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Frontotemporal networks and behavioral
symptoms in primary progressive aphasia

ABSTRACT

Objective: To determine if behavioral symptoms in patients with primary progressive aphasia
(PPA) were associated with degeneration of a ventral frontotemporal network.

Methods: We used diffusion tensor imaging tractography to quantify abnormalities of the unci-
nate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex.
Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior
longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofron-
tal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls
were recruited.

Results: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent
than the language deficits. Although all 3 tracts had structural pathology as determined by trac-
tography, significant correlations with scores on the Frontal Behavioral Inventory were found only
for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex
was also correlated with these scores.

Conclusions: Our findings indicate that damage to a frontotemporal network mediated by the
uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA.
Neurology® 2016;86:1393–1399

GLOSSARY
ANOVA 5 analysis of variance; bvFTD 5 behavioral variant frontotemporal dementia; DTI 5 diffusion tensor imaging; FBI 5
Frontal Behavioral Inventory; MPRAGE 5 magnetization-prepared rapid gradient echo; PPA 5 primary progressive aphasia;
PPA-S 5 primary progressive aphasia–semantic variant; ROI 5 region of interest.

Patients with primary progressive aphasia (PPA) show a gradual decline in language functioning
with a relative sparing of other cognitive domains.1 Although the aphasia is the major cause of
impaired function, additional symptoms such as distress, sadness, apathy, and depression can be
seen in almost half of patients with PPA, followed by changes in eating, aberrant motor behav-
ior, agitation, disinhibition, and irritability.1,2 In keeping with the progressive neurodegenerative
etiologies of both PPA and behavioral variant frontotemporal dementia (bvFTD), it is not
surprising that the symptom overlap between these 2 syndromes becomes increasingly more
prominent as the disease progresses. In fact, approximately 75% of patients with PPA eventually
develop severe behavioral problems, whereas 65% of patients with bvFTD manifest clear lan-
guage impairment.3

Among the 3 variants of PPA, patients with the semantic form, in which the anatomical hall-
mark is represented by a marked atrophy of the anterior temporal lobes,3 are at higher risk of
developing behavioral symptoms compared with the other variants. Rohrer and Warren4 found
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that in addition to anterior temporal lobe atro-
phy, the most significant anatomical cortical
changes in patients with PPA and behavioral
symptoms occur in the orbitofrontal cortex.

The anterior temporal and orbitofrontal re-
gions are directly linked by the uncinate fascic-
ulus. Although the association between
degeneration of the uncinate fasciculus and
semantic deficits is well-documented,5,6 the
role of the uncinate fasciculus in patients with
PPA and behavioral symptoms is unknown.

The aim of our study was to determine,
through a multimodal neuroimaging approach,
the anatomical abnormalities underlying behav-
ioral symptoms in patients with PPA. We used
diffusion tensor imaging (DTI) tractography to
assess the microstructural organization of the
major association tracts connecting to the orbi-
tofrontal cortex or the anterior temporal lobe.7,8

We also measured cortical thickness of the orbi-
tofrontal cortex and the anterior temporal lobe
to determine whether white matter degeneration
correlates with the degree of cortical atrophy.

METHODS Participants and clinical assessment. Thirty-
three patients with PPA and 26 healthy controls matched for

age, sex, and handedness were enrolled through the Primary Pro-

gressive Aphasia Program at the Cognitive Neurology and

Alzheimer’s Disease Centre, Northwestern University Feinberg

School of Medicine.

The diagnosis of PPA was based on at least a 2-year history of

progressive, isolated deterioration of speech or language functions.

All patients were then classified into 1 of the 5 PPA variants based

on several recent diagnostic classification guidelines.1,9,10 Patients with

PPA who presented a severe (e.g., Boston Naming Test ,50%)

single isolated language symptom (anomia or dyslexia) without ful-

filling the criteria for the other variants were classified as unclassified

variant.10 Patients with PPA with a combination of agrammatism and

semantic impairments were classified as mixed PPA.11–13

The Frontal Behavioral Inventory (FBI), originally developed

and standardized with the purpose of differentiating bvFTD from

other dementias and quantifying the severity of behavioral symp-

toms,14,15 was used to assess behavioral symptoms.

