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Abstract: Neurodegenerative diseases are a group of pathologies that cause severe disability due
to motor and cognitive limitations. In particular, cognitive impairment is a growing health and
socioeconomic problem which is still difficult to deal with today. As there are no pharmacologically
effective treatments for cognitive deficits, scientific interest is growing regarding the possible impacts
of healthy lifestyles on them. In this context, physical activity is gaining more and more evidence
as a primary prevention intervention, a nonpharmacological therapy and a rehabilitation tool for
improving cognitive functions in neurodegenerative diseases. In this descriptive overview we
highlight the neurobiological effects of physical exercise, which is able to promote neuroplasticity and
neuroprotection by acting at the cytokine and hormonal level, and the consequent positive clinical
effects on patients suffering from cognitive impairment.

Keywords: physical activity; exercise; rehabilitation; Alzheimer’s disease; Parkinson’s disease

1. Introduction

Neurodegenerative diseases are a group of hereditary disorders of the central nervous
system, which cause slow, progressive damage of specific neuron populations and their
connections [1]. They can cause severe clinical consequences, such as motor and cognitive
disability, and care dependency [2].

In particular, the impairment of cognitive abilities is a growing health and socioeco-
nomic problem. In fact, dementia and mild cognitive impairment (MCI) cases are estimated
to increase in Europe from 7.7 million in 2001 to 15.9 million in 2040 [3]. According to
the estimates provided by the Global Burden of Disease in 2003, dementia contributed
to 11.2% of years lived with disability in people aged 60 and over, more than strokes,
musculoskeletal disorders, cardiovascular disease and all forms of cancer [4]. Costs of
dementia are forecasted to raise in the whole European continent by about 43% between
2008 and 2030, to over EUR 250 billion. Therefore, the research regarding this disease
represents a real challenge for physicians and rehabilitators.

Many treatment strategies have been tested, using both drugs and rehabilitation
techniques [5]. Furthermore, great interest has been placed on the importance of lifestyles
both in the management and in the prevention of cognitive limitations deriving from
neurodegenerative diseases [6].

Among the life habits, the possible role of physical activity seems increasingly inter-
esting. There has long been discussion regarding the positive effects of physical exercise
(PE) on brain activity [7]. Raichlen et al. reported a positive correlation between the size
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of the human brain and endurance-exercise capacity, suggesting a coevolution between
locomotion and cognition in human [8].

However, PE has only recently begun to receive the attention of the international
scientific community, especially around its possible effects on cognitive functions, spatial
learning and memory, as a nondrug method of maintaining brain health and treating
neurodegenerative and psychiatric conditions [9]. The beneficial effects of aerobic and
resistance exercises in adult and geriatric populations have been demonstrated [10], and in
the same way, rehabilitative therapeutic exercise seems to be an effective instrument to try
to slow down the unavoidable progression of cognitive impairment in pathologies such
as dementia [11]. So, PE provides a nonpharmacological approach to slowing age-related
decline and reducing disease-related cognitive impairment in older adults through the
reduction of risk factors and its neuroprotective capacity. Nevertheless, the biochemical
and molecular bases underlying the neuroplasticity mechanisms are still partly unclear, as
are the processes that translate the effects of PE into neurological and clinical benefits [12].

The aim of this literature descriptive overview is to investigate whether PE has a
clinically positive and rehabilitation-improving effect on cognitive impairment related to
neurodegenerative diseases, and to understand more deeply the neurobiological mecha-
nisms that give an explanation of these processes.

2. Physical Exercise-Related Neurobiological Processes in Neurodegenerative Diseases

The maintenance of cognitive function lies in the processes of neuroplasticity and
neuroprotection (Figure 1).
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Neuroplasticity is the ability of the brain to alter functional and structural properties
in order to respond to changing demands, and it results in learning and acquiring skills [13].
It is well known that PE facilitates neuroplasticity of certain brain regions, and as a result,
it improves cognitive functions [14]. Farmer et al. demonstrated that hippocampal neurons
grow and develop from a single population of stem cells in response to exercise [15].
New neurons are more flexible in making connections than mature ones, allowing for
healthy learning, a good memory and mood regulation [16]. Moreover, to make many
brain activities work properly, the hippocampus plays a role through the secretion of
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some stimulating factors such as brain-derived neurotrophic factor (BDNF), glial-derived
neurotrophic factor (GDNF) and insulin-like growth factor (IGF-1), that together with
synapsins and synaptophysins induce a downregulation of oxidative stress and apoptotic
functions [17]. Increased release of protective neurotrophins is associated with PE in animal
and human studies [18].

