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Abstract

COVID-19 can lead to acute respiratory syndrome, which can be due to dysregulated immune signaling. We analyze the
distribution of CpG dinucleotides, a pathogen-associated molecular pattern, in the SARS-CoV-2 genome. We characterize
CpG content by a CpG force that accounts for statistical constraints acting on the genome at the nucleotidic and amino
acid levels. The CpG force, as the CpG content, is overall low compared with other pathogenic betacoronaviruses;
however, it widely fluctuates along the genome, with a particularly low value, comparable with the circulating seasonal
HKU1, in the spike coding region and a greater value, comparable with SARS and MERS, in the highly expressed
nucleocapside coding region (N ORF), whose transcripts are relatively abundant in the cytoplasm of infected cells and
present in the 30UTRs of all subgenomic RNA. This dual nature of CpG content could confer to SARS-CoV-2 the ability to
avoid triggering pattern recognition receptors upon entry, while eliciting a stronger response during replication. We then
investigate the evolution of synonymous mutations since the outbreak of the COVID-19 pandemic, finding a signature of
CpG loss in regions with a greater CpG force. Sequence motifs preceding the CpG-loss-associated loci in the N ORF match
recently identified binding patterns of the zinc finger antiviral protein. Using a model of the viral gene evolution under
human host pressure, we find that synonymous mutations seem driven in the SARS-CoV-2 genome, and particularly in
the N ORF, by the viral codon bias, the transition–transversion bias, and the pressure to lower CpG content.

Key words: ssRNA viruses, SARS-CoV-2, pathogen-associated molecular patterns, pattern recognition receptors, viral
host mimicry, CpG motifs, evolution of synonymous mutations.

Introduction
When a virus enters a new host, it can present pathogen-
associated molecular patterns (PAMPs) that are rarely seen in
circulating strains that have adapted to that host’s immune
environment over evolutionary timescales. The emergence of
SARS-CoV-2, therefore, provides a rare window into innate
immune signaling that may be relevant for understanding
immune-mediated pathologies of SARS-CoV-2, antiviral
treatment strategies, and the evolutionary dynamics of the
virus, where evidence for selective pressures on viral features
can reflect what defines “self” in its new host. As a case in
point, the 1918 influenza pandemic was likely caused by a
strain that originated in water fowl and entered the human
population after possible evolution in an intermediate host.
That viral genome presented CpG dinucleotides within a
context and level of density rarely found in the human ge-
nome where they are severely underrepresented (Karlin et al.
1994; Karlin and Mr�azek 1997; Cheng et al. 2013), particularly

in a set of genes coding for the proteins associated with
antiviral innate immunity (Greenbaum et al. 2008, 2014).
Over the past century, the 1918 H1N1 lineage evolved in a
directed manner to lower these motifs and gain UpA motifs,
in a way that could not be explained by its usage of amino
acid codon bias (cb) (Greenbaum et al. 2008, 2014). It has
since been found that these motifs can engage the pattern
recognition receptors (PRRs) of the innate immune system
(Jimenez-Baranda et al. 2011; Vabret et al. 2017) and directly
bind the zinc finger antiviral protein (ZAP) in a CpG-
dependent manner (Zhu et al. 2011; Takata et al. 2017;
Meagher et al. 2019; Luo et al. 2020). Hence, the interrogation
of emergent viruses from this perspective can predict novel
host virus interactions.

COVID-19 presents, thus far, a different pathology than
that associated with the 1918 H1N1, which was dispropor-
tionately fatal in healthy young adults. It has been character-
ized by a large heterogeneity in the immune response to
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the virus (Hirano and Masaaki 2020; Mehta et al. 2020; Zhou
et al. 2020) and likely dysregulated type-I interferon (IFN)
signaling (Kindler and Thiel 2016; Hadjadj et al. 2020; Ragab
et al. 2020; Vabret et al. 2020). Various treatments to atten-
uate inflammatory responses have been proposed and are
currently under analysis or being clinically tested
(RECOVERYCollaborativeGroup 2020; Xu, Han, et al. 2020).
It is therefore essential to quantify pathogen-associated pat-
terns in the SARS-CoV-2 genome for multiple reasons. The
first is to better understand the pathways engaged by innate
immune system and the specific agonists to help build better
antiviral therapies. Another is to better predict the evolution
of motif content in synonymous mutations in SARS-CoV-2, as
it will help understand the process and timescales of attenu-
ation in humans. Third is to offer a principled approach for
optimizing vaccine strategy for designed strains (Amanat and
Krammer 2020; Kames et al. 2020) to better reflect human
genome features.

In this work, we will use the computational framework
developed in Greenbaum et al. (2014) to carry out a study
of nonself-associated dinucleotide usage in SARS-CoV-2
genomes. The statistical physics framework is based on the
idea of identifying the abundance or scarcity of dinucleotides
given their expected usage based on host features. It general-
izes the standard dinucleotide relative abundance introduced
in Karlin and Mr�azek (1997), as it can easily incorporate con-
straints in coding regions coming from amino acid content
and codon usage. The outcomes of the approach are selective
forces (Greenbaum et al. 2014) that characterize the devia-
tions with respect to the number of dinucleotides which is
statistically expected under a set of various constraints. Such
formalism has further been applied to identify noncoding
RNA from repetitive elements in the human genome
expressed in cancer that engage PRRs (Tanne et al. 2015),
to characterize the CpG evolution through synonymous
mutations in H1N1 (Greenbaum et al. 2014) and to charac-
terize local and nonlocal forces on dinucleotides across RNA
viruses (Vabret et al. 2017).

We perform an analysis of the landscape of CpG motifs
and associated selective forces in SARS-CoV-2 in comparison
with other ssRNA viruses and other genomes in the corona-
virus family in order to understand specific PAMP features in
the new SARS-CoV-2 strains. We also focus on the heteroge-
neity of CpG motif usage along the SARS-CoV-2 genome.
Finally, we use a model of viral genome evolution under hu-
man host pressure given by the CpG force to study synony-
mous mutations, and in particular those which change CpG
content, observed since the SARS-CoV-2 entered the human
population, and study sequence motifs preceding CpG loss
loci. The model is used to score all possible synonymous
mutations from an ancestral sequence sampled in Wuhan
at the beginning of the COVID-19 pandemic (GISAID ID:
EPI_ISL_406798) and is validated on single-nucleotide var-
iants observed in the sequence data collected so far. This
approach points out at hotspots where new mutations will
likely attenuate the virus, while evolving in contact with the
human host.

Results

Definition of Coding and Noncoding CpG Forces
To characterize CpG dinucleotide usage on SARS-CoV-2 ge-
nome, we have computed the CpG forces following the ap-
proach introduced in Greenbaum et al. (2014) and described
in Materials and Methods. CpG forces are intensive parame-
ters that characterize the abundance or scarcity of CpG dinu-
cleotides in a DNA or RNA sequence with respect to their
expected usage relative to a reference nucleotide distribution.
We propose two frameworks to define these reference distri-
bution, schematically represented in figure 1. In the noncod-
ing framework, nucleotides are randomly drawn according to
a fixed nucleotide bias, whereas in the coding framework, the
amino acid sequence is fixed, and the cb defines the reference
distribution.

Noncoding Forces
The CpG noncoding force relative to the sequence nucleotide
bias essentially captures the same information as the relative
abundance index, I ¼ qðCGÞ

qðCÞqðGÞ, where q(CG), q(C), and q(G)
are, respectively, the frequencies of CpG dinucleotides and of
C, G nucleotides in the sequence (Karlin and Mr�azek 1997).
The CpG noncoding force is well approximated by the loga-
rithm of the relative abundance index: f � log I (see supple-
mentary section SI.3 and fig. SI.13, Supplementary Material
online). Positive and negative forces correspond therefore to,
respectively, excess and scarcity of dinucleotides with respect
to their expected occurrences determined by the nucleotide
bias.

Table 1 show that the CpG noncoding forces for human
coding (Greenbaum et al. 2014) and noncoding RNA (Tanne
et al. 2015) (relative to the human nucleotide bias) are neg-
ative, and particularly low for type-I IFN transcripts involved
in the innate immune system (Greenbaum et al. 2014), con-
firming that CpG motifs are overall scarce in the human ge-
nome (Karlin et al. 1994; Karlin and Mr�azek 1997; Cheng et al.
2013; Greenbaum et al. 2014). As shown in table 1 strongly
pathogenic viruses in humans, such as Ebola, the Spanish flu
H1N1 (1918) and the avian flu H5N1 (2005), are characterized
by large CpG forces compared with the average force on
human RNAs. The CpG force value can then be used as an
indicator for the propensity of a viral sequence to be sensed
by PRRs as nonself and engage the human innate immune
response (Greenbaum et al. 2014; Tanne et al. 2015; Vabret
et al. 2017). A comparative analysis for noncoding force in the
Coronaviridae family will be discussed in the following
Sections.

Coding Forces
The CpG coding force is based on the comparison of CpG
occurrences in a coding RNA (or DNA) sequence and ran-
dom synonymous sequences (associated to the same amino
acids) drawn according to prescribed codon usage, see fig-
ure 1. The computation of coding forces relative to the hu-
man codon usage for SARS-CoV-2 will be discussed in the
following sections, and it will be used to characterize the
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evolution of SARS-CoV-2 sequences through synonymous
mutations, under the pressure of the human host. To allow
for easy comparison and later access, we list in table 2 all CpG
coding forces for the Coronaviridae family as well as their
noncoding counterparts.

