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Widespread sex differences in gene expression
and splicing in the adult human brain
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There is strong evidence to show that men and women differ in terms of neurodevelopment,

neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The

molecular basis of these differences remains unclear. Progress in this field has been

hampered by the lack of genome-wide information on sex differences in gene expression and

in particular splicing in the human brain. Here we address this issue by using post-mortem

adult human brain and spinal cord samples originating from 137 neuropathologically

confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS

regions. We show that sex differences in gene expression and splicing are widespread in adult

human brain, being detectable in all major brain regions and involving 2.5% of all expressed

genes. We give examples of genes where sex-biased expression is both disease-relevant and

likely to have functional consequences, and provide evidence suggesting that sex biases in

expression may reflect sex-biased gene regulatory structures.
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T
he issue of differences between the ‘male brain’ and ‘female
brain’ has been endlessly debated in the psychological
literature and popular press. Sex differences in human

brain structure, neurochemistry, behaviour and susceptibility
to neurodegenerative and neuropsychiatric disease have all
been reported1–3. Understanding the molecular basis of
observed sex differences in structure, neurochemistry, behaviour
and susceptibility to disease is of obvious importance both to
basic neurobiology and neuropathophysiology. However, the
limited scope and power of existing studies make it difficult to
place these discussions in a molecular context4–8. The maximum
number of adults investigated within any single study is 18, with
only one study exploring sex-biased alternative splicing in a
genome-wide manner4. Furthermore, while the existence of sex-
specific genetic architectures in humans has been postulated9,
genome-wide analyses of genetic variants associated with
variation in gene expression in one sex, but not the other, have
never been conducted in human brain.

To address these limitations, we analysed data from the UK
Brain Expression Consortium (UKBEC)10,11. This data set is
particularly valuable because (i) it is large with post-mortem
samples originating from 137 neuropathologically confirmed
control individuals (Supplementary Data 1 and 2), (ii) up to 12
central nervous system (CNS) regions have been sampled from
each individual and (iii) transcriptome profiling was performed
using the Affymetrix Human Exon 1.0 ST Array, which features
1.4 million probe sets assaying expression across each individual
exon. In order to explore the possibility of sex-biased gene
regulatory architectures we also conducted an expression
quantitative trait loci (eQTL) analysis with the aim of finding
significant interactions between sex and genotype. To maximize
power, we used paired genotyping and gene-level expression data
provided jointly by the North American Brain Expression
Consortium12,13 and UKBEC. In this way this study provides
unequivocal evidence that sex-biased gene expression in the adult
human brain is widespread in terms of both the number of genes
and range of brain regions involved. We also show that in some
specific cases, molecular differences are likely to have functional
consequences relevant to human disease and finally that sex
biases in expression may reflect sex-biased gene regulatory
structures.

Results
Discovery of sex-biased gene expression and splicing. In total
we analysed 1,182 post-mortem brain samples dissected from
frontal cortex, occipital cortex (BA17, primary visual cortex),
temporal cortex, intralobular white matter, thalamus, putamen,
substantia nigra, hippocampus, hypothalamus, medulla, cere-
bellar cortex and spinal cord. These samples originated from 137
individuals of which 101 were male and 36 were female. The
demographic details related to these samples are provided in
Table 1. While we found no significant difference in brain pH
(Mann–Whitney P-value¼ 0.643, N¼ 10), cause of death (w2 test
P-value¼ 0.339, N¼ 137) or age at death (Mann–Whitney

P-value¼ 0.067, N¼ 137) between samples originating from men
and women, we did detect a significant difference in the
post-mortem interval between the sexes (Mann–Whitney
P-value¼ 0.037, N¼ 137). However, we verified that none of the
findings reported in this study could be accounted for by sex
differences in any of these factors (Methods).

Sex-biased expression and splicing was investigated in each
brain region separately and by averaging gene-level signals across
all brain regions. This analysis demonstrated that sex-biased gene
expression was widespread in terms of the numbers of genes,
chromosomes and range of brain regions involved (Fig. 1a).
Using a false discovery rate (FDR) of 0.01 for gene-level changes
(unpaired t-test, N ranging from 13–128; Supplementary Data 3)
and a more stringent FDR of 0.001 for calling alternate splicing
(due to the potentially higher false positive rate; unpaired t-test, N
ranging from 13–128, Supplementary Data 4), we identified 448
genes with evidence of sex-biased expression, equating to 2.6%
(448/17,501) of all genes expressed in the human CNS. Over 5%
of regional findings are validated using qRT–PCR or have
supporting evidence in the literature (Supplementary Data 5).