The FBI is based on the evaluation of the patient’s caregiver

that for each item scores the severity of symptoms in a scale

between 0 and 3 (0 5 never, 1 5 mild or occasional, 2 5 mod-

erate, 3 5 severe or very frequent). The FBI is composed of 24

items divided into 12 items for negative behavior symptoms (FBI

negative symptoms score) and 12 for positive symptoms (FBI

positive symptoms score). The FBI negative symptoms score con-

tains 3 items that evaluate behavioral symptoms in relation to

language impairment (item 9, logopenia; item 10, aphasia and

verbal apraxia; item 11, comprehension and semantic deficits).

To effectively evaluate the behavioral symptoms in the patients

with PPA, we subtracted these 3 language-related items from the

FBI negative symptoms score and the FBI total scores. All statis-

tical analyses were therefore performed using corrected scores for

the total FBI and negative FBI.

MRI acquisition, DTI, and data processing. MRI acquisi-

tions were carried out on a 3T Siemens Trio MRI system at

the Centre for Translational Imaging, Northwestern University of

Chicago. T1-weighted magnetization-prepared rapid gradient echo

(MPRAGE) sequences were acquired with the following

parameters: repetition time 2,300 ms; echo time 2.86 ms; flip

angle, 9; field of view, 256 mm; 60 slices; slice thickness 1.0 mm,

as previously described.6 FreeSurfer image analysis suite (version

4.5.0) (http://surfer.nmr.mgh.harvard.edu/) was used to measure

cortical thickness on T1-weighted MPRAGE images. Measures of

cortical thickness were obtained by estimating the closest distance

between the gray/white matter boundary and the gray matter/CSF

boundary at each vertex of the tessellated surface.6,16 Differences in

cortical thickness between patients with PPA and healthy controls

were shown on the entire surface area of the neocortex using an

FDR of 0.001.6,17 Cortical thickness was measured from a 20-mm

region of interest (ROI) placed in the most atrophic anterior

temporal and lateral orbitofrontal cortex, within the cortical

projections areas of the uncinate fasciculus.

For the tractography analysis, we acquired a total of 72 contig-

uous near-axial slices using an acquisition sequence fully optimized

for diffusion imaging, providing isotropic (2 3 2 3 2 mm) reso-

lution and whole head coverage. At each slice location, 8 images

were acquired with no diffusion gradient applied, together with 60

diffusion-weighted images (b value of 1,000 s/mm2). Explore DTI

(http://www.exploredti.com) was used to perform DTI processing

and to correct simultaneously subject motion and geometrical dis-

tortions with reorientation of the b matrix. RESTORE function

excluded the remaining outliers and robustly fitted the tensor model

in all voxels of the brain.18,19 Fractional anisotropy and radial dif-

fusivity maps were calculated and saved in nifti format. A spline

interpolated streamline algorithm was used to perform whole brain

tractography (stepsize 0.5mm; fractional anisotropy threshold 0.15;

angle threshold 35). Finally, the whole brain tractography was

imported in TrackVis (http://www.trackvis.org) for visualization.6

Tract-specific reconstructions and measurements. Track-
Vis was used to perform the virtual in vivo dissection of the 3 tracts

of interest according to previously published methods.6,20–25 Trac-

tography dissections were obtained using manually defined ROIs

on the orthogonal fractional anisotropy images. The following

tracts were dissected as previously described.7,21

The uncinate fasciculus is a U-shaped bundle that arises in the

temporal pole, lateral to the parahippocampal gyrus and amygdala.

