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Abstract

ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone
modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background
reads to account for local sequencing and GC bias. However, the GC-content of reads in Input-seq datasets deviates
significantly from that in ChIP-seq datasets. Moreover, we observed that a commonly used peak calling program performed
equally well when the use of a simulated uniform background set was compared to an Input-seq dataset. This contradicts
the assumption that input control datasets are necessary to fatefully reflect the background read distribution. Because the
GC-content of the abundant single reads in ChIP-seq datasets is similar to those of randomly sampled regions we designed
a peak-calling algorithm with a background model based on overlapping single reads. The application, OccuPeak, uses the
abundant low frequency tags present in each ChIP-seq dataset to model the background, thereby avoiding the need for
additional datasets. Analysis of the performance of OccuPeak showed robust model parameters. Its measure of peak
significance, the excess ratio, is only dependent on the tag density of a peak and the global noise levels. Compared to the
commonly used peak-calling applications MACS and CisGenome, OccuPeak had the highest sensitivity in an enhancer
identification benchmark test, and performed similar in an overlap tests of transcription factor occupation with DNase I
hypersensitive sites and H3K27ac sites. Moreover, peaks called by OccuPeak were significantly enriched with cardiac
disease-associated SNPs. OccuPeak runs as a standalone application and does not require extensive tweaking of parameters,
making its use straightforward and user friendly. Availability: http://occupeak.hfrc.nl
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Glossary

Read: Sequenced DNA fragment

Dataset: List of reads originating from a sequence run

ChIP-seq dataset: Dataset resulting from a ChIP-seq

experiment after immunoprecipitation with a specific antibody

Input-seq dataset: Dataset resulting from a sequencing

experiment without immunoprecipitation or precipitation without

specific antibody

Tag: Read aligned to the genome

Region: Part of the genome covered by overlapping tags

Peak: Region covered by a number of tags that exceeds the

threshold of the applied peak-calling algorithm

Noise or Background: Region covered by a number of tags

which does not exceed the threshold of the applied peak-calling

algorithm

Excess Ratio (ER): Ratio of the observed number of regions

and the expected number of regions with n or more tags. The

expected number is calculated from the proposed model for the

distribution of background tags over the chromosome

Sensitivity: fraction of the actual peaks that is correctly called

as peak ("true positive peaks").

Specificity is statistically defined as "the fraction of true

negatives". Because the population of negatives cannot be properly

defined in ChIP-seq peak calling we avoid the term specificity.

Introduction

Networks of transcription factors, histone modifications and

regulatory DNA elements control the spatio-temporal expression

patterns of genes during development and in homeostasis. To

unravel these regulatory networks and their contribution to

developmental processes and human disease, it is imperative to

identify the positions of transcription factor binding sites and

modified histones throughout the genome. Currently, the most

successful approach to identify and map such protein-DNA
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interactions in vivo on a genome-wide scale is chromatin

immunoprecipitation (ChIP) followed by massive parallel sequenc-

ing (ChIP-seq) [1–3]. In short, ChIP-seq involves cross-linking of

DNA and proteins, shearing the cross-linked DNA into fragments

and enrichment of DNA bound to the factor-of-interest via

immunoprecipitation. Next, these DNA fragments are sequenced,

after which reads are aligned to a reference genome and the

occurrence of DNA tags is counted. The resulting quantified

occurrence of DNA fragments reflects the genomic occupancy by

the factor through direct binding or complex formation. Thus,

ChIP-seq provides a quantitative map of DNA interaction

positions for a given transcription factor, co-factor or modified

histone.

In the ideal ChIP-seq experiment there should be no

background at all; the presence of reads representing the

occurrence of binding at a specific location. However, variability

in the affinity of protein-DNA interactions [4] as well as variability

due to antibody affinity, sensitivity and specificity, DNA accessi-

bility and chromatin structure [5], differences in exonic and

intronic DNA [6], and differences in GC-content [7–9], are

assumed to generate bias in the observed number of reads and to

result in a variable background level within and between ChIP-seq

experiments.

These variation sources imply that peak calling requires a

computational modelling of tags observed in background regions.

A number of peak-calling algorithms have been proposed and

implemented. Comparisons of these methods show that different

peak-calling methods result in discrepancies in the number and the

pattern of identified peaks [10–12] and it has to be concluded that

no definitive solution for background modelling has been found.

Some authors accept that the optimal algorithm may depend on

the dataset to be analysed [10] whereas others advise the

combination of the outcome of different methods [9,11]. However,

the latter approach can lead to loss of true binding sites [13],

which shows that such a combinatorial fusion of several

approaches will not always lead to the correct results. Therefore,

there is still room for improvement.

Existing peak-calling algorithms, including MACS, CisGenome,

PeakSeq, SPP and Sole-Search [14–18] compute significance of

enrichment relative to local background or combine a global

threshold with such a local comparison [19]. This local

background is assumed to be variable over the genome but

reproducible between replicate experiments. The background is

generally determined with so-called Input-seq datasets resulting

from sequencing DNA fragments collected without a (specific)

immunoprecipitation step. However, it has been shown that Input-

seq datasets vary between technical and biological replicates [8]

and that these datasets should, therefore, fulfill very strict criteria

[20]. Moreover, the use of Input-seq datasets was reported to have

only limited advantages [21] and peak calling without Input-seq

data has been reported to be at least as effective [22].

In this paper we present some experiments carried out to

evaluate the conjectures on which the use of Input-seq datasets are

based and to test the usefulness of Input-seq datasets. Based on the

results of these experiments we decided to implement a peak-

calling system based on background modelling from the ChIP-seq

dataset itself. The fraction of the DNA reads in a ChIP-seq dataset

that is the result of the immunoprecipitation is reported to be low

[23], which means that each ChIP-seq dataset contains a large

proportion of background reads. Moreover, ChIP-chip analyses

have shown that close to 99% of the arrayed probes do not

hybridise [24] which means that ChIP-selected DNA fragments

cover only a minor fraction of the total genome length. Following

this reasoning, each ChIP-seq dataset contains sufficient back-

ground reads to permit modelling of the background present in the

dataset. Our peak-calling program, OccuPeak, is based on the

abundant presence of these background reads.

