifying the signals [119].

6.3. Optical

For optical sensing, signals are generated through a recognition process by the for-
mation of an antigen–antibody complex [90]. The optical signals could be fluorosence,
chemiluminescence, or color change [90]. Other than the signals that display a direct color
change, a photo-detector is used for measuring the signals [90].
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Surface-enhanced Raman scattering is a popularly used method for signal detection
in paper-based sensors. Gold nanostar@Raman reporter@silica-sandwiched nanoparticles
have been developed as surface-enhanced Raman scattering (SERS) probes for the paper-
based lateral flow strip (PLFS) assay [120]. A sensor for the detection of CEA used a
portable raman sensor for measurement (Figure 5) [120]. Using a paper-based lateral flow
strip capable of plasma separation and using silica nanoparticles for labeling the sensor
displayed a limit of detection of 1 ng/mL [120].

Figure 5. Working of a paper-based sensor for CEA concentration detection using surface-enhanced
Raman scattering (SERS). (Reproduced with permission from [120] Copyright 2021, American Chemi-
cal Society).

For naked eye detection, luminiscent reporters are used as labeling elements These
can be nanoparticles [51], conjugated polyelectrolytes [121], or multi walled carbon nan-
otubes [102].

6.4. Smartphone/Machine-Learning-Based

Smartphones are devices that are readily available, even in low- and middle-income
countries. Mobile health is becoming increasingly popular in developing countries [122]. It is
widely explored as a tool for the efficient delivery of services, including in healthcare. Smart-
phones have been explored as a readout method for both optical and electrical signals [123–125].
For optical signals, a smartphone camera is used for data acquisition [126–128]. Using a cus-
tom application, the acquired image is compared with reference values and the result is
calculated [126–130].

Smart phone-based imaging was used for calculating and displaying results in a multi-
layered paper-based sensor for cancer screening [131]. The movable layers allowed one to
control the flow of the solution. Using the special design and smartphone-based readout, it
was possible to achieve a low detection limit of 0.015 ng/mL[131].

Smartphones are also used for coupling with an electrochemical sensing device for
the readout of signals [132]. A screen-printed sensor with multi-walled carbon nanotubes
(MwCNT)/thionine (Thi)/gold nanoparticles (AuNPs) electrodes is capable of detecting
cancer antigen (CA125) with a limit of detection of 2mU/mL [132]. The sensor uses a elec-
trochemical detector powered using a smartphone, and it transfers data to the smartphone,
where it is readout using a custom app (Figure 6) [132].

Table 2 summarizes recent works using paper-based sensors for cancer screening. It
provides the breakdown of the sensor in terms of the biomarker(s) detected, recognition
element, readout method used, and the types of cancer detected.
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Table 2. Paper-based sensors for cancer screening.

Biomarker Detected Recognition Element Readout Method Types of Cancer Reference

MCF-7 Cells
Graphene Oxide- Gold nanoparticle
nanocomposite with anti-EpCAM
antibody.

Protothermal contrasting and
visual readout Breast cancer [107]

AFP, CEA, CA125, and
CA153.

Horse radish peroxidase (HRP)- O
phenylene diamine H2O2

Electrochemical
Immunodevice Multiple [119]

PSA Bipolar electrode electrochemiluminescence Prostate cancer [133]

microRNA-141
(miR-141) and
microRNA-21 (miR-21)

Metal–organic framework (MOF)
conjugated bio-probe, methylene blue (MB)
and ferrocene (Fc) with distinguishable
electrochemical signal,

Elctrochemical Early detection of cancer [134]

CEA NH2-G/Thi/AuNPs nanocomposites
modified electrode Electrochemical Multiple [114]

miRNA-21
Positively charged conjugated polyelec-
trolyte (CPEs)
“poly(3-alkoxy-4-methylthiophene)” (PT)

Colometric Through Naked
Eye Lung Cancer [121]

NMP22 and BTA Antibodies Colometric With Naked Eye Bladder Cancer [60]

miRNA-21 DNA-templated Ag/Pt nanoclusters
(DNA-Ag/Pt NCs),

Colometric Through Naked
Eye Lung Cancer [135]

miRNA-21 and
miRNA-31 Duplex-specific nuclease (DSN) Laser-induced fluorescence

(LIF) miRNAs in cancer cells [136]
blood cancer cells and
skin cancer cell photonic crystal fiber (PCF) optical blood and skin [137]
Neuron-specific enolase
(NSE)

NH2-G/Thi/AuNPs nanocomposites
modified electrode

electrochemical detector and
Android’s smartphone Lung Cancer [115]

cancer antigen 125
(CA125)

reduced graphene ox-
ide/thionine/gold nanoparticles
(rGO/Thi/AuNPs) nanocomposites coated
working electrode

electrochemical
ovarian cancer,lung
cancer, endometrial
cancer and breast cancer

[118]