Over 85% of the identified genes (395/448) were detected on
the basis of sex-biased splicing alone, suggesting that qualitative
as opposed to quantitative differences in gene expression drive
sexual dimorphism in adult brain. As 95% of genes with sex-
biased splicing and 34% of genes with sex-biased gene-level
expression map to autosomes, sex differences were not accounted
for by the sex chromosomes alone and all autosomes were
involved (Fig. 1a). Furthermore, sex-biased expression was
detected in all 11 brain regions, making spinal cord the exception,
though even this finding is probably explained by the small
sample size available for this tissue (N¼ 13). Thus, we show that
in common with other species, including fruit flies, fish and
rodents, sex-biased gene expression and splicing is a frequent
phenomenon in adult human brain1–3.

The biological significance of sex-biased expression. We
explored the biological significance of this observation by inves-
tigating our list of genes with sexually dimorphic expression for
involvement in human disease. We found a significant enrich-
ment of disease-related genes (as defined by membership in the
OMIM catalogue) within our list (Yates-corrected w2

P-value¼ 3.58� 10� 9, N¼ 448). Of the 114 genes with both
evidence of sex-biased expression and an OMIM entry, 12
mapped to the sex chromosomes, with the remaining 102 genes
located on autosomes. Amongst these genes, 39 were associated
with a disease with a sex-biased incidence, 5 were associated with
diseases directly affecting the development/maintenance of the
reproductive system and 3 were implicated in breast, ovarian or
prostate cancer (Supplementary Data 6). These findings suggest
that sex differences in gene expression in human brain relate and
may even help explain well-recognised differences between men
and women in disease incidence and presentation14–19.

RSPO1 is one of the autosomal genes highlighted by this
analysis. Although expressed throughout the brain, RSPO1
has significantly higher expression (1.8-fold change, unpaired t-
test, P-value¼ 4.09� 10� 6, N¼ 13) in males only in the
hypothalamus (Fig. 1b). Given the importance of this region in
maintenance of reproductive functions, and that disruption of
RSPO1 in XX individuals leads to a sex-reversal phenotype20, this
finding suggests that sex-biased gene expression can have
important functional consequences. Furthermore, this example
demonstrates that although sex-biased gene expression may be
widespread it is not necessarily uniform and implies that some
brain regions may be more sexually dimorphic than others. In
fact, focusing on the 10 brain regions with similar sample sizes

Table 1 | Summary of the demographic details of the
individuals sampled in this study stratified by sex.

Sex N Age
(years)

PMI
(h)

pH Modal cause
of death

Female 36 64 (20–102) 41 (1–96) 6.34 (5.44–6.58) IHD (30.6%)
Male 101 57 (16–91) 47 (1.5–99) 6.34 (5.42–6.63) IHD (48.5%)

Median values and ranges are supplied
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and using the percentage of expressed genes (as documented in
Supplementary Table S1) with sex-biased expression as a measure
of sexual dimorphism, we found wide variation within the human
CNS (Fig. 1a) and identified the primary visual cortex as the most
sexually dimorphic region (1.8%). However, we recognise that
this measure of sexual dimorphism has limitations because it
neither accounts for the magnitude of sex differences in
expression nor does it recognise major qualitative differences
(such as the expression of Y chromosome genes with no X
chromosome orthologue). With regard to the former concern, it
should be recognised that there was considerable variability in the
magnitude of sex differences in gene level expression amongst
autosomal genes (median fold change¼ 1.29).

NRXN3, which has been implicated in autism21, is another
disease-relevant gene identified by this analysis, but in this case
due to sex-biased splicing. In common with all neurexin genes,
NRXN3 has two major isoforms, a-neurexins and b-neurexins
generated through the use of two alternate promoters22.
Whereas a-neurexins were expressed similarly in men and
women, b-neurexin expression was significantly lower in women
in the thalamus (unpaired t-test, P-value¼ 2.67� 10� 13, N¼ 107;
Fig. 1c,d). Given that a- and b-neurexins have distinct functions
and assuming that sex-biased splicing is not restricted to adult life,
this observation could be important in understanding the higher
incidence of autism in males23,24. Furthermore, within NRXN3’s
signalling pathway are genes reported to be androgen-responsive25

(including NLGN4X, GRIA1 and GRIA2), adding weight to the
idea that there may indeed be differences in neurexin–neuroligin
signalling between males and females. In fact, amongst genes with
evidence of sex-biased splicing generally there was a significant
enrichment of androgen25 but not oestrogen-responsive26 genes
(androgens, P-value¼ 9.64� 10� 12; oestrogens, P-value¼ 0.97,
Yates-corrected w2 tests, N¼ 395). This would suggest that sex-
biased splicing is a means of regulating responses to sex hormones,
predominantly androgens, though this particular finding may be
influenced by the fact that the majority of women included in this
study would be predicted to be post-menopausal on the basis
of age27 (Methods).