We used OccuPeak to test the effects of local versus global

background modelling and to test the effect of read density on

peak calling. The performance of the algorithm was illustrated by

showing its peak-calling consistency in biological replicate datasets.

Moreover, the biological relevance of the peaks that were called

was evaluated. We chose to use ChIP-seq data generated with the

intent to identify regulatory regions active in heart tissue because

of the abundance of identified cardiac enhancers (102 in total,

Vista enhancer database: http://enhancer.lbl.gov/). To this end,

we used data for the cardiac transcription factor TBX3 [25] and

the histone acetyltransferase p300 [26] (see Table 1 for an

overview of the datasets used).

Using ChIP-seq peak-calling software, bench-top biologists,

often with little bioinformatics experience, typically encounter a

large number of adjustable parameters [10] required to set more

or less conservative thresholds [27]. Graphical user interfaces are

important to support the analysis needs of such users and to enable

them to acquire biological insights [12,28]. To simplify ChIP-seq

data analysis for these researchers, we developed OccuPeak to be a

stand-alone ChIP-seq peak-calling program with a user-friendly

interface that can serve as a basic research tool.

Results and Discussion

Input-seq datasets
Most peak-calling algorithms require input control datasets to

model the occurrence of background reads to account for local

sequencing and GC-bias. This background is generally modelled

with so-called Input-seq datasets resulting from sequencing DNA

fragments collected without a (specific) immunoprecipitation step,

which is almost as expensive as the ChIP-seq experiment itself.

This local background is assumed to be variable over the genome

but reproducible between experiments on the same tissue.

Correlation between Input-seq datasets. To determine

the extent of the correlation between replicate Input-seq datasets,

we divided the genome into bins of 1 kb and counted the number

of Input-seq tags in these bins (Figure 1A). At the same time we

noted whether these bins overlapped with simple or satellite

genomic repeats. Using replicate lung Input-seq datasets, the

number of tags indeed correlated (R2 bins without repeats = 0.50,

R2 bins with repeats = 0.75; Figure 1B). However, this correlation

is largely caused by a limited number of bins with a high number

of tags. Excluding bins with more than 20 tags in either dataset,

reduced the correlation significantly (R2 values of 0.33 and 0.21,

respectively); bins with tag counts up to 8 show hardly any

correlation (R2 values of 0.11 and 0.07, respectively).

The correlation between Input-seq datasets is thus mainly

dependent on bins containing a large number of tags. When such

tag accumulations are reproducible between Input-seq and ChIP-

seq data, these genomic regions are considered to be false positive

peaks. To study the extent to which this occurs, we first called

peaks on two replicate heart Input-seq datasets and observed

approximately 3000 significant peaks in each set. These peaks

overlapped for about 78% between the datasets which shows that

indeed the most significant regions in these Input-seq datasets are

reproducible. To determine the implication of this reproducibility

on peak calling in ChIP-seq datasets, we determined the overlap of

the peaks called in Input-seq datasets with those called in the

TBX3 and the replicate p300 datasets. We found that between 49

and 60% of Input-seq peaks overlapped with ChIP-seq peaks.

However, this number only corresponded to between 1–1.5% of
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the peaks called in the ChIP-seq sets (Figure 1C; green). This

implies that the large majority of peaks in these ChIP-seq datasets

are located in regions where Input-seq datasets show no

correlation. Using tag accumulations in Input-seq datasets to

model local background would, therefore, be unjustified.

Mapping artifacts, as a result of genomic repeats, could account

for the majority of the overlap observed between replicate Input-

seq datasets and between Input-seq and ChIP-seq datasets.

Indeed, when we remove those reads that are not uniquely

mappable from the ChIP-seq set, approximately 60% of the

overlap between Input-seq and ChIP-seq is lost. Such mapping

artifacts, however, can easily be detected and avoided before peak

calling by using an appropriate alignment setting. This would

circumvent the need for Input-seq datasets.

To assess whether the above observations also hold for low-

frequency binders we analyzed Srf and Mef2a ChIP-seq datasets

[29]. When only uniquely mappable tags were taken into account,

OccuPeak called 3408 and 3590 peaks for Srf and Mef2a,

respectively, which is a relatively low number and similar to the

number of peaks reported by the authors [29]. However, it cannot

be determined whether the low number of peaks in these datasets

is the result of true low frequency binding or of lower sensitivity

ChIP-seq experiments. Regardless, in these datasets we found

6.8% (245) and 8.5% (290) overlap with Input-seq peaks

(Figure 1C). Although the overlap with Input-seq data is thus

somewhat higher in datasets with a low number of peaks it is still

only a minor fraction of the total number of peaks. When all tags

were included in the analysis, in both datasets the degree of

overlap with Input-seq peaks was significantly higher (Figure 1C).

For the Srf dataset the additional noise resulted in a strongly

impaired peak-calling power; only 814 peaks were called, of which

nearly 70% overlapped with Input-seq peaks. This result is

consistent with the observation that mapping artifacts are

responsible for most of the overlap between ChIP-seq and

Input-seq data.

Effect GC-bias on peak calling. The use of Input-seq

datasets is also recommended to correct for GC-bias. It has been

reported that ChIP-seq reads have a higher average GC-content

than the whole genome, possibly due to PCR artefacts [8,9].

Theoretically, such a bias can result in an overrepresentation of

GC-rich regions in peaks being called. However, published data is

mainly restricted to the overall distribution of GC-content in

ChIP-seq and Input-seq datasets or in whole genomes. Little is

known on differences in GC-content between reads occurring in

background regions and reads in peak regions. This scarcity of

information prompted us to determine the GC-content in different

parts of the genome. Furthermore, we determined the GC-content

in genome regions covered by single or overlapping reads in ChIP-

seq datasets as well as Input-seq sets.

DNAse I hypersensitivity sites (DHSs), which are short regions

of accessible chromatin characterized by hypersensitivity to

cleavage by DNase I, are established markers for regulatory

DNA elements [30]. Heart DHSs, cardiac gene promoters, cardiac

enhancers and other known enhancers all show on average GC-

contents between 47 and 49%, which is higher than the GC-

content of random genomic regions of 100 bp in length

(Figure 2A). The maximum GC-content of cardiac enhancer

and promoter regions, 62%, is far less than the high GC-contents

that are reported to result in sequencing bias [31]. Strikingly,

single tags in ChIP-seq datasets show a GC-content that is similar

Table 1. Datasets.