The Landscape of CpG Forces in SARS-CoV-2 Is
Strongly Heterogeneous
We first computed the global noncoding force on CpG dinu-
cleotides for SARS-CoV-2, a variety of other ssRNA viruses,

and other viruses from Coronaviridae family affecting humans
or other mammals (fig. 2a).

The value’ �1:1 of the global noncoding force for SARS-
CoV-2 is comparable with the one for human noncoding
RNA and lower than other strongly pathogenic viruses in
humans, such as H1N1, H5N1, and Ebola (table 1). Among
the coronaviruses (fig. 2a and table 2), MERS shows the high-
est CpG force followed by SARS, whereas some bat corona-
viruses have even stronger CpG force. SARS-CoV-2 is among
the viruses with lower global CpG force; its value is median
among the hCoV that circulates in humans with less patho-
genicity, between HKU1 with a smaller CpG force and OC43
with a larger one (supplementary fig. SI.4, Supplementary
Material online, for a comparison with other hCoVs). The
absence of a straightforward correlation between global
CpG force and the pathology of a coronavirus in human calls
for a finer, local analysis of CpG forces we report below.

Figure 2b compares the forces (comparisons based on di-
nucleotide number rather than force give qualitatively similar

FIG. 1. Schematic definitions of CpG noncoding and coding forces. The viral RNA sequence to be analyzed is shown in black, with CpG dinucleotide
motifs in red. The force is computed by comparing the occurrences number of CpG with ensembles of random sequences fulfilling some of the
constraints acting on the natural sequence, see Materials and Methods for details. Top, “noncoding” framework, in green: sequences of the same
lengths can be generated by randomly drawing nucleotides according to prescribed frequencies, here taken from the human genome. Bottom:
When the sequence under consideration codes for a protein (sequence of amino acids in black letters), random sequences (violet letters) can be
generated in a “coding” framework as follows. For each amino acid, a licit codon is randomly chosen according to prescribed codon usage (here,
computed from the coding regions in the human genome). Notice that the above computational frameworks are not restricted to CpG and can be
applied to other dinucleotidic motifs.

Table 1. Global Noncoding CpG Forces for Some ssRNA Viruses,
Compared with Human RNAs.

Noncoding CpG Force (6SD)

Ebola 2015 20.52
H5N1 2005 20.57 (60.27)
H1N1 1918 20.65 (60.19)
Human coding RNA 20.66 (60.95)
H1N1 2009 20.78 (60.23)
Human noncoding RNA 21.17 (61.42)
Influenza B virus 21.19 (60.34)
HIV-1 2020 21.57
Type I IFNs 22.07 (60.83)

NOTE.—The distribution of forces are computed from all genomic segments and their
averages and standard deviations (SD) are given (with segment contribution weighted by
segment length). All forces are computed with respect to human nucleotide bias. Data
used: human cDNA and ncRNA as annotated in HG38 assembly, transcripts coding for
type I IFN’s genes as annotated in HG38. Viral ssRNAs were obtained from NCBI
(Wheeler et al. 2007) Virus database (strains used: H5N1: A/Anhui/1/2005, H1N1: A/
Aalborg/INS132/2009 and A/Brevig Mission/1/1918, Ebola: COD/1995/Kikwit-9510623,
Influenza B virus: B/Massachusetts/07/2020, HIV-1: HK_JIDLNBL_S003).

Table 2. Global Noncoding and Coding CpG Forces for Coronaviridae
Family Viruses.

CpG Force (6SD)
Noncoding Coding

MERS 20.59 21.13
SARS 20.82 21.38
SARS-CoV-2 21.10 21.71
hCoVs (229E, HKU1, OC43, NL63) 21.17 (60.19) 21.79 (60.18)

NOTE.—All forces are computed with respect to human nucleotide (noncoding
forces) or codon bias (coding forces).
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results, see supplementary figure SI.2, Supplementary Material
online) acting on CpG and UpA motifs within the
Coronaviridae family, with a particular emphasis on the gen-
era Alphacoronavirus and Betacoronavirus, and on those vi-
ruses which infect humans (Song et al. 2019); for other
dinucleotides, see supplementary figure SI.1, Supplementary
Material online. We observe an anticorrelation between UpA
and CpG forces (correlation coefficient R-squared r2 ¼ 0:48).
UpA is the CpG complementary motif corresponding to the
two nucleotidic substitutions more likely to occur in terms of
mutations, as transitions have larger probability with respect

to transversions and are less likely to result in amino acid
substitutions. Such anticorrelations are not observed with
motifs that are one mutation away from CpG (r2 ¼ 0:2 for
CpA vs. CpG and r2 ¼ 0:01 for UpG vs. CpG, supplementary
fig. SI.3, Supplementary Material online).

To go beyond the global analysis, we study the local non-
coding forces acting on CpG in fixed-length windows along
the genome. Results for SARS, MERS, SARS-CoV-2, hCoV-
HKU1, and two representative sequences of bat and pangolin
coronaviruses, chosen for their closeness to SARS-CoV-2, are
reported in figure 2c. SARS-CoV-2 shows a strong

FIG. 2. CpG and UpA noncoding forces and local fluctuations in the genomes of the Coronaviridae family. (a) Noncoding forces on CpG
dinucleotides for SARS-CoV-2 and other coronaviruses. The central thick lines show global forces over the whole genomes, whereas bars span
from the minimal to the maximal values of the local forces computed on sliding windows along the sequence of 3 kb (narrowed up to 1.5 kb at the
edges), smoothed through a Gaussian average. (b) UpA versus CpG global forces. Species are well clustered due to the large similarity of the
sampled sequences, except for viruses circulating in bats composed of several diverse strains. Notice the anticorrelation between CpG and UpA
forces (Pearson r ¼ �0:69, with a P value of’ 2� 10�77, and r2 ¼ 0:48). (c) Local CpG force analysis in sliding windows of 3 kb along the genome
for some coronaviruses, smoothed through a Gaussian average; horizontal lines correspond to the global forces shown in panel (b). Boxes on top of
the panel show protein-coding domains. The force is highly variable along the genome, with much larger values in certain regions (such as the N
ORF) than in others (e.g., S ORF). The maximum value of the local CpG force hints at the similarity of SARS-CoV-2 with the most pathogenic viruses
(table 2). Data from VIPR (Pickett et al. 2012) and GISAID (Elbe and Buckland-Merrett 2017), see Materials and Methods and supplementary
section SI.1, Supplementary Material online, for details on data analysis.
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heterogeneity of CpG forces along its genome: in some ge-
nomic regions, especially at the 50 and 30 extremities, SARS-
CoV-2, SARS, and MERS (together with the bat and pangolin
viruses) have a peak in CpG forces, which is absent in the
hCoV-HKU1 (as well as in the other hCoVs, see supplemen-
tary fig. SI.4, Supplementary Material online). The heteroge-
neous CpG content in SARS-CoV-2 has been also pointed out
in Digard et al. (2020).

The high CpG forces at the extremities could have an
important effect on the activation of the immune response
via sensing, as the life cycle of the virus is such that the initial
and final part of the genome are those involved in the sub-
genomic transcription needed for viral replication (Lai and
Cavanagh 1997; Kim et al. 2020). During the infection, many
more RNA fragments from these regions are present in the
cytoplasm than from the other parts of the viral genome.
Consequently, despite the relatively low CpG content of
SARS-CoV-2 compared with other coronaviruses, there can
be high concentrations of CpG-rich RNA due to the higher
transcription of these regions.

The similarity between the high values of the maxi-
mum local forces of SARS-CoV-2 and those of SARS, bat
and pangolin coronaviruses shown in figure 2a confirm
this pattern: MERS and SARS, viruses that are likely less
well adapted to a human host, have the highest local
peaks in CpG content, followed by SARS-CoV-2 and
then by seasonal strains that circulate in humans. It is
interesting to notice that high and very high levels of
proinflammatory cytokines/chemokines (such as IL-6
and TNF-a) have been observed in, respectively, SARS
and MERS and, at times, SARS-CoV-2 infection (Zhou
et al. 2014; Fajgenbaum and June 2020; Hirano and
Masaaki 2020; Vabret et al. 2020). These results are qual-
itatively corroborated by the simpler analysis of CpG mo-
tif density (supplementary fig. SI.2, Supplementary
Material online).

Forces Acting on Coding Regions Widely Vary across
Structural Proteins
We now restrict our analysis to the coding regions of SARS-
CoV-2 and, in particular, on two structural proteins, N (nucle-
ocapside) and S (spike) (Amanat and Krammer 2020;
Hoffmann et al. 2020; Xu, Chen, et al. 2020). As stressed be-
fore, the computation of the force in such coding regions
accounts for the extra constraints on the amino acid content
and takes the human codon bias as reference background.

The landscape of coding CpG forces with respect to the
human codon bias is shown, restricted to the coding regions
of SARS-CoV-2 genome, in figure 3a, and compared with the
noncoding forces from figure 2, with respect to the human
nucleotide bias (dashed red lines). The two curves are similar
apart from a global shift toward lower forces for the coding
forces. Notice that this shift essentially vanishes if the non-
coding force is computed with respect to the nucleotide bias
computed on human coding RNAs only (Howe and Song
2013; fig. 3a).

