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Co-stimulation with opposing macrophage
polarization cues leads to orthogonal secretion
programs in individual cells
Andrés R. Muñoz-Rojas 1,5, Ilana Kelsey 1, Jenna L. Pappalardo2, Meibin Chen1 &

Kathryn Miller-Jensen 1,3,4✉

Macrophages are innate immune cells that contribute to fighting infections, tissue repair, and

maintaining tissue homeostasis. To enable such functional diversity, macrophages resolve

potentially conflicting cues in the microenvironment via mechanisms that are unclear. Here,

we use single-cell RNA sequencing to explore how individual macrophages respond when co-

stimulated with inflammatory stimuli LPS and IFN-γ and the resolving cytokine IL-4. These

co-stimulated macrophages display a distinct global transcriptional program. However,

variable negative cross-regulation between some LPS+ IFN-γ-specific and IL-4-specific

genes results in cell-to-cell heterogeneity in transcription. Interestingly, negative cross-

regulation leads to mutually exclusive expression of the T-cell-polarizing cytokine genes Il6

and Il12b versus the IL-4-associated factors Arg1 and Chil3 in single co-stimulated macro-

phages, and single-cell secretion measurements show that these specialized functions are

maintained for at least 48 h. This study suggests that increasing functional diversity in the

population is one strategy macrophages use to respond to conflicting environmental cues.
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Macrophages respond to a large range of stimuli to aid in
development, tissue repair, and immunity1,2. These
polarization responses must be strong enough to defend

against pathogens and tissue stress, but sufficiently plastic to
accommodate changes in the microenvironment. The M1
inflammatory program, induced as a response to infectious sti-
muli (e.g., lipopolysaccharide [LPS] and/or interferon-gamma
[IFN-γ]) and the M2 program, induced by resolving stimuli (e.g.,
interleukin-4 [IL-4]), represent two extremes on a spectrum of
macrophage responses3–5. The M1 polarization program is typi-
cally associated with a proinflammatory and anti-bacterial phe-
notype, while the M2 program is associated with wound healing,
tissue repair, and helminth response5,6. While this M1–M2
paradigm has been useful in uncovering key regulatory elements
in the innate immune response, it is clear that macrophages
in vivo display a more complex polarization response7,8.

There are several possible sources for the complex polarization
states observed in vivo. First, the vast number of stimuli that can
activate macrophages enables these cells to display a large range
of functional responses7,9. Second, because macrophage polar-
ization does not induce terminal differentiation programs, func-
tional responses by macrophages are plastic and may switch states
in response to changing environmental conditions10. Addition-
ally, macrophages in vivo are constantly exposed to multiple and
sometimes conflicting cues. Examples of this include co-existing
inflammatory and immunosuppressive signals during the reso-
lution phase of inflammation11 or the complex pro- and anti-
tumor microenvironments established inside a tumor12,13.
Together, the flexible and diverse range of macrophage responses
and the stimuli they receive result in a complex polarization
spectrum observed in vivo.

There is extensive crosstalk in the polarization programs in
populations of macrophages presented with opposing cues14,15;
however, the complexity of macrophage polarization has not yet
been explored at single-cell resolution in vitro. Such single-cell
measurements are important because macrophage populations
display significant cell-to-cell heterogeneity in their responses
even following acute stimulation with LPS16–18. The hetero-
geneity observed in vitro is also reflected in vivo in numerous
studies of macrophage heterogeneity in a variety of disease states,
including cancer, liver cirrhosis, and wound healing19–23. It is
therefore important to characterize how individual macrophages
respond to and resolve conflicting cues to coordinate a cohesive
immune response within complex tissue microenvironments.

Here, we profile macrophages stimulated with LPS+IFN-γ, IL-
4, or both by single-cell RNA sequencing (scRNA-seq) and by
single-cell secretion profiling to explore how individual macro-
phage respond to opposing polarization cues presented simulta-
neously. On a global scale, mouse bone marrow-derived
macrophages (BMDMs) stimulated with LPS+IFN-γ and IL-4
acquire a unique transcriptional state distinct from the states
induced by single stimuli. However, extensive crosstalk occurs
between polarization programs in individual macrophages pre-
sented with opposing cues, and the extent of this crosstalk varies
across cells. Using a combination of neural networks and statis-
tical analysis, we find a subset of genes from each single-stimulus
gene program that are not expressed together in co-stimulated
cells, including the T-cell-polarizing cytokines Il6 and Il12b,
induced by LPS+IFN-γ, and the canonical M2-associated targets
Arg1 and Chil3, induced by IL-4. Measurement of high-
dimensional single-cell secretion profiles confirms that, in most
cases, single cells express either an LPS+IFN-γ-like or IL-4-like
secretion phenotype after long-term co-stimulation with oppos-
ing cues. Together, our results provide insight into the hetero-
geneous response of macrophages exposed to opposing
polarization cues.

Results
Co-stimulated macrophages display a mixed gene expression
program. To test how co-stimulation with opposing polarization
cues affects the gene expression programs of individual macro-
phages, we stimulated BMDMs with LPS+IFN-γ, IL-4, or a
combination of LPS+IFN-γ and IL-4, and profiled the cells using
scRNA-seq (Fig. 1a). In cell populations, we observed that in
response to 10 ng/ml LPS+ 10 ng/ml IFN-γ, expression of
canonical M1-associated genes (including Nos2, Tnf, Il6, and
Il12b) peaked between 2 and 6 h, while in response to 100 ng/ml
IL-4, expression of canonical M2-associated genes (including
Arg1 and Chil3) continued to rise by 8 h (Supplementary Fig. 1a).
Therefore, we chose 6 h as an optimal stimulation time to capture
both transcription programs.