2.1. Neurotrophin Modulation Induced by Physical Exercise

BDNF belongs to a family of small, secreted proteins that also include nerve growth
factor, neurotrophin 3 and neurotrophin 4. It acts as an antiapoptotic and antioxidant agent,
and tends to suppress all the autophagy processes induced by microglia and proinflamma-
tory cytokines [19]. BDNF stands out among all neurotrophins due to its high expression
levels in the brain and its potent effects at synapses [20]. Furthermore, Churchill et al. in
2002 indicated that BDNF neurotrophin is involved in information storage processes in
long-term memory and learning [21].

Physiologically, after an ischemic insult, the microglia are activated and acts with
proinflammatory activity, leading to an increase in free oxidative radicals (ROS) to which
neuronal cell try to respond by consuming ATP and inevitably dying; therefore, increasing
the levels of BDNF through PE could reduce the impact of these events [21]. In fact,
PE increases the expression of BDNF but also of IGF-1, which interacts with BDNF to
mediate exercise-induced cognitive gains [22–24]. Mattson et al. suggested that, since
endurance exercise clearly increases BDNF expression in the brain, the improvement in
exercise capacity may positively enforce brain growth, especially in hippocampus [25].
So, exercise training is known to enhance the neuronal functions of the amygdala and
hippocampus, since it seems to increase the levels of BDNF/TrkB signaling molecules [26].
Fahimi et al. reported that around four weeks of treadmill and running wheel exercises
in mice brought about many changes such as: significant increases in BDNF-mRNA
and protein levels, significantly increased synaptic load in dentate gyrus, changes in the
morphology of astrocytes and orientation of astrocytic projections toward dentate gyrus
cells [27]. Zsuga et al. suggested also that BDNF modulates neuronal dopamine content
and its release, which are essential for neuronal plasticity, neuronal survival, learning and
memory [28]. So, BDNF concentration’s increase in blood after PE seems to be a preventive
factor with regard to cognitive impairment.

Like BDNF, IGF-1 also promotes neuronal growth, survival and differentiation. Its
blood concentration seems to increase in older adults after 6 months of moderate-to-high
levels of resistance exercise [29]. Although the specific molecular actions of IGF-1 that
contribute to improved cognitive performance in aged animals remain unknown, there
is new evidence that synaptic morphology and function is regulated by IGF-1. In fact,
Shi et al. quantified total synaptic profiles as well as synaptic profiles in multiple spine
bouton (MSB) complexes in the CA1 region of the hippocampus and determined the
postsynaptic density (PSD) length. The results indicated a decrease in total synapses
between middle and old age, but IGF-1 infusion to old animals increased PSD length and
the number of MSB synapses. These changes appear to be morphological correlates of
increased synaptic efficacy and suggest that IGF-1 levels influence synaptic function in the
CA1 region of the hippocampus [30]. These findings could indicate that circulating IGF-1
is essential for protecting the normal brain function. Moreover, Trejo et al. demonstrated
that behavioral and synaptic deficits were improved in IGF-1-deficient mice by prolonged
systemic administration of IGF-1, which normalized the density of glutamatergic buttons
in the hippocampus. These results indicate that circulating IGF-1 also influences mature
brain function, i.e., learning and synaptic plasticity, through its trophic effects on central
glutamate synapses [31]. Therefore, raising the levels of circulating IGF-1 through PE is
important not only to prevent the appearance of cognitive impairment, but also to improve
cognitive performance in those affected.