Apart from this global shift, the strongly heterogeneous
landscape of the CpG coding forces along the SARS-CoV-2

genome does not substantially differ from the findings of
figure 2c. In particular, the peak of high CpG density and force
is still present at the 50 and the 30 ends of the genome, in-
cluding the N ORF, the envelope E ORF, and membrane gly-
coprotein M ORF regions. In the S ORF region, the coding
CpG force remains small. Detailed results for the S and N
ORFs are shown in, respectively, figures 3b and 3c. These
structural proteins are present and quite similar across the
Coronaviridae family and allow us to compare several strains
of coronaviruses. In the S ORF, SARS-CoV-2 shows the lowest
global CpG force among the human-infecting betacoronavi-
ruses, see figure 3c. The CpG force is much higher for protein
N in SARS-CoV-2, immediately below the level of SARS and
above that of MERS, see comparison with human-infecting
members of the Coronaviridae family presented in figure 3b.
The comparative analysis of forces in the E ORF (supplemen-
tary fig. SI.5b, Supplementary Material online) gives results
similar to the N ORF, whereas smaller differences in CpG
force among coronaviruses that circulate in humans are ob-
served for the M ORF (supplementary fig. SI.5c,
Supplementary Material online).

Force-Based Model Accounts for Early Evolution of
Synonymous CpG-Related Mutations in SARS-CoV-2
We now assess the ability of our CpG force model to predict
biases in the synonymous mutations already detectable
across the few months of evolution following the first se-
quencing of SARS-CoV-2 (data from GISAID; Elbe and
Buckland-Merrett 2017; Wuhan ancestral strain has GISAID
ID: EPI_ISL_406798, collected in Wuhan on December 26,
2019; last updated sequence September 29, 2020; see
Materials and Methods). Barring confounding effects, we ex-
pect that high-force regions, such as N ORF, will be driven by
the host immune system pressure toward a lower number of
CpG motifs. Other regions, such as S ORF, already have low
CpG content and would feel no pressure to decrease the CpG
content, so random mutations would likely leave their CpG
number unaffected or increase it. We define in the following
synonymous-single nucleotide variants (syn-SNV) as nucleo-
tide synonymous substitution with respect to the Wuhan
ancestral strain, observed at least in five collected sequences
(0.01% of the sample) (such cutoff removes very rare muta-
tions which may be due to sequencing errors).

Figure 4a (bottom and middle panels) shows that many
syn-SNV that decrease the number of CpG are located at the
50 and 30 ends of the sequence, in correspondence with the
high peaks in CpG local force, notably in the N ORF region
and at the 50 extremity of the genome. Conversely, syn-SNV
that increase the number of CpG are more uniformly spread
along the sequence. The behaviors of the local CpG force and
of the local density of CpG-decreasing syn-SNV, computed on
the same sliding windows along the sequence, show strong
similarities, see middle panels in figure 4a.

To better explain this CpG mutational trend along the
sequence, we define a putative equilibrium CpG force of
the SARS-CoV-2 genome in human host, as the average
CpG force of hCoVs in table 2: hCoVs have long been circu-
lated in humans and are, therefore, supposed to be close to
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equilibrium with their host. Other choices for equilibrium
force will be discussed later. Regions with a CpG force
much larger than the equilibrium one are predicted to be
under strong evolutionary pressure to decrease their CpG
content. This prediction is confirmed by the fact that CpG-
decreasing syn-SNV are much more frequent than CpG-
increasing ones, see figure 4a, middle. Conversely, in regions
with forces slightly smaller than the equilibrium force value,
the presence of a small evolutionary pressure to increase CpG
is confirmed by the fact that CpG-increasing syn-SNV are
slightly more frequent than CpG-decreasing ones. The scatter
plot of the local forces and densities of CpG-increasing (blue)

and -decreasing (red) syn-SNV along the SARS-CoV-2 Wuhan
ancestral strain is shown in figure 4b. The correlation coeffi-
cient is much larger for CpG-decreasing syn-SNV (r2 ¼ 0:85)
than for CpG-increasing mutations (r2 ¼ 0:16). The two
scatter plots cross at a local CpG force f ’ �1:860:2, very
close to the equilibrium force, feq ¼ �1:79. This result sup-
ports our choice of the equilibrium force. The global force of
SARS-CoV-2 (f ¼ �1:71) is also compatible with this cross-
ing point. On the contrary, other possible choices for the
equilibrium force, such as the coding force computed on
human type-I IFNs, f ¼ �2:89 would not match the crossing
point. The results above suggest to introduce, as will be done

FIG. 3. CpG local coding forces on SARS-CoV-2 coding regions. (a) Local forces, over sliding windows of 3 kb (narrowed up to 1.5 kb at the edges), in
the coding regions of SARS-CoV-2 (preprocessed to ensure the correct reading frame). Full, thick red curve shows coding forces. The dashed and
dotted lines show noncoding forces obtained by using nucleotide frequencies computed from, respectively, all human genome (including
noncoding RNA and coding RNA) and only coding human RNAs. Horizontal lines locate global forces. The black dashed line shows the relative
abundance of CpG computed on the same sliding windows, with the same nucleotide frequency used for the dashed red line. Boxes on top of the
panel show protein-coding domains. (b, c) Global forces for structural proteins (S and N) in the Coronaviridae family. These values were averaged
on 4–20 sequences from VIPR (Pickett et al. 2012) and GISAID (Elbe and Buckland-Merrett 2017), see Materials and Methods and supplementary
section SI.1, Supplementary Material online, for details on data analysis.
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FIG. 4. Analysis of synonymous mutations in the early evolution (up to October 2020) of SARS-CoV-2 genome compared with CpG local forces and
ZAP-binding motifs. (a) Bottom: Counts of syn-SNV that increased (red) and decreased (blue) the CpG content. Middle: local density of syn-SNV
increasing (red) and decreasing (blue) CpG averaged on sliding windows of 3 kb and with a Gaussian smoothing; black line: local-coding CpG force
with the same sliding average and smoothing; dashed black line: putative equilibrium force (�1.79) for SARS-CoV-2-coding regions. The area
between the local CpG force and the equilibrium CpG force is filled in blue/red for local CpG force larger/smaller than the equilibrium one. Upper
subpanel: the local ZAS, computed on sliding windows of 3 kb; blue crosses mark SNV removing CpG motifs in a CnxGxCG patterns. Boxes on top
of the panel show protein-coding domains. (b) Scatter plot of the local CpG force (black curve in panel a, without smoothing procedure) versus the
local density of CpG decreasing (blue points) or increasing (red points) syn-SNV. Dashed vertical line: putative equilibrium force. (c) Fraction of
sequences in the data with at least one syn-SNV decreasing (blue curve) or increasing (red curve) the CpG content in the N ORF (left) and S ORF
(right), as function of time. To reduce noise, for each point, we considered all the sequences collected in a temporal sliding window of 100 days
centered on the point. Data from GISAID (Elbe and Buckland-Merrett 2017), see Materials and Methods (last update October 05, 2020) for details
on data analysis. Ancestral genome: GISAID ID: EPI_ISL_406798 (Wuhan, December 26, 2019).
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in the following, the CpG drive defined as the difference be-
tween the CpG local force and the equilibrium CpG force.
Table 3 complements figure 4 with a detailed description of
CpG-decreasing and -increasing syn-SNV along the ORFs and
the 50 and 30 untranslated regions (UTRs) of SARS-CoV-2
genome. The regions with high negative CpG drive have a
large density of CpG removing mutations, see for instance,
50UTR, 30UTR, N ORF, and M ORF. Importantly, syn-SNV are
in many loci across the sequence (fig. 4a) and taking into
account syn-SNV counts in the sequence data or considering
unique syn-SNV does not qualitatively affect our conclusions.
Focusing on N ORF, remarkably 21% (47% with count) of syn-
SNV remove a CpG motif. Such percentage represents a frac-
tion of 75% (94% with counts), among the total number of
syn-SNV affecting a CpG. On the opposite, the regions with a
small-amplitude, negative or positive, drive such as ORF1a,
ORF1b, and S ORF have a low density of CpG-affecting muta-
tions; among the syn-SNV affecting CpG motifs the percent-
age for syn-SNV adding a CpG motif or removing a CpG motif
are comparable. For S ORF, having the largest positive drive,
the large majority of synonymous variants, 85% (92% with
counts), leaves the CpG content unchanged with only few,

7% (4% with counts), syn-SNV affecting a CpG motif. Among
syn-SNV affecting CpG, a slight predominance of CpG in-
creasing syn-SNV is observed with 53% (56% with counts)
CpG increasing against 47% (44% with counts) CpG decreas-
ing syn-SNV. Last of all, figure 4c shows that, in N ORF, a rapid
accumulation of CpG removing syn-SNV is observed in the
sampled sequences as a function of the delay between the
time of collection and the beginning of the COVID-19 pan-
demic. This increase is much steeper that the gradual rise of
syn-SNV increasing CpG occurrences. In the S region, on the
contrary, a gradual rise of syn-SNV is observed both for CpG-
increasing and -decreasing mutations, with a slight predom-
inance of CpG-increasing ones. A similar analysis of the CpG
force evolution in the sequence sample (supplementary fig.
SI.10, Supplementary Material online) does not show any
significant changes in the small time elapsed up to now.

Analysis of Synonymous Mutations in N ORF Suggests
Implication of ZAP in Progressive Loss of CpG
We have then studied the nucleotidic patterns preceding,
along the viral sequence, the CpG dinucleotides lost in syn-

Table 3. CpG Drive and Analysis of syn-SNV Changing CpG along the SARS-CoV-2 Genome.