ChIP-seq

Dataset Study organism Sequencing platform
Coverage (proportion of
genome covered by peaks) GEO DataSets (GSE)

TBX3 heart over-expression mouse AB SOLiD System 3.0 0.0847 GSE44821

p300 heart(1) mouse Illumina Genome Analyzer II 0.0494 GSE29184

p300 heart(2) mouse Illumina Genome Analyzer II 0.0538 GSE29184

Srf mouse Illumina Genome Analyzer 0.0005 GSE21529

Mef2a mouse Illumina Genome Analyzer 0.0005 GSE21529

Input-seq

Input control heart(1) mouse Illumina Genome Analyzer II 0.0003 GSE29184

Input control heart (2) mouse Illumina Genome Analyzer II 0.0003 GSE29184

Input control lung(1) mouse Illumina Genome Analyzer II 0.0001 GSE29184

Input control lung(2) mouse Illumina Genome Analyzer II 0.0004 GSE29184

IgG

IgG control atria mouse Illumina HiSeq 1000 - GSE46497

IgG control MEL mouse Illumina Genome Analyzer - GSE49847

Reference data

H3K27ac heart mouse Illumina HiSeq 2000 0.0236 GSE49847

DNase1 hypersensitivity sites heart mouse Illumina HiSeq 2000 0.0964 GSE40869

Validated enhancers mouse - - -

Validated cardiac enhancers mouse - - -

Cardiac gene promoters mouse - - -

A summary of the datasets used in this study. For ChIP-seq datasets, the sequencing platform, the coverage of the genome by peaks and the GEO DataSets accession
number (GSE) is given. The coverage of the genome by peaks is given relative to mappable genome size (1.87 Gb for mm9).
doi:10.1371/journal.pone.0099844.t001
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to that of random regions (Fig 2B) whereas genomic regions where

30–40 tags overlap, show the high GC-content reminiscent of

enhancer regions (Fig 2C). The latter GC-content is similar to the

GC-content reported for intron and exon regions [6]. For single

tags, the Input-seq datasets show a deviating, higher GC-content

whereas an IgG input control (using an irrelevant, non-nuclear

antigen) behaves as a ChIP-seq set. The GC-content of tags in the

replicate p300 ChIP-seq datasets are indistinguishable from each

other. The current finding that IgG input controls show a GC-

content for single reads that is similar to those of ChIP-seq datasets

would be a point in favour for this kind of input control.

Moreover, the significantly higher GC-content in Input-seq

datasets shows that the occurrence of reads in these datasets is

due to a selection mechanism that differs from the mechanism that

is operational in ChIP-seq datasets. The significant difference in

GC-contents between ChIP-seq and Input-seq datasets, therefore,

makes the latter less appropriate for the modelling of background

reads. The similar GC-content of single reads and random

genomic regions indicates that ideally background should be

estimated from low frequency reads in ChIP-seq experiments.

Input-seq datasets can be simulated. The observation that

single reads show the GC-content of random regions suggests that

single reads in ChIP-seq datasets occur randomly in the genome.

This implies that background can be modelled on these low

frequency reads. To test this hypothesis, we simulated a

background set with a random-uniform background and used this

set as an input control set. We used this simulated and an actual

Figure 1. Correlation between Input-seq datasets depends on repeated sequences. A. UCSC genome browser snapshot showing tag
counts (log scale) in 1 KB bins of two replicate Input-seq datasets. High tag counts are related to annotated genomic repeats. B. Correlation between
tag counts in two replicate Input-seq datasets for bins without or with genomic repeats (yellow area: bins with tag counts between 1 and 8, blue:
between 1 and 20, red: between 1 and infinity). Bins without any tags were excluded from the analysis because they might be the result of
unmappable regions. C. The small overlap (green) between peaks called in ChIP-seq datasets (yellow) and an Input-seq dataset (blue) is significantly
reduced when only uniquely mappable (um) reads are considered in peak calling. This is effect is independent of the number of called peaks.
doi:10.1371/journal.pone.0099844.g001
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Input-seq dataset to compare the results on peak calling on the

p300(1) dataset with the peak-calling program MACS (Figure 3).

The number of DHSs reported from heart tissue exceeds

260,000 (,10% genome coverage) and exceeds the number of

peaks called from ChIP-seq datasets. Therefore, the DHS dataset

can be used as a reference set to determine the positive predictive

value of a peak-calling algorithm, i.e. its ability to call peaks

representing true binding sites. For the 4000 most significant peaks

in each set, more overlap with cardiac DHSs was found for the

peak-set based on the simulated input control data (Figure 3;

97.5% and 95.5%, respectively; p,0.001). This showed that in

terms of biological relevance, peak calling by correcting for a

uniform background is at least as effective as using a local window

and an Input-seq dataset to correct for background bias.

Fraction of tags associated with peaks. Replacing the use

of Input-seq datasets with background modelling based on the

ChIP-seq dataset requires that background information is present

in the ChIP-seq dataset itself. It has been reported that the fraction

of reads associated with specific immunoprecipitation in ChIP-seq

is low [23]. Indeed for the TBX3 data, only 57% of the tags

(13,088,900 in total) were associated with called peaks; for the

p300 data the percentages were 38% (replicate 1) and 29%

(replicate 2). The genomic coverage of peaks ranges from 5% to

8% for TBX3 and the p300 replicate datasets, implying that over

90% of the genome is available for background modelling. These

results indicate that each ChIP-seq dataset contains sufficient

background reads to model the background present in the dataset.

Figure 2. Reviewing evidence of GC-bias in ChIP-seq data. The GC-content was determined for various classes of genomic regions. The GC-
content distribution per class is shown in boxplots (whiskers range from 2.5 to 97.5%). A. The GC-content distribution of various classes of regulatory
elements is plotted next that of random genomic regions (genome background). B. The GC-content distribution of genomic regions covered by
single tags, resulting from various ChIP-seq experiments, is plotted. The red dotted lines indicate the inter-quartile range of the genome background.
C. The GC-content distribution of genomic regions covered by tag accumulations (30–40 tags), resulting from various ChIP-seq experiments, is
plotted. The green dotted lines indicate the inter-quartile range of validated cardiac enhancers.
doi:10.1371/journal.pone.0099844.g002

Figure 3. Performance of MACS using Input-seq and simulated
input data. MACS was used to call peaks (only chromosome 1) using
the p300(1) dataset. Heart Input-seq data or a simulated uniform
background dataset were used as input control. The influence of the
input control set on peak-calling performance was measured using
overlap with DHSs as outlined in the legend of Figure 8.
doi:10.1371/journal.pone.0099844.g003
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OccuPeak model
The above experiments showed that correlation between

replicate Input-seq datasets results mainly from high frequency,

repeated, regions whereas only a small fraction of these regions

overlapped with significant regions in a ChIP-seq experiment.