In the temporal lobe, the uncinate fasciculus is ventral to the inferior

fronto-occipital fasciculus. Arching forward, the uncinate then en-

ters the external capsule and splits into a ventrolateral and an anter-

omedial branch.7 The ventrolateral component ends in the anterior

insula and lateral orbitofrontal cortex, while the anteromedial

branch reaches the olfactory cortex, the medial orbitofrontal cortex,

and the frontal pole.7 Dissections of the uncinate fasciculus were

performed by placing a ROI in the anterior temporal lobe and a

second ROI in the external/extreme capsule.6,20,26

The inferior fronto-occipital fasciculus originates from the infe-

rior and medial surface of the occipital lobe. When the inferior

fronto-occipital fasciculus leaves the temporal lobe, it reduces its

section and its fibers come together when they reach the

extreme/external capsule at higher level respect to the uncinate fas-

ciculus. In the frontal lobe, the dorsolateral fibers of the inferior

fronto-occipital fasciculus end mainly in the inferior frontal gyrus,

while the most ventral fibers gather together, ending in the medial

fronto-orbital region and frontal pole.21,26

Two ROIs were used to dissect the inferior fronto-occipital

fasciculus, one placed in the occipital white matter and a second

region in the external/extreme capsule.20
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Finally, the inferior longitudinal fasciculus is a ventral associa-

tive bundle connecting the occipital and temporal lobes. To dis-

sect the inferior longitudinal fasciculus, the first region was placed

in the anterior temporal lobe and the second in the occipital white

matter.20,25

For each tract of interest, number of streamlines, fractional

anisotropy, mean diffusivity, and axial and perpendicular diffusiv-

ity were extracted as indices of microstructural composition and

architecture of the brain tissue.25 The number of streamlines

was considered a surrogate of tract volume and atrophy.6 In

dementia syndromes, the number of streamlines is reduced ac-

cording to the severity of the pathology and clinical symptoms.6,27

Fractional anisotropy is a quantitative index of the degree of

anisotropy of the biological tissue and indirectly of microstruc-

tural integrity. Fractional anisotropy provides information about

the biological properties and the microarchitecture of the white

matter fibers. Reduced fractional anisotropy values have been re-

ported in disorders characterized by demyelination, edema, or

degeneration.28

Perpendicular and axial diffusivities correspond to the diffu-

sivity along the principal directions of the diffusion tensor and

are generally used to quantify changes due to axonal/myelin

damage.23,28

Ten practice datasets were used to train the dissector (L.D.),

who was blind to any information about the cortical thickness re-

sults and the identity of the participants. L.D. began the dissec-

tions for this study only when he achieved high reliability.

Statistical analysis. All statistical analyses were performed using

SPSS (Chicago, IL) software (version 21). Independent-samples

t tests were run to examine group differences in number of

streamlines, fractional anisotropy, and axial and perpendicular

diffusivity of the different tracts of interest. Bonferroni correction

was applied to correct for multiple comparisons (threshold at p #
0.001). All p values are provided uncorrected. We used one-way

analysis of variance (ANOVA) between groups to compare the

differences between PPA subtypes and controls. Rho Spearman

analysis was used to describe the strength and direction of the

linear relationship between severity of behavioral symptoms and

tract-specific measurements.

Standard protocol approvals, registrations, and patient
consents. For this study, we received approval from an ethical

standards committee on human experimentation for any experiments

using human participants. We obtained written informed consents

from all patients (or guardians of patients) participating in this study.

RESULTS Demographic, clinical, and behavioral fea-
tures of our sample are reported in tables 1 and 2.
Among the patients with PPA, 8 received a descriptive
diagnosis of logopenic variant, 8 of nonfluent/agram-
matic variant, 7 of semantic variant (PPA-S), 2 of
mixed variant, and 8 of unclassified/severe variant.1,9,10

The PPA-S group were younger compared to the other
variants and had higher prevalence of behavioral
symptoms as reported in the FBI total scores and
FBI positive symptoms scores.