CpG#SNV CpG"SNV
L CpG CpG Drive SNV Tot /SNV (%) /CpGSNV (%) Tot /SNV (%) /CpGSNV (%)

30UTR 162 5 20.87 81 18 22 90 2 2 10
With counts 6,020 1,597 27 99 20 0.3 1

50UTR 211 13 21.67 56 19 34 95 1 2 5
With counts 48,806 47,446 97 99 328 1 1

N 1,260 39 20.95 115 24 21 75 8 7 25
With counts 4,745 2,239 47 94 146 3 6

M 669 20 21.00 58 12 21 86 2 4 14
With counts 5,508 245 5 45 302 6 55

ORF10 117 5 22.01 6 2 33 100 0 0 0
With counts 233 14 60 100 0 0 0

ORF7a 366 7 20.61 23 5 22 56 4 17 44
With counts 544 243 45 88 33 6 12

ORF8 366 8 20.82 25 5 20 63 3 12 38
With counts 2,146 107 5 86 17 1 14

ORF3a 828 17 20.62 54 10 19 67 5 9 33
With counts 1,530 244 16 87 36 2 13

ORF1a 13,203 160 0.05 848 86 10 52 81 10 49
With counts 79,937 3,930 5 72 1,560 2 28

ORF1b 8,088 115 0.003 432 47 11 48 52 12 53
With counts 33,788 7,342 22 84 1,434 4 26

E 228 11 21.84 10 1 10 100% 0 0 0
With counts 311 69 22 100 0 0 0

S 3,822 29 0.61 223 16 7 47 18 8 53
With counts 14,540 571 4 44 729 5 56

ORF6 186 1 0.18 10 0 0 0 2 20 100
With counts 275 0 0 0 40 15 100

ORF7b 132 1 20.28 9 0 0 0 2 22 100
With counts 406 0 0 0 14 4 100

NOTE.—The table gives, for all the ORFs and the 50 and 30UTRs of SARS-CoV-2 ancestral genome, the length of the region (L), the number of CpG motifs (CpG), the CpG drive
ðfeq � fÞ, the syn-SNV, and the total numbers and percentages of syn-SNV removing a CpG motif (CG#) or adding it (CG"), with respect to total number of syn-SNV (/SNV) or
to the total number of syn-SNV affecting CpG (/CpGSNV). For the noncoding 50 and 30UTRs, all SNV are taken into account with no restriction to syn-SNV and the noncoding
forces are used; the equilibrium force is�1.16 (and not�1.79 as for ORFs) releasing such constraint. UTRs and ORFs and are sorted according to the density of CpG removing
SNV (CG# SNV/L). The regions underlined are the most reliable for statistical analysis as they present at least 20 syn-SNV. Numbers and percentages of SNV are given with and
without taking into account SNV counts. Data from GISAID (Elbe and Buckland-Merrett 2017), see Materials and Methods for details on data analysis (last update October 05,
2020). Ancestral genome GISAID ID: EPI_ISL_406798. SNV with <5 counts are excluded from the data. ROC: Receiver Operating Characteristic; AUROC: Area Under the
Receiver Operating Characteristic.
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SNV encountered so far. In N ORF, the ORF with largest
density of CpG decreasing syn-SNV as shown in table 3, 24
syn-SNV removing one CpG have been found. The nucleotide
motifs preceding these loci are listed in the top 19 lines of
table 4 (for some loci, more than one syn-SNV removed the
same CpG), together with their positions along N ORF of
SARS-CoV-2 and their number of occurrences in the se-
quence data. Seven out of 19 of these loci, which represent
71% of total syn-SNV removing a CpG (1,587 out of the
2,239), correspond to a motif of the type CnxGxCG, where
nx is a spacer of n nucleotides and were identified as ZAP-
binding patterns in (Luo et al. 2020). The binding affinity of
ZAP to the motifs was shown to depend on the spacer length,
n, with top affinity for n¼ 7 (Luo et al. 2020) (table 4). Notice
that 43% (three out of the seven) of the CpG-suppression-
related motifs in SARS-CoV-2 correspond to n¼ 7. Other
motifs of the type CnxGcCG are also present in SARS-CoV-
2, but their CpG is not lost in sequence data, see last five lines
of table 4; the dissociation constants associated to their
spacer lengths are on average larger than the ones of the
motifs showing CpG loss.

From the spacer length–dependent-binding affinity given
in Luo et al. (2020) (table 4), we have computed a score,
which we call ZAP affinity score (ZAS), which is related to
the probability of having at least one ZAP bound to such
motif (see Materials and Methods for technical details). The
ZAS computed in sliding windows across the genome is

presented in figure 4a (top plot): N ORF is the richest region
in motifs of the form CnxGxCG, with the largest ZAS. Our
analysis is confirmed in table 5, which reports all Syn-SNV
removing CpG following an extended sequence motif. Even if
N ORF represents only 4% of the total sequence length, 18%
of extended motifs CnxGxCG and 26% (58% with counts) of
syn-SNV removing a CpG on an extended motif are on this
region. In contrast, only two extended motifs of type
CnxGxCG were found in 50UTR even if many repeated CpG
at short interspace were present, see supplementary table SI.1,
Supplementary Material online.

N ORF and M ORF show a similar CpG force (table 3) but
have a large difference in CnxGxCG-like motif content, as
shown in table 5. Remarkably, when considering the counts,
the number of CpG-decreasing mutations occurring in N ORF,
out of which 71% are on CnxGxCG-like motifs, is 10-fold more
than that occurring in M ORF. These results support the ex-
istence of early selection pressure to lower CnxGxCG-like
motifs in N ORF, where they are particularly concentrated.

Model Is Able to Discriminate Observed and
Nonobserved Single Nucleotide Variants among Early
Synonymous Mutations
Our model can be further used to predict the odds of syn-
onymous mutations, either implying CpG or not, from the
ancestral SARS-CoV-2 (GISAID ID: EPI_ISL_406798) sequence.

Table 4. Analysis of Nucleotidic Motifs Preceding CpG in the N ORF and Their ZAS.

Motif n Position of CpG CpG# syn-SNV (with counts) ZAS

CAUUGGCCG 4 905 509 3.03
CGGAAUGUCG 5 953 607 2.19
CAUAUUGACG 5 1,074 13 2.04
CGCAGUGGGGCG 7 104 54 8.48
CUAACAAAGACG 7 384 385 8.33
CUGGCAAUGGCG 7 642 9 8.33
CGAGGACAAGGCG 8 213 10 1.71
CCCCGCAUUACG — 47 35 0.30
AAUAAUACUGCG — 149 5 0.15
CUUGGUUCACCG — 162 17 0.15
AUGCUGCAAUCG — 471 34 0.15
AGAAGGGAGGCG — 534 6 0.15
CACAAGCUUUCG — 822 194 0.15
UUGCCCCCAGCG — 930 15 0.15
AGCGCUUCAGCG — 938 21 0.30
CAGCGUUCUUCG — 945 45 0.30
GUCACACCUUCG — 980 104 0.15
CCUUCGGGAACG — 986 55 0.30
CAAGCCUUACCG — 1,148 121 0.15
CGGCAGACG 4 829 0 3.18
CUACCAGACG 5 277 0 2.04
CACGUAGUCG 5 571 0 2.19
CAAAACAACGUCG 8 121 0 1.71
CGUGGUGGUGACG 8 294 0 1.71

NOTE.—The top seven lines show subsequences of N ORF (of the Wuhan ancestral strain, GISAID ID: EPI_ISL_406798) of the type CnxGxCG, where the spacer nx (highlighted in
red) includes n¼ 4, 5, 7, or 8 nucleotides, for which the CpG dinucleotide was lost in one or more of the syn-SNV. These motifs were shown to be binding patterns for the ZAP
protein in (Luo et al. 2020); the dissociation constants were measured for repeated A spacers, with values (in lM) Kdð4Þ ¼ 0:3360:05; Kdð5Þ ¼ 0:4960:10; Kdð7Þ ¼ 0:12
60:04; Kdð8Þ ¼ 0:6460:14 (Luo et al. 2020). The next 12 lines show the other CpG lost through mutations and their ten preceding nucleotides, which do not correspond to
motifs tested in Luo et al. (2020). The last five lines show other subsequences in the N protein corresponding to ZAP-binding motifs (Luo et al. 2020), but for which no loss of
CpG is observed in the sequence data. The column ZAS gives the score associated to the subsequence considered, computed from the above dissociation constants (see
Materials and Methods for technical details). Data from GISAID (Elbe and Buckland-Merrett 2017), see Materials and Methods for details on data analysis (last update October
05, 2020).
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For this purpose, we introduce a synonymous mutation score
(SMS), defined in Materials and Methods, whose value
expresses how likely a mutation is to appear under the joint
actions of the CpG force, the codon bias (we consider here
the virus codon bias, calculated on the Wuhan ancestral
strain, rather than the human cb, as SARS-CoV-2 is likely
not in equilibrium with its host yet. This choice will be justi-
fied later), and the transition–transversion bias (ttb) (Jiang
and Zhao 2006) (we consider the canonical ratio 4:1 here, see
Materials and Methods for details.). For synonymous muta-
tions that do not affect CpG the only mutational driving
factors in our model are the cb, and the ttb, which are global
drives on the genome. Synonymous mutations changing CpG
are additionally driven by the local force to increase or de-
crease CpG content depending on the CpG mutational drive
in the region under consideration (fig. 4a and table 3).