We also explored a range of LPS and IL-4 dose combinations
and observed that co-stimulation with 10 ng/ml LPS+ 10 ng/ml
IFN-γ and 100 ng/ml IL-4 resulted in significant cross-inhibition
of LPS+IFN-γ-stimulated IL-6 and IL-12p40 and of IL-4-
stimulated Arg1 and Chil3l3 at 24 h (Supplementary Fig. 1b). In
contrast, LPS+IFN-γ-stimulated TNF and Nos2 were not
significantly inhibited at any dose combination. Thus, we
concluded that this dose combination might reveal interesting
behaviors in individual cells.

For sc-RNAseq, we profiled ~1500 single cells per condition to
ensure high-quality data with low doublet rates and high
sequencing depth per cell (see “Methods” section). Our final
data set had an average of 30,262 unique reads per cell and 4076
genes detected per cell. Stimulation with LPS+IFN-γ upregulated
more genes than IL-4 stimulation when compared to unstimu-
lated cells (1141 and 380 genes, respectively), with only 95 of
these genes being induced by both conditions (Fig. 1b and
Supplementary Data 1). Interestingly, both LPS+IFN-γ and IL-4
stimulation caused the apparent transcriptional downregulation
of thousands of genes normally expressed in unstimulated cells,
with the number of downregulated genes substantially out-
numbering the number of upregulated genes (Fig. 1b).

We performed dimensionality reduction using uniform mani-
fold approximation and projection (UMAP)24,25 on the full
transcriptional signature to visualize how cells mapped across
treatments. We observed that almost all co-stimulated macro-
phages clustered separately from those stimulated with only one
cue and from the unstimulated control population, suggesting
that co-stimulation induced a distinct global transcriptional state
(Fig. 1c). This result also demonstrated that most macrophages
were able to respond to both stimuli. This is consistent with the
observation that macrophages co-stimulated with LPS+IFN-γ
and IL-4 displayed robust Stat1 and Stat6 phosphorylation
downstream of the IFN-γ-receptor or IL-4-receptor, respectively,
indicating that a majority of macrophages respond to both signals
(Supplementary Fig. 1c).

Although the transcriptional state of co-stimulated macro-
phages was distinct from cells treated with LPS+IFN-γ or IL-4
alone, we observed cell separation within the co-stimulation
cluster. For example, we observed heterogeneous expression of
canonical genes associated with LPS+IFN-γ stimulation, Nos2
and Il12b, versus canonical genes associated with IL-4 stimula-
tion, Arg1 and Mrc1 (Fig. 1d), suggesting that there is cell-to-cell
variability in the extent of each individual cell’s response to LPS
+IFN-γ versus IL-4 stimulation. To further explore this
possibility, we measured the Spearman correlation between genes
uniquely upregulated by either LPS+IFN-γ or IL-4 alone across
all single cells to identify which genes are co-expressed or
mutually inhibited across single cells. As expected, genes
upregulated by LPS+IFN-γ alone were more likely to exhibit
positive correlations with other LPS+IFN-γ-induced genes, and
either no correlation or negative correlation with IL-4-induced
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genes (Fig. 1e). Similarly, genes upregulated by IL-4 alone were
more likely to be positively correlated with other IL-4-induced
genes, and uncorrelated or negatively correlated with LPS+IFN-
γ-induced genes. Co-stimulated cells generally exhibited weak
positive correlations within the LPS+IFN-γ-induced genes and
the IL-4-induced genes, while also exhibiting weak negative
correlations between some genes across the two programs (Fig. 1e
and Supplementary Fig. 1d). This suggests that on average
macrophages expressing core genes of one program exhibited
slightly reduced expression of core genes of the other program. Of
note, not all correlations between LPS+IFN-γ-induced genes and
IL-4-induced genes were negative, indicating that some LPS
+IFN-γ-induced genes are co-expressed with IL-4-induced genes.

However, the strongest negative correlations were between genes
induced by the two opposing stimuli, suggesting that single cells
may skew gene expression towards either the LPS+IFN-γ or the
IL-4 transcriptional program in response to co-stimulation.