Recent evidence has highlighted the importance of PE through the action of another
molecule, a hormone called irisin. It was identified in 2012 in a study by Bostrom et al. [32];
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irisin is generated in skeletal muscle precisely in response to exercise. The main effect
of this hormone is to control bone mass, with positive effects on cortical mineral density
and geometry that might help to treat osteoporosis. Nevertheless, it seems to produce
positive effects on brain function. Although the mechanism of action is not still well
known, in rats it has been shown that PE leads to an increase in fibronectin type III domain-
containing protein 5 (FNDC5), a membrane protein that, once cleaved, forms the hormone
irisin. Once secreted into the extracellular matrix, this hormone binds to its receptor and
activates a signaling cascade that induces the expression of the BDNF gene, thus leading
to neuroprotection in an indirect manner. As mentioned above, increased BDNF levels
improve the health and function of the hippocampus [33]. On the other hand, at the
peripheral level, overexpression of FNDC5/irisin recovers memory impairment induced
by most neurodegenerative diseases, whereas its blockade at the central or peripheral level
attenuates synaptic plasticity and worsens memory in AD mice [34]. Li et al. demonstrated
that intravenous injection of irisin reduces levels of active microglia and TNF-α expression,
thereby protecting neurons from inflammation [35]. Moreover, the novel exercise-induced
hormone seems to protect against neuronal injury through activation of the Ak strain-
transforming (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling
pathways [36]. These results suggest that irisin contributes to the neuroprotective effects of
exercise in cerebral ischemia and is a promising agent for the prevention and treatment of
ischemic stroke and neurodegenerative diseases.

2.2. Impact of Physical Exercise on Astrocytic Functions

Other important factors involved in the neurobiological processes induced by PE
are astrocytes, which are the cells most represented in the central nervous system (CNS),
belonging to the glia. They modulate the transmission of neuronal signals and integrate
information from synapses [37]. Astrocytes have also different functions. Firstly, they are
responsible for maintaining brain homeostasis, stabilizing the extracellular concentrations
of potassium, chlorine and calcium ions [38]. It is also known that astrocytes can perform
protective functions in the CNS by taking excite-toxic glutamate and producing glutathione
against oxidative stress, degrading amyloid peptides and regulating cell volume and ionic
homeostasis so as to facilitate the repair of the blood–brain barrier (BBB) and regulate
inflammation of the CNS [39]. In relation to all these functions, it is understood how
possible inefficiencies of these cells can contribute to the pathogenesis of numerous brain
disorders such as cognitive impairment. A growing branch of neuroscience has shown that
glia directly affects the ability to generate neuronal signals, locally and globally modulating
the activity of the brain network [40].

In elderly neurodegenerative disease, such as dementia, the decline of cognitive
functions often is a result of alterations in brain circulation [41]. Therefore, PE seems
to be able to contrast the damage related to cerebral hypoperfusion. Leardini-Tristao
et al. demonstrated how early moderate exercise in chronic hypoperfusion can modulate
neuroinflammation, cerebral circulation, and astrocyte coverage. After 12 weeks, early
moderate exercise reduces blood pressure and microglial activation in the hippocampus
and improves astrocyte coverage in blood vessels of the cerebral cortex [42]. This suggests
that early and long-term moderate exercise may represent a nonpharmacological approach
in dementia due to chronic hypoperfusion.