Figure 5a and 5b shows SMS along, respectively, the N ORF
and S ORF, for all the observed Syn-SNV lowering (blue),
increasing (red), or leaving unchanged (gray) CpG content,
along with their counts in the sequence sample. In N ORF as
in S ORF, the majority of Syn-SNV have high SMS, validating
the model predictions. The sign and amplitude of the SMS for
CpG-affecting Syn-SNV in figure 5a and 5b result from the
interplay between the virus cb with the CpG drive in the
model: the virus cb, computed on the whole genome which
is globally low in CpG content, already favors synonymous
mutations removing CpG. Due to the cb, both in N ORF and S
ORF, Syn-SNV removing CpG tend to have a positive SMS,
whereas Syn-SNV adding CpG tend to have a negative SMS
(see supplementary fig. SI.12, Supplementary Material online,
for SMS computed without CpG drive along N ORF and S
ORF). The large and negative CpG drive in N ORF adds to the
cb trend. As shown in figure 5a, it further raises the SMS of
CpG-removing Syn-SNV and further decreases the negative

SMS of CpG-adding Syn-SNV, in agreement with the data.
The resulting SMS amplitude for CpG-affecting mutations is
generally larger than for mutations nonaffecting CpG. On the
opposite, in S ORF, as shown in figure 5b (see also supple-
mentary fig. SI.12, Supplementary Material online), the posi-
tive drive acts against the cb trend, reducing or raising the
SMS for, respectively, CpG-decreasing or -increasing Syn-
SNVs. In some loci, the CpG drive is strong enough to reverse
the sign of the SMS for CpG-increasing Syn-SMS, and the SMS
become positive. The resulting SMS amplitude for CpG-
affecting mutations is generally smaller than for mutations
leaving CpG content unchanged, in agreement with the ob-
servation than CpG-affecting Syn-SNV are rare in S ORF.

To make our arguments more quantitative, we tested the
ability of our model to discriminate between observed and
nonobserved Syn-SNV in sequence data collected so far. For
the sake of clarity, nonobserved Syn-SNV refer to the set of
possible synonymous mutations that have been not observed
so far in the sequence data (or observed very rarely, i.e., with
<5 counts). In figure 5c and 5d, we show that the distribution
of SMS for syn-SNV are shifted to higher values compared
with its counterpart for nonobserved syn-SNV, both in N ORF
and S ORF. Hence, our model is able to statistically discrim-
inate between syn-SNV and nonobserved syn-SNV (ANOVA
F-test: 1,085 for N and 5,590 for S). Moreover, when ranking all
possible synonymous mutations in decreasing order accord-
ing to their SMS and considering them as true predictions if
they have been observed in sampled sequences so far, and
thus correspond to an syn-SNV, or false predictions if they
have not been observed in the collected sequences, we
obtained very good classification performances
(AUROC¼ 0.82 for N and 0.84 for S). As a complementary
test we give in supplementary figure SI.8, Supplementary
Material online, the positive predicted value as a function

Table 5. ZAS and Syn-SNV Removing CpG Dinucleotides Preceded by ZAP-Binding Motifs across the SARS-CoV-2 Genome.

CpGext CpGext#SNV
L Num /L (%) ZAS/L (%) Num /CpG#SNV (%)

50UTR 211 2 1.4 2 3 16
With counts 88 0.2

N 1,260 12 1.0 4 10 42
With counts 1,587 71

ORF7a 336 2 0.6 3 1 20
With counts 17 7

ORF1a 13,203 25 0.2 1 15 17
With counts 726 18

ORF1b 8,088 16 0.2 1 9 19
With counts 317 4

S 3,822 3 0.1 0.3 1 6
With counts 25 4

ORF3a 828 4 0.5 2 0 0
With counts 0 0

M 669 2 0.3 2 0 0
With counts 0 0

NOTE.—The table gives for each region with at least one motif of the form CnxGxCG with n ¼ 4; 5; 6; 7, or 8 (CpGext) the length L, the number of CpGext and their number per
unit length, the ZAS for unit length (ZAS/L), the number of syn-SNV removing a CpG preceding by an extended motif (CpGext#SNV), and their fraction with respect to the total
number of CpG-decreasing syn-SNV. Additional informations are given in supplementary table SI.2, Supplementary Material online. Numbers and percentage of CpGext#SNV
are given with and without taking into account SNV counts. ORFs are sorted according to the density of CpGext removing SNV (CpGext#SNV/L). On 50 and 30UTRs, there are
no synonymous restriction on SNV.
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FIG. 5. SMS differentiates syn-SNV from unobserved syn-SNV. (a, b) SMS for syn-SNV with the full model including codon bias (cb), CpG force (f),
and transition-transversion bias (ttb) in the N and S ORFs. Blue, red, and gray bars denote mutations decreasing, increasing, or leaving unchanged
the CpG content. The area of circles, shown on SNV observed more than 20 times in the data set, is proportional to the SNV count. Green,
horizontal lines are the average SMS of the syn-SNV with (dark green) and without (light green) counts. (c, d) Histograms of SMS distribution for
observed (green) and unobserved (orange) syn-SNV in the N and S ORFs with the full model (cbþ fþ ttb). The corresponding ROC curve is given
as an inset, together with the AUROC. (e, f) Average SMS for syn-SNV (dark green), syn-SNV with SNV-counts (light green), and for unobserved syn-
SNV (orange) computed with the full model and all possible reduced models. In the null model (Null), all synonymous mutations are equiprobable.
Models are ranked according to the difference of average SMS for observed and unobserved syn-SNV. Data from GISAID (Elbe and Buckland-
Merrett 2017), see Materials and Methods for details on data analysis (last update October 05, 2020). Wuhan ancestral genome has GISAID ID:
EPI_ISL_406798. SNV with <5 counts are considered as unobserved syn-SNV.
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of the number of predictions showing that about 85% of the
top scored 90 and 150 possible mutations, in N ORF and S
ORF, respectively, are syn-SNV.

To identify what ingredient in the model is responsible for
correctly distinguishing between observed and nonobserved
synonymous mutations, we compare the discriminatory per-
formances of the full model (including the cb, the ttb, and the
CpG drive) with all model variations obtained removing one
ingredient at the time, up to a null model in which all syn-
onymous mutations are equally likely and all have zero SMS.
In figure 5e and 5f, we compare, for the different models, the
average SMS for Syn-SNV, obtained both with and without
their counts in the sequence sample (see horizontal light and
dark green lines in fig. 5a and 5b), with the average SMS for
the nonobserved syn-SNV. The models are ranked by the
difference of average SMS between observed and nonob-
served Syn-SNV. As expected, the null model is unable to
distinguish between the two sets, assigning vanishing average
SMS to both. The gap between the average SMS of observed
and nonobserved Syn-SNV progressively increases when in-
troducing back the different ingredients of the model, up to
the full one.

We have checked that the choice of the viral codon bias is
important for such discriminatory ability. When using the
human codon bias instead of the viral one, the model based
only on the human codon bias behaves similar to the uniform
bias model; the full model is again the best model but with a
smaller difference in averages SMS (supplementary fig. SI.6,
Supplementary Material online). Classification performances
are, on the contrary, unaffected when changing the equilib-
rium force to the values already discussed, such as the global
force SARS-CoV-2 or the average force computed on

transcripts encoding human type-I IFNs (supplementary fig.
SI.7, Supplementary Material online). It is worth noticing that
models based on viral codon bias and ttb alone (without the
force) already provide good discriminatory performances in
terms of classification of SNV (AUROC and F score). This
result is expected from the predominance of syn-SNV not
affecting CpG occurrences, especially in S ORF. In addition, in
regions, such as N ORF, where CpG lowering mutations are
frequently observed, the viral codon bias, due to the low
global CpG content, favors such synonymous mutations in
agreement with figure 5e and 5f.

Table 6 gives the average SMS and differences, as well as
AUROC and ANOVA tests, for all ORFs and 50 and 30UTR. We
consistently find that the full model is always a good model to
describe syn-SNV observed in the early evolution of SARS-
CoV-2. There is a clear separation between observed and
unobserved syn-SNV average SMS with large AUROC for all
the ORFs and UTRs (� 0:68 for all the ORFs and UTRs and
� 0:71 for the regions with a better mutational statistics,
with at least 20 syn-SNV) and a large ANOVA F value (� 3
for all the ORFs and UTRs and � 13 among regions with at
least 20 syn-SNV); the ORF1a, S ORF, and ORF7b are the only
regions for which the average difference between SMS of
observed and nonobserved syn-SNV computed with no
CpG force is slightly larger. This again suggests that, for the
S ORF, syn-SNV are only marginally affecting CpG motifs and
are mainly driven by codon bias and ttb.

Remarkably, the ranking of models and their discrimina-
tory performances are essentially the same when taking into
account or not the counts of the syn-SNV, even if a net
increase in the average syn-SNV SMS score is present for
models with the CpG drive in most ORFs and UTRs, and

Table 6. Model Performance in Predicting SNV on SARS-CoV-2 UTRs and ORFs.