Moreover, equally effective peak calling could be accomplished

after modelling a uniformly distributed background. The obser-

vation that single reads show the same GC-content as randomly

sampled regions suggests that the low frequency reads in ChIP-seq

datasets represent the background noise. Because a large

proportion of the genome in ChIP-seq experiments is covered

by such abundant background reads we propose to model the

background required for peak calling from the ChIP-seq

experiment itself.

Therefore, we propose a background model that assumes that

every location on a chromosome has the same chance to be

covered by a background tag in the ChIP-seq dataset. The number

of regions covered by at least a single tag in the dataset can then be

modelled as N(1) = p.A, where A is the length of the mappable

genome and p is the probability of a tag being observed. When all

tags are independent, the chance of two tags overlapping at the

same position in the genome is the product of the probability of a

single occurrence. So, when all tags are observed by chance only,

the number of regions with at least n overlapping tags, N(n), is

given by our background model:

N nð Þ, noise~pn:A ðEq:1Þ

The observed number of regions with n or more overlapping

tags is a combination of background and specific occurrence of

tags. Therefore, to fit this noise model to the actual observed tag

distribution, an offset representing the number of real peaks (B) has

to be included. The cumulative distribution of the number of

regions with n or more overlapping tags in a ChIP-seq dataset can

thus be modelled as:

N nð Þ, observed~pn:AzB ðEq:2Þ

This model can be fitted to the observed counts, N(n), of regions

covered by at least n tags, for n is 1 to 4, to estimate the model

parameters p, A and B. With these parameters, the expected

occurrence of regions of at least n tags due to background tags can

be calculated with Eq. 1. The ratio of the observed N(n) and the

expected N(n) due to noise is then defined as the excess ratio (ER)

for each n:

ER nð Þ~N nð Þ, observed=N nð Þ,noise ðEq:3Þ

When significantly more regions with a given number of tags

are observed than expected, these regions are no longer considered

to be background and thus should be called real peaks. For

convenience, log10(ER) is used to set this significance threshold.

By default a threshold value of 2, equivalent to an excess ratio of

100, was applied. The threshold level of ER has to be set by the

user to account for technical and biological variability.

OccuPeak performance
Local background modelling. Most peak-calling programs

use sliding windows to determine the abundance of local

background tags to be used as a local peak-calling threshold

[12]. Moreover, the performance of ChIP-seq peak-calling

methods has been reported to depend on the total number of

reads, i.e. read density, in the dataset [27]. To investigate whether

those issues affect the performance of the OccuPeak algorithm, the

effect of the size of the sampling window and of the tag density on

the number of peaks and the pattern of peaks was determined. To

this end, systematic sub-sampling was used to generate ChIP-seq

datasets containing 12.5, 25, 50 and 75% of the total number of

tags. For each subset, OccuPeak was applied with window sizes

ranging from 0.1 Mb to complete chromosomes. The required

number of windows to completely cover each chromosome was

distributed uniformly with minimal overlap. The resulting peak

sets were visualized and compared (Figure 4A; File S1).

When significant differences in background exist, the applica-

tion of the OccuPeak model using small 0.1 Mb windows should

result in improved peak calling. This difference would be reflected

in the number of peaks called per window and the occurrence of a

different pattern of peaks. However, this analysis showed that only

the number of called peaks decreases whereas the pattern of

observed peaks per chromosome does not change with the use of

small sampling windows (Figure 4B). The profile of the average

number of peaks per Mb genome of each chromosome is not

dependent on window size (Figure 4B) although the total number

of peaks decreased between chromosome-sized windows and

0.1 Mb windows (Figure 4B, top). The pattern of peaks correlates

significantly between chromosome-wide and 0.1 Mb windows

(R2 = 0.96). The loss of peaks reflects the decreasing power to call

peaks when fewer tags are available. Indeed, in a 12.5% sample of

the same dataset, the number of peaks called is also substantially

lower but the pattern of peaks over the genome is unaffected

(Figure 4B, bottom).

To identify which peaks are either gained or lost using smaller

windows we compared overlap between the peaks resulting from

the use of the chromosome-sized windows with the peaks observed

with decreasing window sizes. Peaks are gained relatively rarely,

with a maximum of less than 2% of the peaks using the smallest

0.1 Mb windows (Figure 4C; yellow). However, loss of peaks

becomes more frequent as the window size decreases (Figure 4C;

blue). These ’missed’ peaks are generally associated with relatively

low tag counts and thus represent less significant binding regions.

Similarly, peaks are missed when sub-samples of the ChIP-seq

dataset are analyzed (Figure 4A and 4B) illustrating the decreased

peak-calling power of small datasets [27].

To determine biological significance of these subpopulations of

peaks we determined the positive predictive values by looking at

overlap with cardiac DHSs. Peaks that were observed with both

the chromosome-sized and the 0.1 Mb windows, overlap for 78%

with cardiac DHSs whereas the peaks missed in the 0.1 Mb set

show a significantly lower 60% overlap with DHSs (p = 0.001; Z-

test). However, the peaks that are gained with the 0.1 Mb windows

only reach 39% overlap (p,0.001, compared to both other

categories). This result also shows that peak-calling performance is

not improved by local background modelling. The use of a small

window size to account for local variation in background is

therefore not recommended.