Within our list of genes with sex-biased expression are some
notable omissions, namely NLGN4X, PRKX and TMSB4X. These
genes are worth noting because they are all non-pseudoautosomal
X chromosome genes with Y-linked copies (NLGN4Y, PRKY and
TMSB4Y) that are expressed in human brain28,29. Consequently
in order to have two expressed alleles in both male and female
brain tissue these X chromosome genes would be expected to
escape X inactivation resulting in higher expression in women as
compared with men30,31. However, in all three cases (and in
contrast to genes like ZFX) expression appeared to be similar in
men and women, suggesting unequal dosage of these ‘functional’
orthologues between the sexes (Fig. 2a–d). For example, although
NLGN4Y was expressed throughout the male CNS, there was no
significant sex difference in the expression of NLGN4X either by
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Figure 1 | Sex-biased gene expression is widespread. (a) Bar chart showing the percentage of expressed genes with evidence of sex-biased expression or

splicing in each brain region. FCTX, frontal cortex; TCTX, temporal cortex; OCTX, occipital cortex; WHMT, white matter; HIPP, hippocampus; THAL,

thalamus; HYPO, hypothalamus; PUTM, putamen; SNIG, substantia nigra; MEDU, medulla; CRBL, cerebellum; SPCO, spinal cord. The number of samples

analysed for each region is provided as additional labelling on the x axis. (b) RSPO1 expression in women (red) and men (blue) in the human CNS. Error bars

represent the standard error of the mean (N¼ 13). Hypothalamus (boxed) is the only brain region showing significant sex-biased gene expression. (c) Gene

structure of NRXN3 and expression levels (y axis) plotted for each probe set (x axis) covering NRXN3 in males (blue line) and females (red line) in

thalamus. All differentially expressed exons map to b-neurexins (boxed region) indicating sex-biased expression of these transcripts. Error bars represent

the Standard error of the mean (s.e.m). (d) Successful quantitative RT–PCR validation of a-neurexin and b-neurexin expression in thalamus in men (blue)

and women (red). The 2�DCt values have been plotted to show relative gene expression levels. Error bars represent the s.e.m. (N¼ 29).
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array or quantitative RT–PCR measurements (Fig. 2e–f). Further-
more, the pattern of expression within the CNS differed between
the orthologues, suggesting that there are subtle differences in
their respective functions (Fig. 2). Given that loss-of-function
mutations in NLGN4X are linked to autism32, sexually dimorphic
expression of NLGN4 species might also relate to the higher
incidence of autism within men23,24.

Moving beyond single genes, we looked for sexually dimorphic
expression of entire gene networks. Using gene set enrichment
analysis (GSEA)33 we tested 71 CNS-relevant gene sets from the
KEGG34,35, Reactome36 and BioCarta pathway databases
(Supplementary Data 7) in all 12 CNS regions. Significant sex-
biased enrichment in at least one region (P-valueo0.05, where

enrichment P-values were estimated using an empirical
permutation-based procedure) was detected for 12 canonical
pathways of which 7 could be considered independent
(Supplementary Table S2). For example, we found enrichment
of two immune-related pathways in females in white matter
(Fig. 3a), suggesting that sex-specific thresholds for susceptibility
to immune-mediated diseases might exist and potentially
explaining the higher incidence of multiple sclerosis14, a white
matter disease of immune origin in women.

Evidence in support of sex-biased gene regulation. This finding
also raises the possibility of sex-biased gene regulatory
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Figure 2 | Variable dosage compensation between X chromosome genes with Y-linked orthologues. (a) Bar chart to show the expression of NLGN4Y in

men in all CNS regions. (b) Bar chart to show the expression of NLGN4X in women (red bars) and men (blue bars) in all CNS regions. (c) Bar chart to

show the expression of ZFY in men in all CNS regions. (d) Bar chart to show the expression of ZFX in women (red bars) and men (blue bars) in all CNS

regions. (e) Quantitative RT–PCR validation of NLGN4X and NLGN4Y expression in women (red bars) and men (blue bars) in the thalamus. The 2�DCt

values have been plotted to show relative gene expression levels. (f) Quantitative RT–PCR validation of NLGN4X and NLGN4Y expression in white

matter (green bars) and thalamus (purple bars) in males. The 2�DCt values have been plotted to show relative gene expression levels. (g) Quantitative