CEA plasma separation optical :raman scattering
readout Multiple [120]

free hydrogen sulfide in
prostate cancer cells

polyvinylpyrrolidone (PVP) membrane
containing silver/Nafion Colorimetric Prostate cancer [138]

PSA
multi wall carbon nanotubes MWCNTs
activated PSA antibody (monoclonal
antibody of the prostate specific antigen)

Electrochemical: Bench top
multimeter Prostate cancer [102]

CEA Anti CEA Colorimetric Multiple [139]
PEAK1 Anti PEAK1 Colorimetric using gold nps pancreatic cancer [106]

PEAK1 nanomaterial graphene oxide coated
electrode immobilized with anti-PEAK1 Electrochemical pancreatic cancer [140]

CEA PSA [Ru(bpy)3]2+-labeled signal antibody CEA
and PSA Electrochemiluminescence Multiple [141]

Cytochrome c (Cyt c) Cyt c aptamer and Raman reporter
Cy5-labeled complementary DNA optical :raman scattering Lung Cancer [142]

CEA and NSE DNA aptamer Electrochemical Multiple [116]

EGFR anti-EGFR aptamers Electrochemical gastric, breast, ovarian,
and colorectal cancers [87]

MCF-7 cells Aptamer-modified electrode Electrochemiluminescence Breast cancer [143]

VEGF-C NMB/NH2-SWCNT/AuNps modified
Working electrode Electrochemical Cancer progression [144]

urokinase plasminogen
activator

graphene-AuNP platform and fluorescence
of quantum dots Colorimetric Cancer progression [145]

Micro RNA MiR-17 “light-switch” molecule
[Ru(phen)2dppz]2+ modified electrode. Electrochemiluminescence Breast cancer [146]

Osteopontin Biotinylated aptamer for precapture and
antibody for detection

Optical through
naked eye Cancer prognosis [147]

Diphenylthiocarbazone CuO NPs-labeled seconday Anibodies
captured by antibodies

Fluorescence resonance
energy transfer (FRET) Prostate cancer [148]

AFP and MUC16 AuNP labeling and anti-AFP and
anti-MUC16 antibodies colorimetric spot test Multiple types [149]

Perilipin-2 Gold nanorattles with PLIN-2 assay Plasmonic biosensor Renal cancer [144]
CA 125 Ag/rGO nano-ink based electrodes with

anti-CA Electrochemical Ovarian Cancer [150]

CEA Graphene-PEDOT:PSS
modified electrode Electrochemical Multiple [151]
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Figure 6. Sensor for detection of cancer antigen (CA125). The screen-printed sensor used electro-
chemical deterrence for signal measurement and a smartphone with a custom application for readout
(reproduced with permission from [132] Copyright 2022, Elsevier).

7. Limitations of Current Paper-Based Methods

Despite the promising future, there are currently several limitations that hinder the
large-scale acceptance of paper-based sensors. Ranging from fabrication methods, a re-
quirement of measurement equipment, to regulatory requirements, many limitations need
to be addressed before paper sensors are actually put into service. Sensitivity and accuracy
are also concerns in paper-based devices.

However, paper-based sensors are excellent for qualitative and semi-quantitative
screening. One can further improve the accuracy of paper-based testing through imple-
menting paper-based testing with artificial-intelligence-based analysis. Machine learning
and deep learning can even predict the sequence of DNA and RNA that can point to cancer
mutations. They could also potentially detect cancer cells in blood droplets. The ability
to differentiate between cancer versus normal cells in blood based on AI can be a very
powerful approach in making paper-based testing a reality for mass screening [152].

With the exception of laser printing and screen printing, different fabrication methods
used for the fabrication of paper-based microfluidic devices such as photo-lithography,
e-beam lithography, reactive ion etching, and metal or oxide deposition require extensive
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capital investment and training, making them non-feasible for use in low- and middle-
income countries.

For devices with qualitative measurement of signals, despite the low cost of single
paper-based sensing device, expensive equipment such as electrochemical workstations,
photo detectors, or electrochemiluminscence detectors are required for a results readout.
This not only affects the portability of the device but also increases the overall cost of the
screening, and it requires a trained technician to carry out the readout.