Consistency of peak calling between replicate

datasets. The availability of replicate p300 ChIP-seq experi-

ments [26] provided the opportunity to determine the consistency

of peak-calling algorithms between biological replicates. Peaks

were considered common (Fig 5; green bars) if they were identified
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in both replicate datasets and singleton if they were only identified

in one replicate set (Fig 5; blue and yellow bars for replicate 1 and

2, respectively). Occupeak found 52% peaks common to both

datasets (Figure 5; bar 1). We also determined the consistency in

peak calling for the MACS and CisGenome algorithms (Figure 5,

bars 2 and 3). Cisgenome showed 50% of peaks being called

consistently between sets, whereas MACS reached 54%. However,

peak-calling power, reflected in the number of peaks called at

default threshold, differs per method: the number of common

peaks identified by OccuPeak exceeds the total number of peaks

called by the other peak callers. Although the different peak-calling

methods do not differ in consistency of peak calling, an analysis

based on overlap between datasets will benefit from a large

number of observed peaks because it avoids the loss of information

when datasets differ substantially in read density or background

noise.

Calling biologically relevant peaks
Peak-calling power and sensitivity: cardiac

enhancers. Overlap with validated cardiac enhancers can be

used to assess the biological relevance of an identified set of peaks.

To this end we used a set of validated cardiac enhancers that

consists of 102 mouse genomic regions that have reproducibly

been shown to drive cardiac reporter gene expression in transgenic

mouse embryos. Overlap analysis was carried out with peak sets

called by OccuPeak, CisGenome and MACS (Figure 6). Figure 7

shows an example of a UCSC session with detailed results. When

analyzing the TBX3 ChIP-seq set, OccuPeak identified 86

enhancers (84%; Figure 6; bar graphs). MACS and CisGenome

both called fewer peaks, identifying 79 enhancers. For the replicate

p300 ChIP-seq datasets, OccuPeak identified 73 enhancers in

replicate 1 and 78 in replicate 2. MACS and CisGenome

identified 66 and 64 enhancers, respectively, in replicate 1 and

56 and 60 enhancers, respectively, in replicate 2. In all cases

OccuPeaks performance increased when only uniquely mappable

tags were considered. Taken together, the default thresholds used

by CisGenome and MACS lead to impaired peak-calling

sensitivity compared to OccuPeak. Especially for the p300(2)

dataset this conservative threshold leads to a significant reduction

in identified cardiac enhancers (Figure 7).

One can argue that the total number of enhancers that is

correctly identified is biased by the total number of peaks that is

called. To address this argument, the threshold setting of each

individual peak-calling method was stepwise adjusted until the

same number of peaks was called at each step. This iterative

approach shows the relationship between peak-calling power

Figure 4. Effect of window size and tag density on the pattern and number of called peaks. Peaks were called with OccuPeak in the TBX3
ChIP-seq dataset using different window sizes and tag densities. A. UCSC genome browser snapshot capturing the effects on peak calling in a region
containing 2 validated cardiac enhancers. B. Mean number of peaks called per Mb of genome. Note the (almost perfect) parallelism of the profiles for
different tag density (100% and 12.5%) and window size (chromosome and 0.1 Mb). C. Effect of window size on the gain or loss of peaks. When the
peaks called with a chromosome-wide window are used as a reference (green), smaller windows lead to loss of peaks (blue) but hardly ever to gain of
peaks (yellow).
doi:10.1371/journal.pone.0099844.g004

Figure 5. Consistency of different peak-calling methods. OccuPeak, MACS and CisGenome were used to call peaks for each of the two
replicate p300 ChIP-seq experiments generated by the ENCODE consortium (GSE29184). A. Peaks are considered common (green) if they were
identified in both replicates and singleton if they were only found in the current replicate (yellow and blue), as depicted in the UCSC genome browser
example (B).
doi:10.1371/journal.pone.0099844.g005
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(number of peaks; X-axis) and sensitivity (number of identified

cardiac enhancers; Y-axis) that is unbiased by the difference in

total number of peaks (Figure 6). The general shape of the

resulting curves is biphasic, showing a sharp increase of identified

enhancers for the most significant peaks followed by a steady

increase towards a plateau in sensitivity. This relation holds for the

TBX3 data as well as both p300 datasets. Statistical comparison of

the number of identified enhancers at the maximum shared

number of peaks showed that there was no significant difference

between any of the methods (p.0.77). This leads to the conclusion

that the ability of OccuPeak, not requiring an Input-seq dataset, to

identify validated cardiac enhancer sites is similar to that of other

methods when a limited number of peaks is called.

Positive predictive value of peak calling. We determined

the ability of the different peak-calling methods to call peaks

representing true binding sites, i.e. their positive predictive value,

using overlap with DHSs as marker for regulatory DNA. Overlap

analysis of ChIP-seq peaks with DHSs showed that a high

percentage of peaks is associated with a DHSs (Figure 8).

Strikingly, irrespective of the dataset and peak caller used, the

top 10,000 most significant ChIP-seq peaks showed close to 100%

overlap with DHSs. The degree of overlap with DHSs dropped

with the increasing number of less significant peaks. However, the

overlap of peaks with DHSs did not drop below 72% for TBX3

and 79% for the p300 replicate sets, even with the large number of

peaks called with the default setting of OccuPeak. Statistical

comparison at the highest common number of peaks of the

performance curves showed that for peaks called by OccuPeak in

the TBX3 ChIP-seq data, the overlap with DHSs is significantly

higher than for peaks called by each of the other peak callers

(Figure 8). For the p300 datasets this test showed that, depending

on the dataset either MACS or OccuPeak performed best whereas

CisGenome performed significantly worse in both sets. Overall

OccuPeak performs better or equally well compared to other peak

callers in calling peaks that overlap with regulatory DNA and is

thus likely to call peaks that represent binding sites without the

need for input control datasets.

Peak-calling power and sensitivity: H3K27ac. H3K27ac

is a marker reported to distinguish active enhancers from poised or

inactive enhancers [32]. Here, we used a cardiac specific

H3K27ac dataset in which 44044 regions were marked covering

approximately 2.4% of the genome [26]. The most significant

peaks called by OccuPeak and MACS reach an overlap of

approximately 90% with H3K27ac sites whereas CisGenome

reaches approximately 70%. Statistical comparison at the last

common point of the performance curves (Figure 9) showed that

peaks called by OccuPeak (for all and for only uniquely mappable

reads) in the TBX3 dataset had significantly more overlap with

H3K27ac sites than those called by other methods. However, in

the p300 replicate sets MACS and OccuPeak performed similarly

but the restriction to uniquely mappable had a different effect in

each of these sets. Both methods showed a significantly higher

overlap with H3K27ac sites than CisGenome for the p300

datasets. This overlap analysis thus showed that the ability of the

default setting of OccuPeak to identify active enhancers is similar

to MACS and better than CisGenome.