2.3. The Physical Exercise Modulation of Microglia

The role of PE in neurodegenerative diseases is also carried out through the mod-
ulation of microglia, reducing neuroinflammation. Microglia cells are the “resident”
macrophages, and are the first line of defense against damage in the CNS. In fact, mi-
croglia guarantee the trophism of the neuron, control neuronal plasticity and participate in
the control of the BBB, participating also to neuroinflammatory processes [43]. After an
ischemic brain damage, microglia rapidly migrate to the injury site and contribute to the
inflammatory mechanism by promoting excessive production of inflammatory cytokines
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and cytotoxic substances. In the absence of external stimuli, the microglia are in an “in-
active” state in which; thanks to its branched cell morphology, they constantly monitor
the neuronal microenvironment. Once activated, however, they undergo a morpholog-
ical modification that leads them to assume a mobile amoeboid form in order to reach
the place of the insult. The functional phenotypes associated with these two phases are
called M1 and M2, and are correlated, respectively, with neurotoxic and neuroprotective
functions. Thus, M2 microglia exert a protective role after ischemia through releasing
neurotrophic factors including BDNF, IGF-1, interleukin-4 (IL-4), and interleukin-10 (IL-10).
M2 microglia can maintain BBB integrity, promote the proliferation and differentiation
of neural stem cells (NSCs) and oligodendrocyte progenitor cells (OPCs), and facilitate
myelin regeneration and tissue repair. Conversely, M1 microglia can remain active for
a long time, releasing cytokines and neurotoxic factors which can in turn contribute to
increase the neuronal damage [44]. There is a possible correlation between glial activa-
tion, neurodegeneration and dementia. Laakso et al. verified that microglial activation
is associated with neuronal damage by demonstrating hippocampal atrophy in patients
with chronic neurodegenerative diseases such as AD and Parkinson Disease (PD). There-
fore, modulation of neuroinflammation could have important therapeutic implications
in these pathologies [45]. The therapeutic role of PE as a regulator of neuroinflammation
fits into this context. Indeed, PE induces the production of a series of anti-inflammatory
molecules [46]: it increase the expression of Cluster of Differentiation 200 (CD200), an
immunomodulatory factor that inhibits microglia by interacting with its receptor CD200R
on microglial membranes; moreover, long-term exercise is able to regulate the expression of
IL-10, an anti-inflammatory myokine, and increase the levels of soluble triggering receptor
expressed on myeloid cells 2 (TREM2), an immunoglobulin receptor that regulates phago-
cytosis and cytoskeleton rearrangement and has a protective action in the cerebrospinal
fluid (CSF) of patients affected by AD. Finally, PE increases antioxidant levels, and this
contrasts neuroinflammation caused by microglia [47].

2.4. The Influence of Physical Exercise on Hormonal Activity

In recent years, it has also been demonstrated that PE slows the development of
neurodegenerative diseases from a hormonal point of view.

One of the main functions of hippocampus consists of the inhibition and adaptive con-
trol of hypothalamic–pituitary–adrenal axis (HPA) as a stress response [48]. Physiologically,
the hippocampus contains many steroid receptors, divided into mineralocorticoids recep-
tors (MR) and glucocorticoids ones (GR) [49]. It has been demonstrated that a physiological
reduction in the number of steroid receptors in different areas of the hippocampus occurs
with age [50] and that the HPA tends to free itself from the inhibitory control exerted by the
higher centers. Holsboer et al. developed a high-sensitivity test based on the combination
of dexamethasone-suppression/corticotropin-releasing hormone stimulation (DEX/CRH
test) to study the function of the HPA system. The test results showed that basal cortisol
concentration was significantly higher in AD patients than in healthy subjects, and that
the minimum drug concentration to which the patient reacts to cortisol was significantly
higher in healthy subjects than in the AD patient group. In addition, AD patients released
significantly less adrenocorticotropic hormone (ACTH) and cortisol after further CRH stim-
ulation than the control group. These results confirm that the regulation of the HPA system
is impaired in AD. The impairment of the HPA axis and the corresponding increase in basal
cortisol may be attributed to advancing age and the process of hippocampal destruction,
which is typical of neurodegenerative diseases [51].

Lanfranco et al. demonstrated that PE also represents a powerful physiological
stimulus on the HPA axis [52]. To understand the brain activation in response to PE, a
comprehensive analysis was performed on rats after 90 min of treadmill running [53].
The results demonstrated a hypersecretion of CRH, arginine-vasopressin hormone and
ACTH, which conduce to an increase in basal adrenal cortisol secretion. Two major factors
modulate the HPA axis response to resistance exercise: intensity and duration [54]. The
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minimum exercise intensity required to produce a cortisol response from HPA axis is 60%
of maximum oxygen consumption (VO2max); for exercise above 60% VO2max, plasma
cortisol concentrations increase linearly with exercise intensity [55]. Below this intensity
threshold (<60% VO2max), ACTH and cortisol concentrations may increase only if 90 min
exercise with at least 40% VO2max is maintained [56]. When PE is performed, a high
response of hormones such as ACTH and cortisol occurs to mitigate the enormous metabolic
demand essential to the body to complete the exercise itself [57]. Indeed, cortisol remodels
muscle fibers by inhibiting the synthesis of new proteins and stimulating the degradation
of the proteins through the ubiquitin pathway; moreover, cortisol affects neuromuscular
function through various rapid and short-term mechanisms, such as the regulation of
Ca2+ channels [58]. Moreover, Klaperski et al. showed that continuous, intense PE led to
reduced stress reactivity and improved recovery from neuropsychological stress compared
with physically inactive subjects [59]. Finally, adaptation to exercise induced a decreased
peripheral tissue sensitivity to GCs that is supposed to protect the body from the severe
metabolic and immune consequences of increased cortisol levels [60].