Co-stimulation induces heterogeneous transcriptional cross-
regulation. We next focused on how co-stimulation with LPS
+IFN-γ and IL-4 affected the expression of genes uniquely
upregulated by either LPS+IFN-γ or IL-4 alone (Fig. 2a), which
we refer to as the core gene programs. For both LPS+IFN-γ- and
IL-4-induced genes, co-stimulation with the other cue caused
both transcriptional upregulation and inhibition in a subset of
core genes belonging to each program, consistent with our own
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Fig. 1 Co-stimulation induces a global mixed gene expression program across individual macrophages. a Schematic depicting how co-stimulation could
lead to either mixed responses or specialized responses in individual macrophages. b Volcano plot of differential gene expression after stimulation for 6 h
with 10 ng/ml LPS+ 10 ng/ml IFN-γ (left) or 100 ng/ml IL-4 (right) relative to control. Genes significantly upregulated (red) and downregulated (blue) are
identified by a change in expression ≥ 1.5-fold and a false discovery rate (FDR) < 0.05 relative to expression in the untreated condition. FDR calculated by a
Wilcoxon rank-sum test with Benjamini–Hochberg correction. c, d UMAP visualization of single cells from all samples colored by treatment (c) or
expression intensity for canonical markers of interest (d). Color bar indicates gene expression levels, shown as ln(transcript count + 1). e Heatmaps of
Spearman correlations for the top 50 unique upregulated genes following stimulation with LPS+IFN-γ, IL-4, or both, within single cells from each treatment
condition. The top 50 genes upregulated by LPS+IFN-γ or IL-4 are highlighted and boxed in yellow and blue, respectively. The color bar indicates the sign
and magnitude of the correlation coefficient. The coefficients for gene pairs with a correlation p-value > 0.05 are set to 0.
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Fig. 2 Cross-inhibition of gene expression after co-stimulation is not uniform across single cells. a Number of unique (blue) and shared (yellow) genes
upregulated after stimulation (6 h, 10 ng/ml LPS+ 10 ng/ml IFN-γ or 100 ng/ml IL-4). b Volcano plot of differential gene expression after co-stimulation
(6 h, 10 ng/ml LPS+ 10 ng/ml IFN-γ and 100 ng/ml IL-4) relative to LPS+ IFN-γ alone (left) and IL-4 alone (right). Dark blue dots (see key) indicate the
unique core genes (UCGs) selectively induced by LPS+ IFN-γ or IL-4, respectively. Cyan dots indicate shared genes induced by both LPS+ IFN-γ or IL-4.
Yellow dots indicate UCGs modulated by co-stimulation, identified by an FDR≤ 0.05 and change in expression ≥ 1.5-fold relative to expression after
stimulation with LPS+IFN-γ or IL-4 alone. FDR determined as in Fig. 1. c Transcript levels for indicated targets in BMDMs after stimulation for 6 h with
media alone, LPS+IFN-γ, IL-4, or both, measured by population RT-qPCR (left) and scRNA-seq (right). Population mRNA levels are presented relative to
those of the control gene Ubc (mean ± SEM, n= 3 biological replicates). Two-sided one-way ANOVA with Sidak correction for multiple comparisons.
Single-cell data is presented as the ln(transcript count +1) from a single experiment. d Noise in gene expression (calculated by Fano factor) across single
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stimulated cells relative to single stimulation. Source data are provided as a Source Data file.
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and previously reported observations14. Among the LPS+IFN-γ-
induced core genes, 87 were inhibited by co-stimulation and 97
were augmented by co-stimulation, while among the IL-4-
induced core genes, 196 were inhibited and 16 were augmented
by co-stimulation (Fig. 2b).

We compared observations from our single-cell data set to
population-level RT-qPCR data on co-stimulated cells for
canonical LPS+IFN-γ and IL-4-induced core genes. Population-
level measurements confirmed our scRNA-seq results, with LPS
+IFN-γ-induced genes Il12b and Il6 and IL-4-induced genes Arg1
and Chil3 exhibiting sensitivity to cross-inhibition, while other
LPS+IFN-γ-induced genes, including Nos2 and Tnf, were not
sensitive to co-stimulation (Fig. 2c, bar plots). Inhibition or
resistance to co-stimulation for this set of target genes was
also observed at the protein level at 6 and 24 h (Supplementary
Fig. 2a, b).

Importantly, although we observed substantial cross-inhibition
in the cell population for some gene targets, the scRNA-seq data
revealed that there was substantial cell-to-cell heterogeneity, such
that some individual cells exhibited transcript levels that appeared
uninhibited even after stimulation with both cues (Fig. 2c, violin
plots). Given the significant cell-to-cell heterogeneity in cross-
inhibition of the gene programs, one hypothesis is that
macrophages are diversifying along these negatively regulated
pathways. To identify cross-inhibited genes that are most variably
expressed, we calculated the noise in gene expression as measured
by Fano factor (variance divided by mean) for the LPS+IFN-γ-
and IL-4-induced genes in both single and co-stimulated cells.
Interestingly, we observed a subset of inhibited genes that upon
co-stimulation decrease their mean expression across the
population while increasing gene expression noise (Fig. 2d and
Supplementary Fig. 2c). Strikingly, 9 out of the top 15 genes
induced by LPS+IFN-γ and exhibiting increased noise were
secreted cytokines or chemokines, including the T-cell-polarizing
inflammatory cytokines Il6 and Il12b (Fig. 2e, left). Notably, this
gene set also includes NF-κB inhibitor zeta (Nfkbiz), which is
known to stimulate the transcription of a subset of inflammatory
response genes including Il6 and Il12b26. IL-4-induced genes
exhibiting increased noise included canonical genes like Arg1
and Socs2, as well as transcription factors associated with
promoting anti-inflammatory phenotypes like Mafb and Klf4
(Fig. 2e, right)27,28. Altogether, these results suggest extensive
transcriptional cross-regulation between the LPS+IFN-γ and IL-4
core gene programs that are gene-specific and that vary
substantially from cell to cell.

We next asked whether cross-inhibited genes were enriched for
pathways regulating certain cellular functions. The set of cross-
inhibited genes from each single-stimulus program was analyzed
using Ingenuity Pathway Analysis (IPA) to determine what cell
functions are most sensitive to inhibition by co-stimulation
(Supplementary Fig. 2d). LPS+IFN-γ-induced genes that were
inhibited by co-stimulation were significantly enriched for
pathways involved in communication between innate and
adaptive immune cells and regulation of cytokine production,
consistent with the targets identified in the noise analysis. IL-4-
induced genes subject to inhibition by co-stimulation were
enriched for STAT3 and JAK2 in hormone-like cytokine
signaling, although the results were less significant than for
LPS+IFN-γ. Altogether, the IPA result suggested that important
functions typically stimulated by LPS+IFN-γ or IL-4, including
secretion of cytokines and chemokines and STAT3 signaling, are
inhibited by co-stimulation.