Association with cardiac GWAS SNPs. The genome of

each individual contains many single-nucleotide variants (SNPs)

that are associated with disease susceptibility. Recent estimations

indicate that ,90% of disease and trait-associated variants occur

within non-coding sequences, a large number of which may

correspond to regulatory elements [30,33,34]. To further validate

the biological relevance of peak-calling, we assessed whether the

cardiac TBX3 and p300 ChIP-seq peaks called by OccuPeak were

enriched by SNPs associated with cardiac function. To this end,

we assembled 42 such SNPs from major genome wide association

studies (GWAS) [35–39]. A control SNP set was created by

randomly selecting 504 SNPs, not associated with biological

function [40], within 1 Mb of known UCSC genes. This 1 Mb

Figure 6. Biological Validation: overlap with cardiac enhancers.
OccuPeak, MACS and CisGenome were used to call peaks from the TBX3
and the two replicate p300 ChIP-seq datasets. Peaks were then sorted
on peak significance and overlap with cardiac enhancers was
determined. For visualization, the number of most significant peaks
was incremented in steps of 1000 peaks. A set of 102 validated cardiac
enhancers was used to assess the sensitivity of the peak-calling method
and the biological relevance of the called peaks. The number of
enhancers identified using the default threshold of each peak calling
method is plotted in the bar graphs.
doi:10.1371/journal.pone.0099844.g006
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genomic distance cut-off was taken based on multiple studies using

3C-derived technologies which reveal that meaningful chromatin

interaction is confined to topological domains of roughly 1 Mb

[41–43]. As TBX3 is an important cardiac transcription factor

[44,45], we asked whether we could establish a relationship

between the presence of TBX3 binding-sites and SNPs associated

with cardiac function. Lacking human TBX3 ChIP-seq data and

taking into account the evolutionary conservation of the TBX3

protein, we used a comparative genomics approach. To enable

overlap analysis, we lifted-over the called ChIP-seq peaks from the

mouse genome (mm9) to the human genome (hg18) using the

Galaxy interface, applying a 0.6 minimum ratio of bases that must

remap, without allowing for multiple output regions. The peak-sets

that OccuPeak identified for TBX3 and both p300 replicates were

all significantly enriched with SNPs associated with cardiac

function (Table 2 & 3). This result supports the conclusion that

OccuPeak uncovers binding sites that are enriched with function-

ally relevant regulatory regions. Furthermore, similar to the

findings of numerous studies [46–49], this result indicates that a

substantial part of these regulatory regions are conserved across

evolution from mouse to human and can therefore be of potential

clinical relevance.

Concluding Remarks

The use of Input-seq datasets by most peak-calling programs

assumes these datasets to represent a reproducible occurrence of

background reads. However, we found that the most significant

correlation between Input-seq datasets occurs in the regions with

highest tag counts which are often associated with genomic

repeats. Even then, only about 1% of the peaks called on ChIP-seq

datasets overlap with peaks in Input-seq datasets; this overlap

could be halved when reads associated with repeats were excluded.

Bias in peak calling due to reproducible background can thus

easily be reduced by considering uniquely mappable reads only.

The current analysis shows that the GC-content of regulatory

genomic regions is much lower than the GC-content at which

significant sequencing bias occurs [31]. We show that single tags in

Input-seq datasets have a higher GC-content than single tags in

ChIP-seq datasets but that the latter share their GC-content with

randomly generated reads. This, and the observation that a

dataset with simulated uniform background noise can be used for

effective peak calling, supports the basic assumption of OccuPeak

that the abundant single tags represent background reads and can

thus be used to model the background in ChIP-seq datasets.

With OccuPeak we showed that background modelling based

on chromosome-wide windows gives a better peak-calling result

with a higher positive predictive value than background modelling

based on local windows. Local background modelling, which is

used by most other peak-calling programs, makes that the peak-

significance is dependent on the local tag distribution. In contrast,

the measure of peak significance used by OccuPeak, the excess

ratio, is only dependent on the read density of a peak and the

global noise level. The interpretation of the significance of a peak

is, therefore, independent of its location in the genome.

OccuPeak’s ability to identify known cardiac enhancers was

similar to other methods. The analysis of overlap with cardiac

DHS and H3K27ac sites demonstrated that OccuPeak calls a

larger number of peaks with similar or even significantly more

overlap compared to MACS and CisGenome. The performance of

OccuPeak could be further increased when only uniquely

mappable reads are considered. Furthermore, peaks called by

OccuPeak were significantly enriched in SNPs that are associated

with cardiac function. These analyses lead us to conclude that the

use of OccuPeak results in the identification of biologically

relevant peaks from ChIP-seq datasets.

CisGenome and the Galaxy implementation of MACS are

relatively user-friendly but the majority of peak-calling methods is

exclusively command line based which reduces their accessibility

for the basic researcher. We developed OccuPeak to be a user-

friendly alternative to existing ChIP-seq peak-calling applications.

The use of standard file formats allows its inclusion into existing

data analysis pipelines. OccuPeak does not require user settings,

except for the peak-calling threshold, which simplifies, and

standardizes the analyses. The stand-alone program is made

available for the scientific community (http://occupeak.hfrc.nl).

The novelty of OccuPeak lies in the fact that it directly couples

background modelling and peak calling. The current experiment

was set up to determine whether such modelling of background

tags should be local or global, to determine its consistency and

effectiveness in peak calling and to compare this performance to

peak calling based on Input-seq data. The results show that peak

calling without an Input-seq control dataset is at least as powerful

and sensitive, and often more biologically relevant, than other

peak callers. OccuPeak thus successfully circumvents the need of

Input-seq datasets, which reduces experimental costs, without

compromising experimental accuracy.