In conclusion, PE is able to determine transcriptional and translational changes at the
cellular level, and it also induces a tissue biological stimulus at the CSN level and regulates
the hormonal axes involving the brain. It therefore produces a cascade of positive biological
and metabolic effects, both in terms of neuroplasticity and in terms of neuroprotection; for
these reasons it can be considered a real drug, devoid of any side effects for the CSN.

3. Physical Exercise-Related Clinical and Rehabilitative Effects in
Neurodegenerative Diseases

At this point it becomes essential to understand how the neurobiological effects of PE
translate to a clinical level. Translating the perspective from the cell to the body and its
function, from the particular to the general, is the indispensable premise for evaluating the
effectiveness of PE as an opportunity for treatment and rehabilitation in the management of
the most important neurodegenerative diseases that cause cognitive impairment (Figure 1).

3.1. The Role of Physical Exercise in Alzheimer’s Disease (AD)

AD is certainly the most widespread and disabling neurodegenerative disease. AD is a
neurodegenerative disease characterized by neuronal and synaptic changes in the cerebral
cortex and in some subcortical regions, which cause the deterioration of cognitive and psy-
chobehavioral functions [61]. The epidemiological data available over the last 10 years have
shown that PE can slow down the progression of neurodegenerative diseases [62]. Aerobic
PE increases cardiac output, and consequently, cerebral blood flow. This mechanism also
involves an increase in angiogenesis, neurogenesis, synaptogenesis and the synthesis of
neurotransmitters, which in turn improve memory and cognitive functions [63]. Over the
years, the correlation between aerobic PE and the improvement of cognitive function in
subjects with AD has gained more and more evidence [64,65]. The effects of moderate
physical activity on higher brain functions were first highlighted by observing how simple
walking, if carried out regularly, leads AD patients to improve their cognitive abilities,
a result which is quantifiable by using the Mini Mental State Examination (MMSE) [66].
Furthermore, according to a very large sample study conducted by Norton et al. [67], a
percentage equal to 12.7% of AD cases worldwide and 20.3% of AD cases in Europe in
2010 were attributed to physical inactivity. Additionally, the findings of a previous study
published by Larson et al. were in line with these data: an analysis was conducted on a
sample of 1740 individuals over the age of 65; all were subjected to a regular session of PE
carried out for 2 years (15 min/session of walking, cycling, swimming, aerobics, rhythmic
gymnastics, water aerobics, strength training, stretching or other activities). For those
who exercised three or more times per week, the incidence of dementia was found to be
13.0 per 1000 person-years; on the other hand, for those who exercised less than three times
a week, the same incidence rises to 19.7 per 1000 person years. In fact, as reported above,
PE improves the cerebral vascular reserve and neuronal plasticity; in a study published
by Larson et al. it was demonstrated that forty minutes of PE (ergocycle, treadmill and
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stair-climbing) four times a week for a period of 12 weeks could increase the cerebral
blood flow in the hippocampal dentate gyrus, which can improve neurogenesis [68] and
consequently can keep cognitive functions intact longer. All of this evidence confirms the
importance of PE as a primary prevention tool.