Machine learning classifies some co-stimulated cells as single
stimulus. The extensive cell-to-cell heterogeneity and negative

correlations between LPS+IFN-γ and IL-4 observed in single cells
suggest that some macrophages might selectively express sets of
LPS+IFN-γ-induced or IL-4-induced genes despite having been
stimulated by both cues. To explore this hypothesis, we isolated
the co-stimulated cells and performed dimensionality reduction
using UMAP to visualize distinct clusters of cells after co-
stimulation. We then calculated a combined gene-expression
score for the unique core genes (UCGs) induced by LPS+IFN-γ
or IL-4 for each single cell. When we overlaid these scores on the
UMAP plot, we observed a clear separation between the cells that
had a high LPS+IFN-γ UCG score and the cells that had a high
IL-4 UCG score, suggesting selective expression of these gene sets
by co-stimulated cells (Fig. 3a).

To further explore the expression state of co-stimulated cells,
we next used a neural network (NN) to classify our co-stimulated
cells into LPS+IFN-γ, IL-4, or mixed cell states. Specifically, we
trained two separate classifiers on expression data from cells
stimulated with LPS+IFN-γ alone and IL-4 alone in order to
identify these single-stimulation signatures (Fig. 3b). We then
used both classifiers to predict the cell states of our co-stimulated
cells, which could be classified as LPS+IFN-γ-dominant, IL-4-
dominant, mixed (i.e., positive prediction by both classifiers), or
unclassified (i.e., negative prediction by both classifiers). We first
trained the NN classifiers using the full transcriptome. In this
case, the NN predicted that most cells were dominated by the LPS
+IFN-γ gene program, with a few cells exhibiting a mixed state
and almost no cells exhibiting an IL-4-dominant signature
(Fig. 3c). However, when we restricted our training set to UCGs
cross-inhibited with co-stimulation and trained a new set of NN
classifiers, the number of co-stimulated cells classified as
exhibiting a mixed state was reduced and a fraction of cells
exhibiting an IL-4-dominant state emerged (Fig. 3c). In fact, the
fractions of co-stimulated cells classified as LPS+IFN-γ-domi-
nant or IL-4-dominant were both substantially larger than the
mixed and unclassified fractions. When plotting the classification
results back onto the UMAP representation, the cells classified as
LPS+IFN-γ-dominant or IL-4-dominant were the same cells that
had high LPS+IFN-γ or IL-4 UCG scores, respectively (Supple-
mentary Fig. 3). Together, these results suggest that a subset of
co-stimulated macrophages behave as if responding to only one
stimulus for negatively cross-regulated transcriptional programs.

Il6 and Il12b are expressed orthogonally with Arg1 in single
cells. Negative cross-regulation has the potential to create spe-
cialized functions within a subset of macrophages. If cross-
regulation between two genes is strong, then these genes would
not be anti-correlated but rather would be orthogonally expressed
(i.e., the presence of gene A would significantly reduce the
probability of expressing gene B such that they would not be
expressed together). This expression pattern may be exacerbated
in scRNA-seq data for genes with low transcript numbers due to
dropout29. To quantify orthogonal expression, we expressed the
scRNA-seq data as binary data with a threshold of 2 detected
transcripts (see “Methods” section) and calculated the odds ratio
between all pairwise combinations of downregulated genes. The
odds ratio is the ratio of the odds of expressing A in the presence
of B to the odds of expressing A in the absence of B. If the log of
the odds ratio is negative, then the presence of B decreases the
likelihood of A and is more likely to exhibit orthogonal gene
expression.

We found that genes exhibiting significant negative odds ratios
were relatively few, and were more likely to be observed between
core genes upregulated by LPS+IFN-γ versus IL-4 than between
core genes of the same program (Fig. 4a). We noted that
transcripts for the T-cell-polarizing cytokines Il6 and Il12b had
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negative odds ratios with Arg1 (Fig. 4a). To confirm the
orthogonal expression of these two pathways, we plotted the sc-
RNAseq expression for Il6 and Il12b against Arg1 across all
conditions (Fig. 4b). Plotting single-cell expression of these
transcripts revealed a striking orthogonal expression pattern: cells
with high levels of Il6 or Il12b had no or very low expression of
Arg1, and vice versa (Fig. 4b). Orthogonal expression with Il12b
and Il6 was also observed with the IL-4-associated target Chil3
(Supplementary Fig. 4a). Thus, it appears that select LPS+IFN-γ
and IL-4 targets are rarely expressed coincidentally in the same
individual cell.

We next looked for transcription factors (TFs) related to
these targets that might play a role in selective expression. We
observed that Nfkbiz, a positive TF for the secondary response
genes Il6 and Il12b19, also had a negative odds ratio with
Arg1, suggesting that this pathway may be orthogonally
regulated with the Arg1 pathway (Fig. 4a). In support of this
hypothesis, Nfkbiz had a negative odds ratio with Klf4, a
positive TF for Arg1 and Chil3 that also negatively regulates
LPS-stimulated proinflammatory genes (Fig. 4a, c)28. Impor-
tantly, we previously noted that Nfkbiz and Klf4 are TFs that
are subject to negative cross-regulation and increase their noise
after co-stimulation (Fig. 2e). We then measured the expres-
sion of these TFs by RT-qPCR in a cell population and
confirmed that Nfkbiz and Klf4 are inhibited after co-
stimulation (Fig. 4d, e). Together these results suggest that
macrophages co-stimulated with LPS+IFN-γ and IL-4 may
orthogonally express the TFs Nfkbiz and Klf4, resulting in
orthogonal expression of Arg1 and Chil3 versus the secondary
cytokine genes Il6 and Il12b.