CpG Drive Average SMS ANOVA F-test
SNV u-SNV Diff Diff (cb 1 ttb) AUROC F Num items

30UTR 20.87 0.51 20.49 1.00 0.73 0.80 101.2 81 1 405
50UTR 21.67 1.11 20.37 1.48 0.91 0.84 88.8 56 1 577
N 20.95 1.15 20.99 2.14 1.83 0.82 153.5 114 1 977
M 21.00 1.29 20.84 2.13 1.81 0.84 90.8 58 1 557
ORF10 22.01 2.04 20.63 2.67 1.89 0.82 9.1 6 1 87
ORF7a 20.61 0.33 20.87 1.22 1.08 0.71 12.7 23 1 289
ORF8 20.82 0.84 20.98 1.82 1.62 0.80 33.6 25 1 266
ORF3a 20.62 1.12 20.90 2.01 1.86 0.84 90.7 54 1 642
ORF1a 0.05 0.93 20.88 1.82 1.83 0.86 1584.4 848 1 9,966
ORF1a (no CpG drive) 0.93 20.89 1.83 — 0.86 1580.3 848 1 9,966
ORF1b 0.003 0.78 20.86 1.63 1.63 0.82 625.0 432 1 6,026
E 21.84 0.53 20.64 1.17 0.91 0.68 3.0 10 1 217
S 0.61 0.85 20.75 1.61 1.75 0.84 361.6 223 1 2,924
S (no CpG drive) 0.85 20.90 1.75 — 0.84 375.2 223 1 2,924
ORF6 0.18 0.39 20.54 0.93 0.91 0.71 5.8 10 1 127
ORF7b 20.28 0.64 20.43 1.07 1.11 0.74 5.4 9 1 98
ORF7b (no CpG drive) 0.70 20.41 1.11 — 0.77 6.1 9 1 98

NOTE.—The table gives for the SARS-CoV-2 UTRs and ORFs the CpG drive (feq � f ), the average SMS for syn-SNV and unobserved syn-SNV (u-SNV) in the data collected so far
(SNV with<5 counts are considered as unobserved), with the full model including cb, CpG drive (f), and ttb in the N and S ORFs, the average SMS difference (diff) between the
syn-SNV and the unobserved syn-SNV. To assess the role of the force in the model, we also provide difference in averaged SMS for the model not taking into account the CpG
drive (diff (cbþ ttb)). For ORF1a, S and ORF7b the presence of the CpG drive slightly decreases the average SMS difference, hence we provide the AUROC and ANOVA F-test
results also with the model without CpG drive (see supplementary table SI.3, Supplementary Material online, for all ORFs and UTRs). All ANOVA F values are significant (P value
<0.05) at exception for E ORF (P value¼ 0.06). The number of items (num items) in the two sets to compute F are the syn-SNVþ all the possible unobserved syn-SNV. SNV on
50 and 30UTRs have not the synonymous restriction.
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especially in N ORF, when counts are considered (supplemen-
tary table SI.4, Supplementary Material online). On the one
hand, ignoring counts leads to conservative estimates of the
SMS, as mutations that are fixing in the population are not
weighted more than less-frequent mutations. On the other
hand, SMS based on sequence counts are likely plagued with
phylogenetic and sampling biases. We expect that SMS, when
properly deriving mutational fitness from phylogeny (Łuksza
and L€assig 2014) and correcting for sampling bias, will lie in
between the two limit-case SMS discussed above.

Discussion
The present work reports analysis of dinucleotide motif usage,
particularly CpG, in the early evolution of SARS-CoV-2
genomes up to October 2020. First, a comparative analysis
with other genomes shows that the overall CpG force, and
the associated CpG content are not as large as for highly
pathogenic viruses in humans (such as H1N1, H5N1, Ebola,
and SARS and MERS in the Coronaviridae family). However,
the CpG force, when computed locally, displays large fluctua-
tions along the genome. This strong heterogeneity is com-
patible with viral recombination, in agreement with the
hypothesis stated in Andersen et al. (2020). The degree to
which this heterogeneity in any way reflects zoonotic origins
should be further worked out using phylogenetic analysis. In
particular, the segment coding for the Spike protein has a
much lower CpG force. The S protein has to bind ACE2 hu-
man receptors and TMPRSS2 (Hoffmann et al. 2020; Vabret
et al. 2020). A fascinating reason that could explain the low
CpG force on this coding region is that it may come (at least
in part) from other coronaviruses that better bind human
entry receptors (Andersen et al. 2020; MacLean et al. 2020).
Other regions, in particular, the initial and final part of the
genome, including the 50 and 30UTR and N ORF, are charac-
terized by a larger density of CpG motifs (and corresponding
CpG force), which are comparable with what is found in SARS
and MERS viruses in the Betacoronavirus genus. Interestingly,
the initial and final part of the genome are implied in the full-
genome and subgenomic viral replication. In particular, the
coding region of the N protein and its RNA sequence, present
in the 30UTRs of all SARS-CoV-2 subgenomic RNAs, has been
shown in Kim et al. (2020) to be the most abundant tran-
script in the cytoplasm. The high concentration of N tran-
scripts in the cytoplasm could contribute to a dysregulated
innate immune response. A mechanism generating different
densities of PAMPs being presented to the immune system at
different points in the viral life cycle can affect immune rec-
ognition and regulation. The precise way this can contribute
to immunopathologies associated with COVID-19 and how
this is related to the cytokine signaling dysfunction associated
with severe cases (Ragab et al. 2020) need further experimen-
tal investigation.

The analysis of the evolution of synonymous mutations
since the outbreak of COVID-19 shows that mutations low-
ering the number of CpG have taken place in regions with

higher CpG content, at the 50 and 30 ends of the sequence,
and in particular in the N protein-coding region. The se-
quence motifs preceding the loci of the CpG removed by
mutations match, especially in N ORF, some of the strongly
binding patterns of the ZAP protein (Luo et al. 2020). Natural
sequence evolution seems to be compatible for protein N with
our model, in which synonymous mutations are driven by the
virus codon bias and the CpG forces leading to a progressive loss
in CpG. These losses are expected to lower the CpG forces, until
they reach their equilibrium values in human host, as is seen in
hCoV coronaviruses commonly circulating in human popula-
tion (Abdul-Rasool and Fielding 2010). More data, collected at
an unprecedented pace (Pickett et al. 2012; Elbe and Buckland-
Merrett 2017; Hadfield et al. 2018), and on a longer evolutionary
time are needed to confirm these hypothesis. Since the data
collected are likely affected by relevant sampling biases, a more
precise analysis of synonymous mutations could be carried out
using the available phylogenetic reconstruction of viral evolu-
tion (Gonzalez-Reiche et al. 2020). Nevertheless our results seem
robust, because they are consistent both considering unique
synonymous variants and including their counts. They coher-
ently point to the presence of putative mutational hotspots in
the viral evolution. Although the results presented here are
preliminary due to the early genomics of this emerging virus,
they have been confirmed by incoming sequence data since our
first analysis (dated May 5, 2020, see supplementary fig. SI.11,
Supplementary Material online), and they point to interesting
future directions to identifying the drivers of SARS-CoV-2 evo-
lution and building better antiviral therapies. In this work, we
focused on synonymous mutations, but it would interesting to
extend our fixed amino acid model for viral evolution to take
into account nonsynonymous mutations and to further model
transmission and mutation (in the presence of a proofreading
mechanism; Denison et al. 2011) processes in SARS-CoV-2 to
predict the timescale at which natural evolution driven by host
mimicry would bring the virus to an equilibrium with its host
(Greenbaum et al. 2008, 2014).

After our work was posted on the bioRxiv, Nchioua and
colleagues have shown the importance of ZAP in controlling
the response against SARS-CoV-2 (Nchioua et al. 2020) by dem-
onstrating that a knockout of this protein increases SARS-CoV-
2 replication. The interaction between SARS-CoV-2 and ZAP
has also been observed with unbiased methods in another re-
cent work (Flynn et al. 2020). This finding supports our predic-
tion that recognition of SARS-CoV-2 by ZAP imposes a
significant fitness cost on the virus, as demonstrated by its early
evolution to remove ZAP recognition motifs. Two other recent
theoretical works (Wei et al. 2020; Sadykov et al. 2021) corrob-
orate our results showing that at the single nucleotide level,
there is a net prevalence of C!U synonymous mutations (the
most common nucleotide mutation which may cause a CpG
loss) in the early evolution of SARS-CoV-2. Moreover, a recent
analysis of the immune profile of patients with moderate and
severe disease revealed an association between early, elevated
cytokines and worse disease outcomes identifying a mal-
adapted immune response profile associated with severe
COVID-19 outcome (Lucas et al. 2020).

Di Gioacchino et al. . doi:10.1093/molbev/msab036 MBE

2440



Materials and Methods

CpG Density Versus Local and Global Forces
Throughout this work, we used CpG forces to quantify the
CpG content of a given sequence. Here we want to compare
this approach with the simple count of CpG motifs in the
sequence. In supplementary figure SI.2, Supplementary
Material online, we show that some of our results, such as
the large fluctuations of the CpG content across the SARS-
CoV-2 genome, are also apparent from a simple motif density
analysis. However, this counting strategy is not suitable to
make comparisons among viruses of different families, mainly
because of the different lengths and usage biases of viral
genomes. Moreover, without the statistical framework at
the basis of the CpG force, it is very difficult to take into
account the many constraints acting on a genetic sequence,
notably the constraint on the amino acids that have to be
coded for in the sequence.

The force formalism is, therefore, much more flexible and
allows us to introduce in a theoretically grounded way the
synonymous mutation score, which we used to characterize
mutations that are likely to happen. The drawback of such a
formalism is the quite large number of extra choices that have
to be done, and which can influence the result. These choices
are discussed in the following.

Force Computation
The technique at the core of many of the analyses made here
is taken from Greenbaum et al. (2014). Here we briefly review
this technique, starting from its noncoding version that takes
as reference bias the nucleotide bias and then describing the
coding version that takes as reference bias the codon bias at
fixed amino acid sequence.