Material and Methods

Datasets
To evaluate the performance of OccuPeak and to compare it to

the performance of other peak-calling methods, we used ChIP-seq

datasets originally generated with the purpose to identify putative

cardiac enhancers across the genome (Table 1). These sets are 1)

TBX3 ChIP-seq data from the adult male mouse heart over-

expressing TBX3 [25], which was generated for this study on the

ABI SOLiD sequencing platform (GSE44821) and 2) two replicate

p300 ChIP-seq experiments with adult mouse hearts generated by

the ENCODE consortium [26] (GSE29184) and 3) Srf and Mef2a

ChIP-seq data generated by the laboratory of William Pu [29]

(GSE21529). We processed all ChIP-seq datasets starting with the

raw reads.

For the comparison with MACS and CisGenome we used the

heart Input-seq dataset provided by the ENCODE consortium

[26] (GSE29184). To study whether and how the use of Input-seq

data affects the performance of MACS, we generated simulated

background sets as alternative input control sets. In the simulation

of a background set every location on the chromosome had the

same chance to occur randomly as a tag. For accurate comparison,

the number of simulated tags was set to be equal to the number of

Figure 7. Visualization of overlap analysis. Visual inspection with the UCSC genome browser can show where and why certain enhancers are
missed by a particular peak-calling method. A. Relatively small local increases in input control tag density can result in a locally decreased sensitivity
of the method. An enhancer on the Foxl1 locus is missed by MACS when heart Input-seq data is used as input control, but detected when a simulated
uniform dataset is used as control instead. B. Similarly, an enhancer located on the Tbx20 locus is missed by MACS when an input control is used on
the p300(2) data. When applying the same input control on the more abundant TBX3 data, the enhancer is marked by all methods. Abbreviations:
um = dataset in which only unique tags are mapped; sim-control = dataset where simulated uniform data is used as input control for peak-calling.
doi:10.1371/journal.pone.0099844.g007
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Figure 8. Biological Validation: overlap with cardiac DHSs.
OccuPeak, MACS and CisGenome were used to call peaks from the TBX3
and the two replicate p300 ChIP-seq datasets. Peaks were then sorted
on peak significance and overlap with cardiac enhancers was
determined. For visualization, the number of most significant peaks
was incremented in steps of 1000 peaks. Overlap of peaks with DNaseI
hypersensitivity sites (DHSs) found in heart tissue was used to assess
the positive predictive value of the peak-calling methods. In the p300(2)
dataset the performance of OccuPeak was significantly better when
only uniquely mappable tags were considered. The results of the
statistical comparison at the maximum common number of peaks
(vertical dotted line) is given as a string in which ’ = ’ indicates that the
overlap is not significantly different between the methods and ’.’ that
the overlap differs significantly at p,0.0001 or less (O = OccuPeak, all
reads; OU = OccuPeak, uniquely mappable reads; M = MACS; C = Cis-
genome).
doi:10.1371/journal.pone.0099844.g008

Figure 9. Biological Validation: overlap with cardiac H3K27ac
sites. OccuPeak, MACS and CisGenome were used to call peaks from
the TBX3 and the two replicate p300 ChIP-seq datasets. Peaks were
then sorted on peak significance and overlap with cardiac enhancers
was determined. For visualization, the number of most significant peaks
was incremented in steps of 1000 peaks. Overlap of peaks with H3K27ac
sites was assessed as measure for active enhancers. In the p300(2)
dataset the performance of OccuPeak was significantly better when
only uniquely mappable tags were considered. The results of the
statistical comparison at the maximum common number of peaks
(vertical dotted line) is given as a string in which ’ = ’ indicates that the
overlap is not significantly different between the methods and ’.’ that
the overlap differs significantly at p,0.0001 or less (O = OccuPeak, all
reads; OU = OccuPeak, uniquely mappable reads; M = MACS; C = Cis-
genome).
doi:10.1371/journal.pone.0099844.g009
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tags present in the cardiac Input-seq dataset. The simulation was

performed using the ‘runif’ function of R (version 2.15.2), which

randomly generates genomic coordinates at which simulated tags

were placed.

Methods: Overlap analysis
Overlap between peaks or between peaks and SNPs, DHSs,

H3K27ac sites or known enhancers was defined as at least a single

overlapping genome coordinate. Where the performance of the

peak callers was compared by overlap with DHS sites, H3K27ac

sites or known enhancers we corrected for differences in peak

width. To this end we created a set of merged peaks which

extended the total genomic coordinates of the peaks called by the

different peak callers. Of each merged peak was noted by which

peak callers it was called and with which significance. When more

than one peak overlapped with a single merged peak, the most

significant value was assigned.

Methods: Peak calling
Raw sequence reads: SRA and FASTQ processing. The

sequence reads generated by sequencing platforms are in various

forms of the FASTQ format. FASTQ is a text-based format for

storing both a base pair sequence and its corresponding quality

scores [50]. By convention, the raw data from ChIP-seq

experiments on Geo DataSets are available in Sequence Read

Archive (SRA) format. FASTQ and SRA are analogous formats

and the open source SRA Toolkit software package (http://www.

ncbi.nlm.nih.gov/books/NBK56560/) can be used to convert

between these formats. The Galaxy software interface (https://

main.g2.bx.psu.edu/) only accepts raw data from sequencing

platforms in the FASTQ format. For further use in any

downstream Galaxy applications, the FASTQ file needs to be

groomed to the default Sanger FASTQ format. For this we used

the FASTQ Groomer (version 1.04) available on Galaxy [51].

Mapping the reads: Bowtie. Bowtie (version 1.1.2) [52] was

used to map reads to the reference genome, in this case the mouse

genome (mm9). We used a seed length of 28 and a maximum

number of 2 mismatches allowed within the seed. The ’- - best’

option was used to ensure that only the best alignments, in terms of

number of mismatches and read quality, were reported by Bowtie

when multiple reads were mapped to the same genomic location.

The ’-k’ option was set to 1 to ensure that only 1 valid alignment

was mapped per singleton read in case that a read was reported to

have several valid alignments to the reference genome. In such

cases the first valid alignment Bowtie encounters was chosen.

Alternatively, the ’-m’ option was set to 1 to review peak calling

without the influence of repeats. Using this setting, all alignments

for a read are suppressed if more than 1 reportable alignment

exists across the genome. For the remaining parameters the default

settings were used. Mapping with Bowtie, results in a Sequence

Alignment Map (SAM) file. PCR duplicates, which may introduce

bias, can be removed using the ‘remove duplicates’ function of

OccuPeak. In the described application of the OccuPeak pipeline

PCR duplicates were not removed; we consider the use of the

Rmdup tool optional.