We did not observe orthogonal expression with Arg1 or Klf4
for transcripts encoding primary cytokines and chemokines
including Ccl5 and Tnf (Supplementary Fig. 4b). This is
consistent with the fact that the expression of Tnf and other
primary genes is Nfkbiz-independent26,30. Overall, our results
strongly suggest that co-stimulated macrophages specialize in the
production of transcripts for Arg1 and Chil3 versus Il6 and Il12b,
but not primary secreted cytokines/chemokines, at least partially
through the heterogeneous regulation of Klf4 and Nfkbiz
expression.

Orthogonal transcription leads to subsets with specialized
secretion. Although our results demonstrate orthogonal expres-
sion of Klf4 and Nfkbiz transcripts and their targets Arg1 and
Chil3 or Il6 and Il12b, respectively, in LPS+IFN-γ and IL-4 co-
stimulated macrophages at 6 h, it is unclear whether this specia-
lization is sustained long enough to direct macrophages to have
distinct functions. To explore this possibility, we used a multi-
plexed single-cell secretion assay that we previously used to
measure the heterogeneity of LPS-stimulated macrophages16,31.
We stimulated BMDMs cultured in the single-cell device with
LPS+IFN-γ, IL-4, or a combination of LPS+IFN-γ+IL-4, and
captured the secretion of 11 different proteins for 48 h to obtain
an integrative measurement of the final secretion state for each
macrophage. We measured a combination of inflammatory
secreted proteins including TNF, CCL5, IL-6, and IL-12p40.
Because Arg1 is not secreted, we measured Chi3l3 (the protein
product of Chil3) as the primary secreted protein in response to
IL-4 stimulation.
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After 48 h of co-stimulation, we observed orthogonal secretion
of IL-6 and IL-12p40 and the IL-4-induced marker Chi3l3
(Fig. 5a), similar to what we observed at the transcript level at 6 h.
Indeed, we found very few cells that co-secreted IL-6 and Chi3l3
or IL-12p40 and Chi3l3 (Fig. 5b, green). This orthogonal behavior

was not observed between CCL5 and Chi3l3 or TNF and Chi3l3
(Supplementary Fig. 5a), consistent with the scRNA-seq results
(Supplementary Fig. 5b). To verify orthogonal secretion, we
calculated the odds ratio between all pairwise combinations of
secreted proteins in co-stimulated cells to measure whether the
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secretion of a given protein is more, less, or as likely in a single
cell when that cell is secreting the paired protein. We observed
that the only pair of proteins with a negative log2(odds ratio) was
IL-6 and Chi3l3 (odds ratio = 0.44 and log2(odds ratio) = −1.2),

indicating that if a cell is secreting IL-6, the odds of that cell also
secreting Chi3l3 are 56% lower than the odds of secreting Chi3l3
when IL-6 is not being secreted (Fig. 5c). These data demonstrate
that the specialization observed in transcription at 6 h is
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maintained for secretion at 48 h, such that co-stimulated cells
either secrete IL-6 and IL-12p40 or Chi3l3.

Finally, we explored the extent to which subsets of co-
stimulated macrophages showed secretion programs skewed
towards LPS+IFN-γ versus IL-4 stimulation. To test this, we
performed dimensionality reduction and unsupervised ensem-
ble clustering32 on five proteins distinguishing LPS+IFN-γ-
and IL-4-stimulated cells in the single-cell secretion data set
(specifically: TNF, CCL5, IL-6, IL-12p40, and Chi3l3). We
found that the cells stimulated with individual stimuli divided
into two separate branches in the low-dimensional UMAP
projection, while the co-stimulated cells spread across these two
branches (Fig. 5d). Clustering analysis revealed that all
conditions contained a cluster of silent cells with low secretion
of all proteins (Fig. 5e–g). Additionally, cells stimulated with
LPS+IFN-γ contained clusters of cells secreting a combination
of TNF, IL-12p40, IL-6, and CCL5 (Fig. 5e–g). Cells stimulated
with IL-4 were composed of mostly silent cells, as well as a
distinct cluster secreting only Chi3l3 (Fig. 5e–g). Co-stimulated
cells were composed of a distribution of the three LPS+IFN-γ-
associated clusters and the IL-4-associated cluster, as well as a
small mixed cluster with cells co-secreting Chi3l3, CCL5, and
TNF (Fig. 5e–g). Overall, we conclude that for secretion, a
majority of macrophages co-stimulated with LPS+IFN-γ and
IL-4 exhibit secretion profiles consistent with only one of these
stimuli.

Discussion
Macrophages exhibit diverse polarization states in vivo in
response to complex cues in their microenvironments, but our
understanding of how individual macrophages respond to
simultaneous cues is limited. In this study, we used a combination
of population and single-cell measurements and computational
analyses to explore how macrophages respond when simulta-
neously presented with LPS+IFN-γ and IL-4. We found that
while co-stimulated macrophages displayed a distinct global
transcriptional program, variable negative cross-regulation
between some LPS+IFN-γ- and IL-4-stimulated gene programs
resulted in significant cell-to-cell variability, such that some co-
stimulated macrophages are skewed towards one of the two
transcriptional programs. In particular, our results suggest that
negative cross-regulation by the TFs Klf4 and Nfkbiz leads to the
orthogonal expression of the secondary Th1 cytokines Il6 and
Il12b with Arg1 and Chil3, and that this results in macrophages
with specialized secretion functions that are maintained for at
least 48 h.