Nevertheless, paper-based sensors can make a significant impact in terms of testing
blood for infectious diseases and even in the fight against cancer. The qualitative assessment
of whether a person has cancer based on biomarkers in blood can reduce the cancer
clinical burden in low- and middle-income countries. The paper-based testing method will
definitely have an advantage here to reduce the clinical burden through the large-scale
screening of populations. People with cancer undergoing chemotherapy may be prone to
infectious diseases. Life-threatening infectious diseases can kill people in a few days. Here,
POC systems based on paper and colorimetric detection methods for parasites, viruses, and
other agents would be highly valuable. Before vaccination, people, including doctors, were
dying of COVID-19 within a few days to two weeks. Low-cost qualitative paper-based
sensors with instant results through color change are an absolute necessity to differentiate
between population who has the virus from those who do not. This may be cheaper than
the current PCR test that is used and is done in the laboratory. In the era of the pandemic,
low-cost sensors for personal safety are very important. Qualitative paper-based sensors
with instant read out will be highly useful in such pandemics as one cannot run tests in the
laboratory frequently.

8. Conclusions

Paper-based sensors have immense potential to to act as low-cost tools in the mass
screening of cancer. They can be used in cancer-screening camps, especially in low- and
middle-income countries. Due to the health care resources being highly stressed in these
countries, screening using paper-based sensors will act as a filter. The samples of the
patients who test positive in the screening stages can then be treated as a priority. This
will in a way help in resource allocation and management in these countries. It must be
mentioned that the paper-based sensors with their current state of the art are insufficient
for providing data to healthcare professionals in making important decisions. Further,
testing will be required to ascertain the stage of the disease before any treatment plan is
decided. Many times, the same biomarker is produced for multiple types of cancers. CEA
is a common marker for multiple types of cancer such as lung, breast, ovaries, stomach,
and intestine, to name a few. Thus, it is necessary to determine the type of cancer and
the stage of disease progression before starting the treatment. Normal CEA levels are
2.5 ng/mL. A CEA level of 10 ng/mL would indicate the presence of cancer, and anything
above 20 ng/mL would indicate the spread of cancer.

Patients with continuously decreasing levels of CEA do better after treatment than
patients with increasing CEA levels. A regular paper-based CEA test with an instant
read out can tell the doctors the potential for cancer progression. Their use will reduce
the number of expensive tests (CT scans, PET-scans, etc.) a patient undergoes during
follow-up visits and also help reduce the cost of treatment. In the era of telemedicine,
it is becoming increasingly convenient to deliver healthcare at home. Cancer-screening
tests can be conducted at home, and the results of the test can be emailed or texted to a
doctor automatically using smart phones. So, paper-based testing is important here for
home-based low-cost sensors.

Although paper-based sensors may not potentially be the knight in shining armor
against humanity’s fight against cancer, they can potentially be the important foot soldier
in the fight. Future integrated paper-based sensors where all the sensing and electronic
circuitry are printed in paper can make an impact on low-cost testing. Paper-based can-
tilevers with optical sensors and electronics integrated in a hand-held chip could enable the
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detection of cancer biomarkers such as prostate-specific antigen (PSA) from blood samples.
Thus, there are exciting opportunities for paper-based sensors in the fight against cancer.
The places where paper-based sensors along with mobile phones and AI-based techniques
could make an impact in the fight against cancer are (1) the low-cost qualitative screening
of large populations; (2) reducing the clinical burden through proper resource allocation;
(3) estimating cancer prognosis; (4) monitoring cancer treatment; and (5) detecting cancer
recurrence qualitatively or semi-quantitatively. With the ability to miniaturize anything,
from detectors to spectrometers, one can implement miniaturized low-cost detectors along
with paper-based sensors for cancer detection. Such miniaturized sensors are already made
by many companies and could be bought off the shelf and integrated with a paper-based
sensor. Finally, paper-based methods with artificial intelligence techniques can enable low
cost and further improve the sensitivity and accuracy of paper-based sensors.
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PoCT Point of Care Testing
CEA Carcino Embryonic Antigen
MCF-7 Michigan Cancer Foundation
AFP Alpha-fetoprotein
MWCNT Multi-walled carbon nano tubes
CA125 Cancer antigen 125
CA153 Carbohydrate antigen 153
PSA Prostate-specific antigen
HRP Horse radish peroxidase
MOF Metal–Organic Framework
miR-141 microRNA-141
miR-21 microRNA-21
NSE Neuron-specific enolase
PEAK1 Pseudopodium-enriched atypical kinase one
EGFR Epidermal Growth Factor Receptor
Cyt C Cytochrome c
PCF Photonic crystal fiber
DSN Duplex-specific nuclease
CPE Conjugated polyelectrolyte
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VEGF-C Vascular endothelial growth factor C
NMB New methylene blue
NH2-SWCNTs Amino-functional single-walled carbon nanotubes
AuNPs Gold nanoparticles
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