White matter connections analysis. After Bonferroni
correction the left uncinate fasciculus of patients with
PPA showed a significantly reduced number of
streamlines (p , 0.001, t[54] value 5 7.942), lower
fractional anisotropy (p , 0.001, t[54] 5 3.253), and
a significant increase in axial (p , 0.001, t[54] 5
22.849) and perpendicular diffusivity (p 5 0.020,
t[54] 5 22.264) compared with healthy controls
(figure 1, left). In the right hemisphere only the num-
ber of streamlines was significantly reduced also in the
uncinate fasciculus of patients with PPA when com-
pared with healthy controls (p , 0.001, t[54] 5

5.193) (figure 1).
ANOVA between PPA subtypes and controls

showed statistically significant differences between
groups in the number of streamlines (F 5 4.933; p 5
0.001), axial diffusivity (F 5 5.038; p , 0.001), per-
pendicular diffusivity (F 5 7.902; p , 0.001), and
mean diffusivity (F5 7.243; p, 0.001). Abnormalities
in the left uncinate fasciculus were particularly evident
for the semantic subtype when compared with the other
variants (figure e-1 on the Neurology® Web site at
Neurology.org).

In the left uncinate fasciculus, the number of
streamlines and fractional anisotropy were inversely cor-
related with total FBI scores (Spearman 5 20.549,
p 5 0.001 and Spearman 5 20.490, p , 0.001,
respectively) and with both positive (Spearman 5

20.530, p 5 0.001 and Spearman 5 20.500,
p , 0.001, respectively) and negative FBI scores
(Spearman 5 20.460, p , 0.001 and Spearman 5

20.450, p , 0.001, respectively), whereas axial and
perpendicular diffusivity correlated directly with total
FBI scores (Spearman 5 0.450, p , 0.001 and
Spearman 5 0.540, p , 0.001, respectively) and with
both positive (Spearman 5 0.400, p , 0.001 and
Spearman 5 0.600, p , 0.001, respectively) and neg-
ative FBI scores (Spearman 5 0.575, p , 0.001 and
Spearman 5 0.540, p , 0.001, respectively). These
correlations indicate that behavioral symptoms are asso-
ciated with poorer white matter integrity (table e-1,
figure e-2). In the right uncinate fasciculus, axial

Table 1 Demographic and clinical data and behavioral features of the
participants

Patients with PPA
(n 5 33),
n or mean 6 SD

Healthy controls
(n 5 26),
n or mean 6 SD

Group
comparisons

Age, y 64.88 6 6.60 62.61 6 8.19 p 5 0.282

Duration of illness, y 3.63 6 1.80 — —

Sex, n

Male 13 14

Female 20 12 p 5 0.269

Handedness (EHI score) 97.12 6 7.70 93.65 6 9.85 p 5 0.135

FBI negative score 6.39 6 5.53 — —

FBI positive score 3.93 6 5.15 — —

FBI total score 10.51 6 9.63 — —

Abbreviations: EHI 5 Edinburgh Handedness Inventory; FBI 5 Frontal Behavioral Inventory.
Group comparisons were performed using t test or x2.
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diffusivity was correlated with negative (Spearman 5

0.443, p 5 0.005), positive (Spearman 5 0.432, p 5

0.005), and total FBI scores (Spearman 5 0.421,
p5 0.001); perpendicular diffusivity was correlated with

FBI negative, positive, and total scores (Spearman 5

0.497, p , 0.001; Spearman 5 0.576, p , 0.001;
Spearman 5 0.580, p , 0.001) (table e-1). ANOVA
between PPA subtypes and controls showed statistically

Figure 1 Tract-specific measurements

Differences in tract-specific measurements of the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), and inferior longitudinal fasciculus (ILF)
between controls and patients with primary progressive aphasia (PPA). Measurements of the number of streamlines, fractional anisotropy, mean diffusivity,
axial diffusivity, and perpendicular diffusivity are reported for the tracts of interest. Statistically significant differences between controls and patients
within each tract are indicated with asterisks (*p , 0.05; **p , 0.01; ***p , 0.001; Bonferroni threshold for significance 5 0.0016).