Methods: Peak calling with MACS. The Model-based

Analysis of ChIP-seq (MACS) package [14] uses tag shifting and

sliding windows to scan chromosome regions for the presence of

peaks. A dynamic Poisson distribution is applied to model the local

background signal. We used MACS version 1.4.0rc2 as available

on the Cistrome server (http://cistrome.org/ap/). BAM files were

used as input. We ran MACS with Input-seq data. For peak

calling, effective genome size was set to the value applicable for the

mm9 genome (corresponding to 1.9 Gb) and tag size was set as

Table 2. Association with cardiac GWAS SNPs.

mm9 peaks (OccuPeak) Hg18 peaks (OccuPeak) Cardiac SNPs (42) Control SNPs (504) Significance

TBX3 163699 99414 8 16 2.19E-05

p300 replicate 1 108397 70949 4 12 8.37E-03

P300 replicate 2 121491 75232 8 15 2.65E-05

Peaks called by OccuPeak for TBX3 and both p300 replicate datasets were converted from the mouse genome (mm9) to the human genome (hg18) to enable overlap
analysis with known human SNPs. A two-sample Z-test was performed to test whether called peaks overlap more frequently with SNPs associated with cardiac function
than with control SNPs [40]. Control SNPs were randomly selected from a population of SNPs not significantly associated with any GWAS signal and located within 1 Mb
of known UCSC genes. SNPs associated with TBX3 peaks are listed, including their phenotype. Further details and references are in the Results section of the main text.
doi:10.1371/journal.pone.0099844.t002

Table 3. List of cardiac GWAS SNPs associated with TBX3 peaks.

snp effect Locus ref

rs3807989 Prolongued PR-interval & increased AF risk CAV1 [35]

rs12053903 Shortened QT-interval SCN5A [39]

rs3922844 Prolongued PR-interval SCN5A [35]

rs6801957 QRS duration SCN10A [36]

rs11677371 MEIS1 [40]

rs4433986 MEIS1 [40]

rs7312625 Shortened PR-interval TBX5 [39]

rs1895585 TBX5 [40]

The overlapping SNPs and their reported effects and locus are given.
doi:10.1371/journal.pone.0099844.t003
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defined in the BAM files; default values were set for the remaining

parameters.
Methods: Peak calling with CisGenome. CisGenome [15]

requires an Input-seq dataset to perform the recommended two-

sample peak calling. CisGenome uses sliding windows to scan the

genome to count the number of ChIP-seq and Input-seq tags and

a binomial distribution is estimated from the Input-seq data. We

used the Galaxy Text Manipulation toolset to convert SAM files

into the ALN format (http://www.biostat.jhsph.edu/,hji/

cisgenome/index_files/tutorial_seqpeak.htm) required by CisGen-

ome. For peak calling the default parameters of the CisGenome

program were used.

Methods: Statistics
Differences in overlap of peaks with known enhancers, DHSs

and H3K27ac sites, as well as their enrichment with cardiac

GWAS SNPs, was determined using the two-sample Z-test

implemented in the SAGEstat program [53].

OccuPeak implementation
OccuPeak accepts Sequence Alignment Map (SAM) files as

input. These SAM files were generated using the pipeline

presented in the Methods and are the default output of the

Bowtie mapping program. The output of OccuPeak is a file in

BED format which is compatible with the UCSC genome browser

(http://genome.ucsc.edu/).
DNA fragment reconstruction. Sequencing of sheared

DNA fragments results in reads that are typically much shorter

than the original fragments. When reads are aligned to the

genome, tags from the forward strand typically appear shifted in

5’-direction compared to those from the reverse strand. Therefore,

the tags from both strands have to be extended in their 39-

direction to the estimated original fragment length [20,54]. To this

end, we determined continuous regions for each strand separately

and those regions that uniquely overlap between the forward and

reverse strand were selected. Regions with log(ER).50 were

excluded because they might result from sequencing or alignment

artefacts. The distance between the midpoints of the 200 most

significant overlapping forward and reverse regions was deter-

mined. The median of these distances was used as an estimate of

the average length of the DNA fragments. This length was applied

to extend the tags from each of the strands separately in the 3’-

direction. Then the tags from both strands were merged and peaks

were identified in the merged dataset.
Output of OccuPeak. OccuPeak writes the identified peaks

to a text file in BED format (http://genome.ucsc.edu/FAQ/

FAQformat.html#format1). The header of this file contains

information on the reconstructed fragment length and applied

ER threshold. In the body of the file, the first three columns give

chromosome, start coordinate and end coordinate of a region that

is identified as a peak. The fourth BED column contains the

surface area of the peak in bp, calculated as the sum of the lengths

of the overlapping tags in this region. The fifth column reports the

corresponding log(ER) value of the peak. Columns 6, 7 and 8 are

not used. Column 9 contains RGB values corresponding to user

defined settings to distinguish different ER categories which can be

used in the UCSC browser to distinguish categories of peaks.

Optionally the OccuPeak program can save a summary file in

which the model parameters, genome coverage and number of

peaks are reported for each sampling window or chromosome.

OccuPeak availability
The peak-calling algorithm that is based on the OccuPeak

background model was implemented in Matlab version 2012b

(The MathWorks, Inc., Natick, Massachusetts, USA) and was

compiled into stand-alone programs for the Windows and Linux

environments. In both environments Occupeak runs as a stand-

alone application OccuPeak can be downloaded from (http://

occupeak.hfrc.nl). To run the program the freely available Matlab

Component Runtime environment, which comes with an auto-

matic installation, also needs to be installed (http://www.

mathworks.nl/supportfiles/MCR_Runtime/). The OccuPeak

package is self-extracting and will automatically generate the

directory structure that the program needs. For the mouse genome

(version 9; mm9), a text file listing chromosome lengths is included

in the OccuPeak package. For other genomes, a file containing the

lengths of chromosomes can be downloaded from the UCSC

genome browser database and placed in the designated directory.

Source code is available under a BSD license (http://occupeak.

hfrc.nl).

Supporting Information

File S1 A supplemental UCSC genome browser session has been

made accessible, enabling genome browser inspection of the results

generated in this study.

(PDF)
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