Force Computation in Noncoding Case
Given a motif m and a sequence s0 ¼ fs1; . . . ; sNg of length
N, we consider the ensemble of all sequences with length N,
which we denote with S, and we suppose the probability of
observing s out of this ensemble to be

pðsÞ ¼ 1

Z

�YN

i¼1

qðsiÞ
�

efncNmðsÞ: (1)

Here, qðsiÞ is the nucleotide bias, that is, the probability of
the ith nucleotide being si (e.g., we always used in this work
the human frequency of nucleotides as qðsiÞ), fnc is the force
we want to compute (the subscript nc stands for noncoding),
and Nm is the number of times the motif m appears in the
sequence. Z is the normalization constant, that is,

Z ¼
X
s2S

�YN

i¼1

qðsiÞ
�

efncNmðsÞ: (2)

Therefore, the force fnc is a parameter that quantifies the
lack (if negative) or abundance (if positive) of occurrences of
m with respect to the number of occurrences due to the local
probabilities qðsiÞ. We can fix fnc by requiring that the

number of motifs in the observed sequence, Nmðs0Þ ¼ n0,
is equal to the average number of motifs computed with the
probability equation (1), hni, that is,

hni ¼ 1

Z

X
s2S

�YN

i¼1

qðsiÞ
�

NmðsÞefncNmðsÞ: (3)

Notice that this is equivalent to the request that fnc is so
that probability of having observed s0 is maximum.

Let us focus now on the specific case of a dinucleotide
motif, that is, our motif m consists of the pair ab, where a and
b are two consecutive nucleotides (e.g., a¼ C and b¼G for
the CpG motif). In this case, within an approximation dis-
cussed in the supplementary section SI.3, Supplementary
Material online, the force computed as above turns out to
be the logarithm of the relative abundance index, that is,

fnc ’ log
qðabÞ

qðaÞqðbÞ

� �
; (4)

where q(ab) is the number of motifs ab divided by the total
length of the sequence N. In supplementary figure SI.13,
Supplementary Material online, we tested the accuracy of
this approximation in our specific case. As it is clear from
equation (4), the choice of the nucleotide bias q(s) affects
the absolute value of the forces but not the difference be-
tween forces computed on different viral genomes using the
same reference bias. We have chosen as reference nucleotide
bias the human nucleotide bias (computed on all the genome
or on the coding DNA only). This choice can be then replaced
by any other reference bias (possible choices include the cb
computed on the ancestral SARS-CoV-2 sequence or other
human Coronavirus viral sequences or the one computed on
RNA transcripts of human type-I IFNs, at the core of innate
immune response) and will shift the values of the forces with-
out affecting the ranking of the force on different viral
sequences, see figure 2 and table 1.

Force Computation in the Coding Case
Our technique can be generalized to coding sequences at
fixed amino acid sequence and codon bias. In this case, we
write each sequence s as a series of codons, and its probability
is defined as

pðsÞ ¼ 1

Z

�YN=3

i¼1

qðciÞ
�

efcNmðsÞ; (5)

where now the bias takes the form of a codon usage bias, and
the normalization constant Z changes accordingly into a sum
over all possible synonymous sequences. The subscript c
stands for coding and differentiates this force from the non-
coding one. The force fc can be computed, analogously with
the procedure for the simpler case, by requiring that the
number of motifs observed in s0 is equal to the statistical
average performed with equation (5), as described in detail
in Greenbaum et al. (2014). As shown in figure 3a, the CpG
force at fixed amino acids are roughly comparable with the
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one at fixed nucleotide bias when computing the nucleotide
bias on human coding sequences.

The force computed in the coding (or noncoding case) is
an useful tool to determine the content of a given dinucleo-
tide, while taking into account a number of constraints.

Definition of SMS
We use the ideas discussed above to introduce a model in
order to assign a score, which we call SMS, to each possible
single-codon synonymous mutation of an ancestral sequence.
We consider a system evolving for a small timescale, and a
mutation that changes the ith codon ci into a synonymous c0i .
The transition probability, that is, the probability of observing
the mutation, for such evolution can be decomposed in the
product of two evolution operators: the first TðNCG ! N0CGÞ
representing the change in the number of CpG motifs in the
mutated sequence and the second Tðci ! c0iÞ representing
the gain in mutating the particular codon in position i.

The first operator can be computed from the dynamical
equation introduced in Greenbaum et al. (2014) for the evo-
lution of the CpG number NCG of a sequence under an initial
force (Here we drop the subscripts nc and c used in the
previous section to identify noncoding and coding forces,
since the SMS is defined for a generic force) f through an
equilibrium force feq:

s
dNCG

dt
¼ ðfeq � fÞ: (6)

The equilibrium force can be computed on a viral strain
which is supposed to be at equilibrium with the human in-
nate immune system, because it has evolved in the human
host since a long time. Equation (6) was used in Greenbaum
et al. (2014) to describe the evolution of the CpG number in
H1N1, taking as the equilibrium force the one of the Influenza
B strain. In analogy with this approach, we take here as feq the
average force calculated on coding regions of the seasonal
hCoVs (i.e., hCoV-229E, hCoV-NL63, hCoV-HKU1, hCoV-
OC43). Other possible choices are discussed below (see also
supplementary fig. SI.7, Supplementary Material online). s is a
parameter determining the characteristic timescale for syn-
onymous mutations. Based on equation (6), we define the
transition operator for CpG number as

TðNCG ! N0CGÞ / eðfeq�fÞDNCG ; (7)

where DNCG ¼ N0CG � NCG. Notice that for all the synony-
mous mutations leaving unchanged the CpG number, the
above operator is one. The codon mutational operator is

Tðci ! c0iÞ /
qðc0iÞ
qðciÞ

� �
; (8)

where qðciÞ is the frequency of codon ci from the chosen
codon usage bias. Putting together, these two terms allow us
to estimate how likely a specific synonymous mutation is to
happen. The SMS accompanying a mutation is defined as the
logarithm of this quantity,

SMS ¼ ðfeq � fÞDNCG þ log
qðc0iÞ
qðciÞ

� �
: (9)

To conclude, we remark that different models can be used
in the SMS computation, where a model is specified by giving
the choice of including or not the force term, the choice of
the equilibrium force to be used, the choice of including or
not the cb term, and choice of the reference cb to be used.

Adding transition-transversion bias to SMS
It is well known that transversions (i.e., mutations of purines
in pyrimidines and vice versa) are suppressed with respect to
transitions (i.e., mutations of purines in purines or pyrimi-
dines in pyrimidines).

We introduce here a simple way to account for transition-
transversion bias (ttb) in the model used to assign the SMS.
We suppose that a mutation with n transversions happens
four times less than a mutation with n� 1 transversions. This
probability ratio, which is a standard value in the literature
(Jiang and Zhao 2006), has been recently shown to be close to
the observed value for SARS-CoV-2 (Roy et al. 2020). To in-
clude that in our model, consider mutating a codon c to c0,
one of its synonymous codons. Let SMSðc; c0Þ be the SMS for
this event, computed with a given model. We then count the
number of transitions, ntrn, and the number of transversions,
ntrv, and modify the SMS into SMS0, so that

SMS0ðc; c0Þ ¼ SMSðc; c0Þ þ ntrn logð2Þ � ntrv logð2Þ: (10)

This choice is motivated by mainly two considerations: 1)
in this way, a dynamical model where mutation probabilities
are proportional to the exponential of SMS (as the one used
to justify the SMS itself) correctly gives a 4-fold probability to
a transition than a tranversion (if the two mutations have the
same SMS without this new term) and 2) the splitting on the
extra term in a positive weight for transitions and a negative
weight for transversions ensures that the average SMS before
and after adding this term is comparable.

ZAP Affinity Score
We introduce the ZAS to roughly quantify a priori the like-
lihood of ZAP biding to a given region of RNA. ZAS is based
on the dissociation constants obtained in vitro in Luo et al.
(2020). Let us consider the case of a single motif (be it CG, or
CnxGxCG, with n¼ 4, 5, 6, 7, or 8), M, with dissociation
constant Kd. The association constant is then defined as

Ka ¼
½ZAPþM�
½M�½ZAP� ; (11)

where ½ZAPþM� is the concentration of complexes, [ZAP]
and ½M� are the concentration of free molecules. Let us de-
note by ½ZAP�0 and ½M�0 the total concentration of mole-
cules (bound and unbound). If we suppose that only a small
part of the available molecules form a complex, that is, more
specifically that Ka½ZAP�0 � 1 and Ka½M�0 � 1, then Ka

½ZAP�0 ’ Ka½ZAP� is the probability of binding. If we have
n sites with association constants K

ð1Þ
a ; . . . ; K

ðnÞ
a , the proba-

bility of observing at least one ZAP bound to the RNA is
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p ¼ 1�
Yn

i¼1

ð1� KðiÞa ½ZAP�Þ ’ ½ZAP�
Xn

i¼1

KðiÞa ; (12)

where we also used that n is sufficiently small so that
½ZAP�

Pn
i¼1 K

ðiÞ
a � 1. Finally, ZAS is defined as

ZAS ¼
Xn

i¼1
KðiÞa ; (13)

that is, p=½ZAP�. Although ZAS itself does not depend on
½ZAP�, its interpretation (and in particular its connection with
the probability of binding) does, as it requires
K
ðiÞ
a ½ZAP�0 � 1; K

ðiÞ
a ½M�0 � 1, and

½ZAP�0
Pn

i¼1 K
ðiÞ
a � 1. The K

ðiÞ
a used here range from about

105 (for the simple CpG motif) to 107 (for C7xGxCG) mol/L. It
is more difficult to estimate ½M�0 and ½ZAP�0 during the
infection. However, we hypothesize that these requirements
are fulfilled in cells, and that our interpretation in terms of
binding probability is acceptable.