Table 2 Demographic and clinical and behavioral features of the PPA variants

Variable
PPA-L (n 5 8),
mean 6 SD

PPA-G (n 5 8),
mean 6 SD

PPA-S (n 5 7),
mean 6 SD

PPA mixed (n 5 2),
mean 6 SD

PPA unclassified (n 5 8),
mean 6 SD

Age, y 66.13 6 6.98 65.13 6 5.64 57.14 6 3.71a 68.50 6 10.60 69.25 6 10.53

Duration of illness, y 3.36 6 2.17 3.61 6 1.19 3.47 6 1.25 5.75 6 6.01 3.56 6 0.86

FBI-negative score 4.00 6 3.74 4.93 6 5.17 10.79 6 6.05 6.00 6 8.48 6.50 6 5.42

FBI-positive score 1.25 6 1.38 2.50 6 4.10 9.71 6 6.67a 6.50 6 7.77 2.37 6 2.61

FBI total score 6.00 6 3.66 7.43 6 8.68 20.50 6 11.75a 12.50 6 16.26 8.87 6 6.40

Abbreviations: FBI 5 Frontal Behavioral Inventory; PPA 5 primary progressive aphasia; PPA mixed 5 mixed primary progressive aphasia; PPA
unclassified 5 unclassified/severe primary progressive aphasia variant; PPA-L 5 primary progressive aphasia–logopenic variant; PPA-G 5 primary pro-
gressive aphasia–nonfluent/agrammatic variant; PPA-S 5 primary progressive aphasia–semantic variant.
a Statistically different vs other variants (p , 0.05).
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significant differences in the number of streamlines (F5
4.840; p 5 0.003) and axial diffusivity (F 5 3.943;
p , 0.04), which were particularly evident for the
semantic subtype when compared to the other variants
(figure e-1).

In the left inferior fronto-occipital fasciculus,
the patients with PPA showed significantly fewer
streamlines (p 5 0.036, t[54] 5 2.256) and higher
perpendicular diffusivity (p 5 0.028, t[54] 5

22.145) when compared with healthy controls. No
statistically significant differences were found for this
tract in the right hemisphere (figure 1). ANOVA
between PPA subtypes and controls did not show sta-
tistically significant differences between groups in terms
of DTI measurements (figure e-3). We found no sta-
tistically significant correlations between any of the
tractography measurements of the inferior fronto-
occipital fasciculus and the scores of the FBI (table e-1).

In the inferior longitudinal fasciculus, patients
with PPA showed a statistically significant increase
of axial diffusivity in both sides (left: p 5 0.002,
t[54] 5 23.342; right: p 5 0.030, t[54] 5 22.223)
and perpendicular diffusivity in the left side (p 5

0.020, t[54] 5 22.396) (figure 1). ANOVA between
PPA subtypes and controls did not show statistically

significant differences between groups in terms of
DTI measurements (figure e-4). No significant corre-
lations were found between diffusivity measurements
of the inferior longitudinal fasciculus and scores on
the FBI (table e-1).

Cortical thickness analysis. A whole brain analysis
showed significant cortical atrophy of the left
temporal-parietal and frontal regions in the PPA
compared with controls (figure 2). A ROI approach
confirmed that compared with healthy controls,
patients with PPA showed significant atrophy in the
left (p, 0.001, t[57] 5 4.367) and right (p 5 0.014,
t[57]5 2.537) orbitofrontal cortex and in the left (p5
0.001, t[57] 5 3.391) and right (p 5 0.004, t[57] 5
2.996) anterior temporal lobe. Cortical thickness of
the ROIs in the left orbitofrontal and anterior
temporal cortex were inversely correlated with
negative scores (Spearman 5 20.460, p 5 0.001
and Spearman 5 20.521, p 5 0.001, respectively),
positive scores (Spearman520.523, p5 0.001 and
Spearman 5 20.590, p , 0.001, respectively), and
total scores in the FBI (Spearman 5 20.534, p 5

0.001 and Spearman 5 20.580, p , 0.001,
respectively) (figure 2). Correlations between the

Figure 2 Correlations between left cortical thickness and Frontal Battery Inventory (FBI) scores

The cortical thickness measurements of the left orbitofrontal cortex and anterior temporal lobe showed a statistically significant correlation with FBI neg-
ative, positive, and total scores.
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right anterior temporal lobe and the scores on the FBI
were less significant (table e-2).