To further explore this diversification, we used a combination
of correlation analysis, neural network classifiers, and dimen-
sionality reduction to examine the cell state of co-stimulated cells.
We found that the polarization state identified by these analyses
was dependent on the transcriptional program analyzed. When
looking at a global transcriptional state, most cells are classified as
mixed cells; however, when we looked at genes induced by LPS
+IFN-γ that are susceptible to cross-inhibition, a subset of co-
stimulated cells appeared more specialized. Indeed, we show that
some of the most widely accepted markers for M1-like and M2-
like polarization states can classify co-stimulated cells as specia-
lized, whereas others would classify as mixed. Thus, in agreement
with previous reports, our results argue that overall polarization is
better understood as a spectrum; however, our results add the
insight that negative cross-regulation significantly reduces the
probability that individual macrophages exhibit an intermediate
state in this spectrum for a subset of gene programs3,4. This gene
set-dependent classification may partially explain the difficulty in
assigning polarization states in vivo—indeed, many studies find

contradicting results when trying to identify the polarization state
of many tissue-resident macrophages33,34.

Our observation that the TFs Klf4 and Nfkbiz are orthogonally
expressed suggests a regulatory mechanism for the specialization
of IL-6 and IL-12p40 secretion versus Chi3l3 secretion. Klf4 is an
example of a macrophage-specific TF that regulates specialized
gene programs35. Based on sequence analysis, there is a binding
site for Klf4 on the promoter of Nfkbiz35, and thus it is possible
that Klf4 directly negatively regulates Nfkbiz upon co-stimulation.
Recent work by Piccolo et al. identified several transcriptional and
epigenetic mechanisms that regulate the integration of IFN-γ and
IL-4 signals and are responsible for their cross-regulation14.
Furthermore, recent developments in single-cell epigenetic mea-
surements have identified how cell-to-cell variation can be
encoded via chromatin accessibility and can direct complex bio-
logical decisions like hematopoietic differentiation33,34. Future
work focused on measuring differences in the accessibility of
distinct promoters might explain the observed specialization and
help to determine whether these partially specialized cells exist in
a predisposed state before stimulation, or if the specialization is
imposed and reinforced after receiving the stimuli.

Macrophage-secreted cytokines and chemokines are essential
for coordinating the immune response in complex tissue micro-
environments. We observed nearly orthogonal secretion of IL-4-
stimulated Chi3l3 and LPS+IFN-γ-stimulated IL-6 and IL-12p40
(Fig. 5a), which are essential cytokines for inducing T-cell
polarization35. The observed diversification of single macro-
phages across a range of secretion programs, when presented with
opposing cues, may enable macrophages to more quickly adapt to
changing environments. This concept of “bet-hedging” has been
described in many multi-cellular systems as a way to increase the
robustness of the population, including bacterial responses to
resource availability as well as mammalian diversification of NF-
κB signaling or T-cell activation36–38. It is possible that macro-
phages display this partial specialization as a way to execute the
dynamic nature of immune responses, such as the quick transi-
tion observed during the resolution of inflammation, where
macrophages have to coordinate a successful change from an
anti-microbial to a tissue-repair phenotype. Indeed, the ability of
macrophages to quickly adapt to changing environments has
been exploited to design therapies that induce anti-tumor
immunity in melanoma19.

There are several limitations to our study. First, we chose to
measure single-cell transcription at 6 h and at a single dose
chosen to balance the response dynamics of LPS+IFN-γ and IL-4
and the extent of negative regulation upon co-stimulation (Sup-
plementary Fig. 1a, b). However, shorter or longer times after
stimulation and different dose combinations will likely reveal
additional aspects of macrophage response heterogeneity, as has
been previously demonstrated39. In addition, we differentiated
monocytes with M-CSF, and we observed underlying hetero-
geneity in these control populations prior to subsequent stimu-
lation (Fig. 1c, control). Other studies have differentiated
monocytes with GM-CSF, and in these cases, the resulting cell
populations were also complex and heterogeneous40. Thus, pre-
existing heterogeneity resulting from macrophage differentiation
will affect the observed responses to subsequent cues. Given these
qualifications, our study represents only a starting point; many
additional conditions will need to be explored to fully appreciate
the heterogeneity in macrophage responses.

The single-cell response of BMDMs to co-stimulation with LPS
+IFN-γ and IL-4 has important implications for understanding
macrophage responses to complex cues that co-exist in vivo. Our
results contribute to growing evidence that individual macro-
phages distinctly process combinatorial environmental cues39,41.
In all these cases, variability in the intracellular networks was the
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primary source of heterogeneity explored. However, other
studies have identified the importance of paracrine and autocrine
signals in regulating macrophage polarization and hetero-
geneity16,42,43. For example, induction of the classical M2-
associated gene Arg1 during mycobacterial infection is regulated
by autocrine–paracrine signaling, suggesting that autocrine and
paracrine signaling networks could further regulate mixed and
specialized subpopulations of macrophages44,45.

Finally, the various contributors to heterogeneity in vivo are
not yet clear. Due to the limited diffusion distances and com-
munication capacity of in vivo settings, it has become apparent
that macrophage heterogeneity in the body is at least partially
explained by the local microenvironment around individual
macrophages16,17. For example, different locations within tumor
microenvironments can induce functionally distinct macrophages
that are important in regulating disease progression19,46. It is,
therefore, possible that in vivo, some of the observed hetero-
geneity and specialization is location dependent. In addition to
genetic and local regulation, recent work has highlighted how
metabolic state and circadian rhythm have profound effects on
macrophage functions47–49. It is possible that differences in
metabolic states and molecular clocks help generate the diversity
required to induce partially specialized macrophages after co-
stimulation. Thus, determining the relative importance of non-
genetic cell-to-cell heterogeneity vs. other in vivo factors will be
an important future direction.