Additionally, PE does not only work as a mechanism of prevention of neurodegener-
ative diseases, but its contribution even in patients with moderate and advanced AD is
now known. Indeed, in 2007 Rolland et al. demonstrated some of the positive effects of PE
in patients with moderate AD. Two years of regular activity in these patients determined
improvements in walking time endurance, reduction of depression, incontinence mini-
mization, increase in activities of daily living (ADL) and, more generally, improvements
in all the symptoms typical of this disease [69]. Even more surprising are the results of
a study conducted by Venturelli et al. on a group of patients over the age of 65 with a
diagnosis of advanced AD who underwent, with the help of their caregivers, a 24-week
walking program for at least 30 min per day. Through assessment scales such as the Barthel
index, MMSE, the Performance Oriented Mobility Assessment (POMA) index, and constant
oxygen saturation during walking (SpO2 > 85%), it was seen that exercise can slow down,
even if for short periods of time, the progression of cognitive impairment and can improve
performance of ADL [70].

So, PE could also now be considered a rehabilitative opportunity since it improves the
abilities of AD patients.

Considering the absence of specific drugs to contrast AD, it seems to be very important
to establish the dose–response effects of physical activity on cognition of these patients,
and consequently, to find the combinations of frequency, intensity, time, and type of PE
most useful to optimizing the results of this therapeutic intervention. Although this intent
is obviously difficult to pursue, a recent meta-analysis [71] showed that, using MMSE
as evaluation scale, moderate intensity of aerobic exercise seems to be the most effective
intervention, if it is conducted at least one hour a week and for a duration range from 12 to
24 weeks. Moreover, the best cognitive improvement seems to be achieved with moderate
intensity and frequency of physical activity: interventions conducted for up to 2 h had
greater results than those conducted for more than 2 h per week; similarly, interventions
conducted less than three times per week showed greater effect on improving cognition of
AD patients compared to those conducted more than three times per week. Nevertheless, a
threshold remains to be settled, since larger samples and longer follow-up are needed [72].

3.2. The Role of Physical Exercise in Parkinson’s Disease (PD)

Continuing the examination of the main neurodegenerative diseases that cause cogni-
tive impairment, it is certainly necessary to pay attention to Parkinson’s disease as well.
PD is a progressive neurodegenerative disease and is the second most common after AD,
characterized by tremor, rigidity, bradykinesia, and postural instability. Its diagnosis is
clinical even if a histopathological evaluation is necessary to identify α-synuclein contained
in Lewy bodies or Lewy neurites [73]. PD etiology has not yet been clarified, but it seems to
have a link to both genetic and environmental factors. The main distinctive morphological
change in the PD brain is observed in the transverse sections of the brainstem, where
almost all cases present with loss of the darkly pigmented area in the substantia nigra pars
compacta (SNpc) and locus coeruleus. From a clinical point of view, alongside the afore-
mentioned pathognomonic motor deficits, people with PD can exhibit different cognitive
conditions, from normal cognition, through to early, mild subjective and objective decline,
to mild, moderate and even severe PD dementia [74]. Severe dementia has a prevalence
of 25–30% in PD patients and affects many cognitive functions, in particular, executive,
attentional and visuospatial domains, but also memory [75].

In this context, PE seems to also be a primary prevention tool for PD. In a study
based on a sample of over 200,000 participants, people who practiced high levels of
physical activity from ages 15–39 years were less exposed to be diagnosed with PD later
in life [76]. In another epidemiological study, Thacker et al. analyzed a cohort of about
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143,000 individuals and found that people who practiced moderate to vigorous physical
activity, such as bicycling, aerobics or tennis, had the lowest risk of PD during ten years
of follow-up [77]. More specifically, PE seems to reduce the risk of developing cognitive
impairment and PD, with a strong level of evidence for it being a protective factor for the
latter [78].

However, PE is above all an opportunity for care in patients already suffering from
PD. A comprehensive and recent review on the benefits of exercise training for PD patients
highlighted the effects of different types of exercise for motor and cognitive dysfunctions:
aerobic training, especially cycling, improves gait and cognitive function independently,
but it also improves the motor learning ability, which translates into an improvement in
motor functions applied to the gait [79].

Even more complex physical activities, such as dance, have proven effective not only
in improving motor functions, but also in implementing executive functions, assessable
with the Frontal Assessment Battery at bedside and Mental Rotation Task [80,81]. Addi-
tionally, Tai Chi, which is a composed of dance-like movements that are linked together
in a complex sequence, provides benefits for psychological well-being and cognitive func-
tion [82]. Similarly, yoga, which is a sporting practice that includes postures and exercises
of breathing and meditation, improves balance, mental and emotional health [83].