In addition, cortical thickness measurements of
both anterior temporal lobe and orbitofrontal cortex
were directly correlated with fractional anisotropy
(Spearman 5 0.488, p 5 0.003 and Spearman 5

0.524, p 5 0.001, respectively), and inversely corre-
lated with axial diffusivity (Spearman520.570, p5
0.001 and Spearman 5 20.378, p 5 0.007, respec-
tively) and perpendicular diffusivity (Spearman 5

20.580, p 5 0.001 and Spearman 5 20.513, p 5

0.002, respectively) (table e-3). Similar correlations were
found for the right uncinate fasciculus (table e-4). No
correlations were found between cortical thickness
measurements and DTI measurements of the inferior
fronto-occipital fasciculus and inferior longitudinal
fasciculus (tables e-3 and e-4).

DISCUSSION Our findings showed that damage to a
ventral frontotemporal network is correlated with
behavioral symptoms in PPA (tables e-5 to e-8).

In previous studies,29 degeneration of the uncinate
fasciculus has been found to correlate with behavioral
symptoms in several other conditions affecting ante-
rior temporal and orbitofrontal regions. In bvFTD,
for example, the white matter damage in the uncinate
fasciculus correlates with severity of apathy, impulsiv-
ity, inappropriate sexual behavior, and hoarding.30 In
patients with idiopathic psychopathy,22 altered integ-
rity of the uncinate fasciculus correlates with severity
of antisocial behavior, which includes poor behavioral
control, impulsivity, need for stimulation, proneness
to boredom, lack of realistic goals, and irresponsibil-
ity. We had previously shown that damage to the
uncinate fasciculus was correlated with semantic pro-
cessing deficits in PPA.5,6 The current results reveal
the additional association of this fasciculus with
behavioral symptoms in this group of patients. Over-
all, these studies confirm that the uncinate fasciculus
has a major role in a wide range of comportments and
that its damage is associated with behavioral deficits
irrespective of the presenting syndrome and underly-
ing etiology.7,31

The uncinate fasciculus is the major association
pathway between the anterior part of the temporal
lobe, including the amygdala, and the ventral frontal
(orbitofrontal) region.20 The temporopolar and ventral
frontal cortices constitute multimodal convergence
zones for sensory information.32 Here the stimuli are
processed independently of their reward or punishment
value.33 These cortical areas, and the amygdala with
which they are interconnected, collectively play pivotal
roles in multimodal integration as well as the motiva-
tional guidance and cognitive filtering of behavior.30

Our findings suggest that disruption of this network
may underlie some of the behavioral abnormalities that

emerge in PPA.34,35 The lack of a correlation between
FBI scores and damage to the inferior fronto-occipital
and inferior longitudinal fasciculi supports the relative
specificity of this relationship. It appears therefore that
the uncinate fasciculus has a dual functionality, one
related to lexico-semantic processing8 and the other
to a broad range of behaviors.7

In our study, we confirmed that among the patients
with PPA, those with the semantic variant have the
most severe damage to the uncinate fasciculus. Post-
mortem studies revealed that the most common pathol-
ogy affecting the semantic variant is ubiquitin/TDP43-
positive frontotemporal lobar degeneration, which is
characterized by numerous dystrophic neurites associ-
ated with neuronal and synaptic loss.10 It is therefore
most likely that diffusivity abnormalities in the unci-
nate fasciculus reflect axonal degeneration of the white
matter fibers secondary to the cortical pathology.

Our findings confirm the existence of significant
white matter damage in PPA36 and support the
importance of anterior frontotemporal connections
in sustaining normal behavior in humans. Future
studies using higher resolution datasets and advanced
methods for fiber crossing37 could help to isolate indi-
vidual components of the uncinate fasciculus and
their different functional correlates.
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