Robustness of Analysis with Respect to Choice of
Parameters
We discuss here how force values and SMS scores change by
changing model parameters.

Parameters affecting the force values:

i. Nucleotide, codon bias choices: the most relevant effect
due to this choice is a global shift of the force, as we show
in figure 3a for the noncoding case, which does not
change the ranking of forces when comparing different
sequences using the same reference bias.

ii. Choice of the length of the segment to compute the force:
the force is an intensive parameter. However, here we
use the force to quantify the content of CpG motifs,
which are quite rare. For this reason, computing forces
on small segments can lead to large negative values (the
force is �1 when no CpG motif is present) and to
unnatural fluctuations. For this reason, to compute local
force, we fix large sliding windows of 3 kb, and we use
Gaussian sliding averages to smooth the resulting curves.
The effect of Gaussian smoothing and changing sliding
window on the force are presented in supplementary
figure SI.9, Supplementary Material online.

Parameters affecting the SMS:

i. The codon bias (or nucleotide bias for mutations in 50 and
30UTRs): it is both present as a reference bias in the force
computations for the CpG drive term and directly used
as a more generic evolutionary driver for the synony-
mous mutations. For the computation of forces in the
CpG drive, we have used the human codon or nucleo-
tide bias as reference usage, but such choice is actually
irrelevant because the drive is a difference of the seg-
ment force and the equilibrium one. The choice of bias
is, on the opposite, very relevant for the choice of the
synonymous mutations driver. Indeed, in figure 5e and
5f, it is apparent that the virus codon bias alone gives to
the model a certain ability to discriminate between

observed an unobserved syn-SNV. We tested also the
human codon bias which gives bad performances (see
supplementary fig. SI.6, Supplementary Material online).

ii. Choice of equilibrium force: this choice is arbitrary to a
certain degree. We use as equilibrium force (computed
with the human codon bias)�1.79 which is the average
coding force hCoVs (229E, NL63, HKU1, OC43), since
these viruses are well adapted to the human environ-
ment so likely a good equilibrium point for SARS-CoV-2.
To check the effects of other choices of equilibrium
forces, in supplementary figure SI.7, Supplementary
Material online, we performed the same analysis shown
in figure 5e and 5f with other two possible choices of
equilibrium forces: the global force of SARS-CoV-2
(�1.71, which is quite low, but slightly higher than the
average of the seasonal hCoVs), and the average global
force of INF-I transcripts (�2.89 which is much lower
than that of seasonal hCoVs), see also tables 1 and 2.
Although the SMS assigned to the mutations are in
general different, especially when taking into account
the counts in syn-SNV, and so the average SMS in fig-
ures, the ranking of the various models in terms of av-
erage SMS difference (syn-SNV vs. unobserved syn-SNV)
is quite robust.

iii. Presence of ttb: we observe that the presence of this term
always increases the difference between the average
SMS in observed and unobserved synonymous SNV.
Two choices are needed to fix this term: the value of
the probability ratio of a transition with respect to a
transversion (here we considered this ratio to be 4), and
the specific way of realizing this bias by adding a bonus/
penalty term to transitions and trasnversions. The latter
choice is almost irrelevant when considering the differ-
ences of average SMS between observed and unob-
served SNV.

Data Analysis and Data Availability
SARS-CoV-2 sequences are taken from GISAID (Elbe and
Buckland-Merrett 2017). We downloaded each sequence pre-
sent in the database on October 05, 2020 (the most recent
sequence was collected on September 29, 2020). Before any of
our analyses, we discarded all the sequences where one or
more nucleotides were wrongly read (other characters than
A, C, G, T, U). This left us with 56,045 SARS-CoV-2 sequences.
To obtain figure 2, we considered, in addition to the SARS-
CoV-2 sequences are taken from GISAID, other
Alphacoronavirus and Betacoronavirus sequences (whole
genomes and genes) which have been obtained from VIPR
(Pickett et al. 2012). The preprocessing consisted again of
discarding all the sequences with one error or more. After
this process, we collected 341 SARS, 48 MERS, 20 hCoV-229E,
48 hCoV-NL63, 14 hCoV-HKU1, 124 hCoV-NL63, 166 bat-
CoVs, and 5 pangolin-CoVs whole genomes. For figure 2b,
we used the largest number possible of sequences, up to a
maximum of 100. For figure 2a (viral sequences) and 2c, we
chose a single sequence for each species. However, we
checked that the result is qualitatively the same if we use
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other sequences from the same species for human coronavi-
ruses. The curves in figure 2c are smoothed through a
Gaussian sliding average (on windows of 3 kb, the Gaussian
being centered in the window, normalized, with a standard
deviation of 300 b). The ancestral SARS-CoV-2 sequence used
throughout the work has been collected on 26-12-2019 (ID:
EPI_ISL_406798).

In figure 3a, the SARS-CoV-2 sequence has been processed
to ensure the correct reading frame. Therefore, the ORF1ab
gene is read in the standard frame up to the ribosomal shift-
ing site, and it is read in the shifted frame from that site up to
the end of the polyprotein. Moreover, the small noncoding
parts between successive proteins have been cut, resulting in
a loss of 634 nucleotides (including the 50 and 30UTR). A
Gaussian smoothing has been performed to obtain the plot-
ted CpG forces (as in fig. 2c). To produce the bar plots in
figure 3b and c, we collected genes data on VIPR. Then we
discarded all the sequences with one or more errors, and we
computed for each gene an average of up to 20 different
sequences (coming from the same species). For some struc-
tural proteins, we did not find 20 different genes but in any
case, the standard deviation of the averages of figure 3b and
3c is smaller than 0.02. In particular, we used 20 sequences of
SARS-CoV-2, MERS, hCoV-NL63, hCoV-OC43 proteins, 14
sequences for hCoV-229E, 13 for hCoV-HKU1, and 4 for
SARS. More detailed information about the genomes used
in this work are given in supplementary section SI.1,
Supplementary Material online.

The mutations used for figures 4 and 5 have been collected
by extracting ORFs from the SARS-CoV-2 sequence data set
and comparing them with the Wuhan ancestral strain. ORFs
with mutations too close to the start or end codon are not
considered, together with ORFs with insertion/deletion, this
filtering procedure leaving us with 48,511 sequences to obtain
mutation data. Mutations with <5 counts in different
sequences are discarded. All curves in figure 4a are smoothed
with the same Gaussian average used in figures 2 and 3.
Finally, to get the mutation data in 50 and 30UTR, we consid-
ered the UTRs of the Wuhan ancestral strain, and we com-
pared them with those of other sequences. The number of
nucleotides of the Wuhan ancestral considered part of 50 and
30UTR for the search for mutations in other sequences is
given in table 3. This length is chosen so that a large number
of uploaded sequences (about 50,000) have a UTR of the
same length or longer. In the UTR analysis, all observed muta-
tions are considered “synonymous.”

The code used to compute coding and noncoding forces is
publicly available at https://github.com/adigioacchino/dinu-
cleotide_forces (last accessed February 16, 2021).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-
Melo D, Bieniasz PD. 2017. CG dinucleotide suppression enables
antiviral defence targeting non-self RNA. Nature 550(7674):124–127.

Tanne A, Muniz LR, Puzio-Kuter A, Leonova KI, Gudkov AV, Ting DT,
Monasson R, Cocco S, Levine AJ, Bhardwaj N, et al. 2015. Distinguishing
the immunostimulatory properties of noncoding RNAs expressed in
cancer cells. Proc Natl Acad Sci U S A. 112(49):15154–15159.

Vabret N, Bhardwaj N, Greenbaum BD. 2017. Sequence-specific sensing
of nucleic acids. Trends Immunol. 38(1):53–65.

Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R,
Malle L, Moreira A, Park MD, et al. 2020. Immunology of Covid-19:
current state of the science. Immunity 52(6):910–941.

Wei Y, Silke JR, Aris P, Xia X. 2020. Coronavirus genomes carry the
signatures of their habitats. PLoS One 15(12):e0244025-33.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, DiCuccio M, Edgar R, Federhen S, et al. 2007. Database
resources of the national center for biotechnology information.
Nucleic Acids Res. 36(Database):D13–D21.

Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X,
et al. 2020. Effective treatment of severe Covid-19 patients with
tocilizumab. Proc Natl Acad Sci U S A. 117(20):10970–10975.

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. 2020.
Evolution of the novel coronavirus from the ongoing Wuhan out-
break and modeling of its spike protein for risk of human transmis-
sion. Sci China Life Sci. 63(3):457–460.

Zhou J, Chu H, Li C, Wong BH-Y, Cheng Z-S, Poon VK-M, Sun T, Lau CC-
Y, Wong KK-Y, Chan JY-W, et al. 2014. Active replication of middle
east respiratory syndrome coronavirus and aberrant induction of
inflammatory cytokines and chemokines in human macrophages:
implications for pathogenesis. J Infect Dis. 209(9):1331–1342.

Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li
B, Huang C-L, et al. 2020. A pneumonia outbreak associated with a
new coronavirus of probable bat origin. Nature 579(7798):270–273.

Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, Sun J, Wu L, Zheng Y-T, Gao G.
2011. Zinc-finger antiviral protein inhibits HIV-1 infection by selec-
tively targeting multiply spliced viral mRNAs for degradation. Proc
Natl Acad Sci U S A. 108(38):15834–15839.

Early Evolution of CpG Dinucleotides in SARS-CoV-2 . doi:10.1093/molbev/msab036 MBE

2445