Moreover, PE is traditionally a pillar of rehabilitation treatments when it takes on
the contours of therapeutic exercise. Therapeutic exercise, when organized in series with
methodical exercises within programs aimed at specific rehabilitation objectives, has the
ability to stimulate neuroplasticity at the level of the frontal lobe, counteracting cognitive
impairment [84]. In particular, the exercises incorporating goal-based motor-skill learning
improve motor-skill performance in PD through cognitive engagement.

The cognitive benefits of therapeutic exercise translate into general improvements in
autonomy in PD patients. In fact, the overall functionality, measured with scales such as
ADL [85] and Barthel Index [86], improves significantly; this attests to the actual ability of
the exercise to rehabilitate these patients, that is, to give them back their skills in carrying
out the fundamental activities of their daily life. The reduction of cognitive disabilities
resulting from PD leads to an improvement in the quality of life [87].

A new frontier of neurorehabilitation deserves a special mention: virtual reality. Vir-
tual reality plans to insert traditional exercise within virtual environments in which it
is possible to exercise and monitor motor and cognitive functions in an easier and more
precise way [88]. In PD patients, this type of sensorineural stimulation improves motor
functions in terms of balance and gait, but above all increases executive functions [89].
In particular, virtual reality makes the training more complete, since it leads patients to
simultaneously exercise multiple cognitive processes, linking them in sequences aimed at
achieving specific goals, including those related to movement. More specifically, attention
activation, information acquiring and processing, movement planning and sensory integra-
tion are contextually inserted into virtual contexts that require that they be applied to the
daily activities of patients, in order to increase personal autonomy [90].

Additionally, PE can also limit the side effects such as wearing off and dyskinesia in-
duced by anti-PD therapeutics, improving and prolonging the therapies’ effectiveness [91].
Moreover, physical activity reduces risk of other geriatric diseases such as diabetes, hyper-
tension and cardiovascular disease, which may also contribute to PD pathogenesis [92]. In
summary, PE is now considered to be a complementary strategy to PD medications.

4. Conclusions

PE is an amazing health tool for the human brain, representing an opportunity for
treatment and rehabilitation in patients suffering from cognitive impairment caused by
neurodegenerative diseases.

As described in this article, there is already evidence of how PE acts positively at the
neuroendocrine and biochemical level, and which beneficial clinical implications derive
from it.
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Nevertheless, it is desired that new studies investigate the functional mechanisms of
physical exercise at the brain level, revealing the fascinating aspects that remain unknown
but could allow us to implement its therapeutic potential.

Author Contributions: Conceptualization, G.F., L.C. and M.M.; methodology, P.L., G.F., M.R., and
L.C.; software, G.P.; formal analysis, P.L. and G.P.; investigation, G.F., M.V.R.; resources, M.V.R., A.C.,
G.M.; data collection, G.F., G.P., M.R.; writing original draft preparation, G.F., G.P., M.V.R., A.C., G.M.
and M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study will be
made available upon reasonable request to the corresponding author, L.C.

Acknowledgments: We would like to thank Alessandra Zonno for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Heemels, M.T. Neurodegenerative diseases. Nature 2016, 539, 179. [CrossRef] [PubMed]
2. Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis.

2014, 42 (Suppl. 3), S125–S152. [CrossRef]
3. Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al.

Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [CrossRef]
4. Jong-wook, L. Global health improvement and WHO: Shaping the future. Lancet 2003, 362, 2083–2088. [CrossRef]
5. Dembitsky, V.M.; Dzhemileva, L.; Gloriozova, T.; D’yakonov, V. Natural and synthetic drugs used for the treatment of the

dementia. Biochem. Biophys. Res. Commun. 2020, 524, 772–783. [CrossRef]
6. Reddy, P.H. Lifestyle and Risk Factors of Dementia in Rural West Texas. J. Alzheimers Dis. 2019, 72, S1–S10. [CrossRef] [PubMed]
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