Methods
Mice and cell culture. Male or female C57BL/6J mice 6–8 weeks of age were
purchased from Jackson Laboratories. Mice were housed at room temperature
according to the standard housing conditions of the Yale Animal Resources Center
for one week before bone marrow extraction. Bone marrow-derived macrophages
were generated as previously described50. Briefly, bone marrow was extracted from
the hind legs of the mouse with a syringe. After red blood cell lysis with
ammonium-chloride-potassium lysis buffer (Lonza), cells were incubated for 4 h at
37 °C with 5% CO2 in a non-tissue culture (TC) treated plastic petri dish with
BMDM media (RPMI supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml
streptomycin, 1% sodium pyruvate, 25 mM HEPES buffer, 2 mM L-glutamine, and
50 μM 2-mercaptoethanol). After 4 h, the non-adherent cells were transferred to a
new petri dish and incubated with BMDM media + 20 ng/ml macrophage-colony
stimulating factor (M-CSF; Peprotech). After 3 days, an additional 10 ml of BMDM
media + 20 ng/ml M-CSF was added to the plate. 6 days after plating, cells were
harvested in PBS+ 5 mM EDTA with gentle scraping, and the cell suspension was
used to seed new non-TC treated dishes or microwell devices. All mice were housed
in the Yale Animal Resources Center in specific pathogen-free conditions. All
animal experiments were performed according to the approved protocols of the
Yale University Institutional Animal Care and Use Committee.

In vitro BMDM experiments. BMDMs were plated and stimulated in BMDM
media + 10 ng/ml M-CSF. Cells were plated in non-TC treated 6- or 12-well plates
(Falcon) at a density of 100,000 cells/cm2 and allowed to adhere overnight. Cells
were then stimulated at the indicated doses and times using LPS (Invivogen), IFN-γ
(Peprotech), and/or IL-4 (Peprotech).

Quantification of secretion in population. To measure secretion in populations of
cells, supernatant from stimulated BMDMs was collected and stored at 4 °C for no
more than a week. Secreted protein levels were measured using enzyme-linked
immunosorbent assay (ELISA) kits according to the manufacturer’s recommen-
dations. Each ELISA kit reference number and manufacturer are listed in Sup-
plementary Table 1.

RT-qPCR. RT-qPCR was performed as previously described51. Briefly, RNA was
extracted using the RNEasy Mini Kit (Qiagen). Genomic DNA was removed on-
column with RNase-free DNase (Qiagen) or with the TURBO DNA-free kit
(Ambion), and complementary DNA (cDNA) was synthesized using a dT oligo
primer and Superscript III RT (Invitrogen). After dilution in nuclease-free water,
cDNA was quantified using SYBR-green for quantitative reverse transcription-
polymerase chain reaction on a CFX Connect Real-Time System (Bio-Rad) with
the following amplification scheme: 95 °C denaturation for 1.5 min followed by
40 cycles of 95 °C denaturation for 10 s, 65 °C annealing for 10 s, and 72 °C
elongation for 45 s with a fluorescence read at the end of the elongation step. This
was followed by a 65–85 °C melt-curve analysis with 0.5 °C increments. All samples

were normalized to the house-keeping gene Ubc (ubiquitin). Primers are reported
in Supplementary Table 2.

Flow cytometry. Macrophages were lifted with gentle scraping in ice-cold PBS+
5 mM EDTA. For intracellular protein staining, cells were blocked with Fc receptor
(CD16/CD32) antibody (eBioscience, clone 93) at 1:200 dilution on ice for 15 min
in FACS buffer (PBS+ 2% FBS). Then the cells were fixed with Cytofix/Cytoperm
(BD Biosciences) and stained in 50 μl with anti-NOS2-AlexaFluor488 at 1:500
dilution (eBioscience, clone CXNFT) and anti-ARG1-APC at 1:10 dilution (R&D,
polyclonal) for an hour at 4 °C. For phospho-flow, cells were fixed immediately
after lifting with PhosFlow Fix buffer for 10 min at 37 °C, and subsequently per-
meabilized with PhosFlow Perm Buffer III for 30 min on ice (BD Biosciences). Cell
suspensions were then blocked with Fc receptor antibody as above, and stained
with anti-pSTAT1(Y701)-AlexaFluor488 at 1:50 (Cell Signaling Technologies,
clone 58D6) and anti-pSTAT6(Y641)-AlexaFluor647 at 1:50 (Cell Signaling
Technologies, clone D8S9Y). All data were acquired on an Accuri B6 flow cyt-
ometer (BD Biosciences), and analyzed with FlowJo (FlowJo, LLC). The gating
strategy is shown in Supplementary Fig. 6.

Single-cell RNA sequencing. Stimulated BMDMs were lifted in ice-cold PBS+
5 mM EDTA with gentle scraping, washed, counted, and immediately processed at
low density for scRNA-seq using the 10× platform (10× Genomics). Library
construction and sequencing were performed by the Yale Center for Genomic
Analysis according to the manufacturer’s recommendations.

scRNA-seq analysis. The sequencing data were processed using the standard
cellranger pipeline (10× Genomics). Further downstream analysis was performed
using the Python package scanpy52. Cells were filtered for quality control to avoid
doublets and dead cells, and counts were normalized using the scran package in R
in a standard processing pipeline previously described53,54. Dimensionality
reduction and visualization were performed within the scanpy package. Correlation
and odds ratio analysis were performed using custom scripts in Python. To find
core genes for each polarization program, differential testing using Wilcoxon rank-
sum test with Benjamini–Hochberg correction for multiple comparisons was
performed to find differentially expressed genes between stimulated cells and
control cells. Core genes were defined as genes with a minimum fold change of 1.5,
maximum FDR of 0.05, and expressed in at least 15% of the stimulated cells. From
this list of core genes, we found the UCGs that were only induced by a single
stimulation, and not by both. The analysis described above relied on the following
additional software packages: anndata2ri, rpy2, pandas, and seaborn.

Microwell assay for single-cell secretion profiling. The single-cell secretion
profiling experiments were performed as previously described10,22, with some
modifications for the analysis of primary mouse BMDMs. In brief, the capture
antibodies (Supplementary Table 1) were flow patterned onto epoxysilane-coated
glass slides (SuperChip; ThermoFisher). The polydimethylsiloxane nanowell arrays
and antibody barcode glass slides were blocked using complete BMDM media.
Fully differentiated BMDMs were resuspended in complete BMDM media and
10 ng/ml M-CSF and supplemented with 125 nM of live cell marker (Calcein AM;
ThermoFisher) to facilitate automatic live-cell detection. The cells were added to
the device and allowed to adhere overnight. The next day, cells were stimulated and
covered with the antibody barcode slide, secured with screws, and allowed to
incubate for 48 h. At the end of the incubation period, the device was imaged with
an automated inverted microscope (Eclipse Ti; Nikon or Axio Observer Z1; Zeiss)
to record well position and cell locations. The device was then disassembled to
perform the sandwich immunoassay. The glass slide was incubated with a mixture
of detection antibodies (Supplementary Table 1) for 1 h, followed by incubation
with 20 μg/ml streptavidin-APC (eBioscience) for 30 min, rinsed with PBS and
water, and finally scanned with a Genepix 4200A scanner (Molecular Devices).

Single-cell secretion profiling data processing. Device images were analyzed
using a custom script in MATLAB (MathWorks) to automatically detect well
location and number of cells per well, extract all signals from each well, and process
the data (https://github.com/Miller-JensenLab/Single-Cell-Analysis). In brief, after
automatic well and live-cell detection, signal image registration, and manual
curation, the software automatically extracted the intensity signal from each
antibody for all the nanowells in the device. The signal across the chip for each
individual antibody was normalized by subtracting a moving Gaussian curve fitted
to the local zero-cell well intensity levels. A secretion threshold for each antibody
was then set at the 99th percentile of all normalized zero-cell wells. Finally, the data
were transformed using the inverse hyperbolic sine with a cofactor set at 0.8×
secretion threshold. To further visualize the data, custom Python scripts were used
to generate UMAP visualizations and density scatter plots. Odds ratios were cal-
culated using the same methods as for scRNA-seq data.

Neural network classifier. The neural network classifier was built using the
machine learning python package scikit-learn55. The data from the cells receiving a
single stimulus was split into a training and a testing data set to build and test the
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classifier. A one-vs-the-rest (OvR) multilabel classifier strategy was used to enable
non-mutually exclusive labels and identify mixed cells. Briefly, two multi-layer
perceptron (MLP) classifiers were trained on the LPS+IFN-γ− and IL-4-stimulated
cells to distinguish cells stimulated with each cue. The MLPs had three hidden
layers and used the hyperbolic tan function as its activation function. Then the
OvR multilabel classifier was used to predict the identity of co-stimulated cells,
which labeled each cell as LPS+IFN-γ-stimulated, IL-4-stimulated, both, or none
(no prediction). The accuracy of each classifier was >99% and was tested using
cross-validation with the single-stimuli test data.

Ensemble clustering. Ensemble clustering was performed with the openensembles
python package from the Naegle lab (https://github.com/NaegleLab/
OpenEnsembles)32,56. Briefly, clustering was performed by sweeping across mul-
tiple clustering algorithms (Affinity Propagation, agglomerative, spectral, Birch,
kmeans), across several distance and linkage metrics (average, complete, euclidean,
cosine, ward, l1, and l2) and across a wide range of k-values (that determines the
number of clusters to identify). A consensus clustering solution was found by
linking the co-occurrence matrix32,56. Clusters with less than three cells were
discarded for analysis.

Statistics. Data were presented as mean ± SEM unless otherwise specified. Statistical
analysis was generally performed by two-sided, unpaired Student’s t-test or one-way
ANOVA and the Sidak method of correction for pairwise multiple comparisons, or as
specified in the figure legends. Normal and equal distribution of variances was
assumed. Values were considered significant at P < 0.05. All analyses were performed
using Prism version 7.0 software (GraphPad) or custom python scripts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
scRNA-seq data that support the findings of this study are deposited in the National
Center for Biotechnology Information Gene Expression Omnibus (GEO) under the
accession code GSE161125. All other data supporting the findings of this study are
available with the article and its supplementary information files, and from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
The code used for processing and analyzing the data in this study is available in the
following public GitHub repository: [https://github.com/Miller-JensenLab/munoz-
rojas_NatCommunications2020]. Additionally, the custom MATLAB software for
extracting and processing single-cell secretion data is available in the following public
GitHub repository: [https://github.com/Miller-JensenLab/Single-Cell-Analysis].
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