RT–PCR validation of ZFX and ZFY expression in women (red bars) and men (blue bars) in the thalamus. The 2�DCt values have been plotted to show

relative gene expression levels. The error bars in all panels represent the s.e.m. (N¼ 34).
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architectures. This idea was explored by conducting an eQTL
analysis with the aim of finding significant interactions between
sex and genotype. To maximize power, we used paired geno-
typing and gene level expression data provided jointly by the
North American Brain Expression Consortium12,13 and
UKBEC10,11 on 390 cerebellar and 390 frontal cortex samples
(121 women and 269 men). Although no signals passed a
Bonferroni correction of multiple testing (B3.7� 10� 12),
amongst the genes associated with the most significant sex-
biased eQTLs (P-value cutoff o1� 10� 9; Supplementary Data 8
and 9) there was enrichment of genes related to the immune
system (Benjamini-corrected modified Fisher’s Exact P-value¼
0.02), interleukin 1 receptor-like 1 being an example (IL1RL1/
rs34990056, P-value for sex-genotype interaction¼ 1.77� 10� 11,
N¼ 390; Fig. 3b). While these results are not conclusive, they are
consistent with the well-recognised sex-bias in the incidence of
immune-related diseases37 and could help explain the sex-bias in
the incidence of CNS diseases with a known immune component,
such as multiple sclerosis and Alzheimer’s disease38,39.

Discussion
This study provides a comprehensive, genome- and CNS-wide
analysis of sex-biased gene expression, splicing and regulation in
the control adult CNS. The first and most important finding of
this study is that once we account for alternative splicing, sex-
biased gene expression in the adult human brain is widespread
both in terms of the number of genes and range of brain regions
involved. We found that 2.6% of the genes expressed in the
human CNS show evidence of differential expression by sex in at
least one brain region and that sex differences could be detected
in all eleven brain regions analysed. Secondly, although sexually
dimorphic gene expression is common in the human brain, it is
not uniform, with some genes showing region-specific sex-biased
expression and some brain regions possibly having a higher
burden of sex-biased expression. Thirdly, this study provides
evidence to suggest that sex-biased gene expression and splicing is
likely to have functional consequences relevant to human disease,
with a significant enrichment of disease-related genes (as defined
by membership in the OMIM catalogue) among our list of genes

with sex-biased expression. Finally, we present evidence in
support of the existence sex-biased eQTLs in humans, implying
that sex-specific gene regulatory structures may exist in human
brain. Although we recognize that this study has its limitations, it
does provide the most complete information to date on sex-
biased gene expression, splicing and regulation in the adult
human brain. As such we hope that it will become an important
resource for the neuroscience community.

Methods
Collection of samples analysed by Affymetrix Exon Arrays. CNS tissues
originating from 137 control individuals was collected by the Medical Research
Council (MRC) Sudden Death Brain and Tissue Bank, Edinburgh, UK40, and the
Sun Health Research Institute (SHRI) an affiliate of Sun Health Corporation,
USA41. A detailed description of the samples used in the study, tissue processing
and dissection is provided in the study by Trabzuni et al.10 and in Supplementary
Data 1. All samples had fully informed consent for retrieval and were authorized for
ethically approved scientific investigation (National Hospital for Neurology and
Neurosurgery and Institute of Neurology Research Ethics Committee, 10/H0716/3).

Processing of samples analysed by Affymetrix Exon Arrays. Total RNA was
isolated from human post-mortem brain tissues using the miRNeasy 96 kit (Qia-
gen). The quality of total RNA was evaluated by the 2100 Bioanalyzer (Agilent) and
RNA 6000 Nano Kit (Agilent) before processing with the Ambion WT Expression
Kit and Affymetrix GeneChip Whole Transcript Sense Target Labelling Assay, and
hybridization to the Affymetrix Exon 1.0 ST Arrays following the manufacturers’
protocols. Hybridized arrays were scanned on an Affymetrix GeneChip Scanner
3000 7G. Further details regarding RNA isolation, quality control and processing
are reported in Trabzuni et al.10. A full list of the CEL files used in this study is
provided in Supplementary Data 2.

Analysis of Affymetrix Exon Array data. All arrays were pre-processed using
Robust Multi-array Average quantile normalisation with GC background
correction (GC-RMA)42 and log2 transformation in Partek’s Genomics Suite v6.6
(Partek Incorporated, USA). We also calculated the ‘detection above background
metric’ (DABG) using Affymetrix Power Tools (Affymetrix). After re-mapping the
Affymetrix probe sets onto human genome build 19 (GRCh37) using Netaffx
annotation file HuEx-1_0-st-v2 Probeset Annotations, Release 31, we restricted
analysis to 174,228 probe sets annotated with gene names, containing at least three
probes with unique hybridization and DABG P-values o0.001 in 50% of male or
female individuals. The gene-level expression was calculated for up to 17,501 genes
by using the median signal of probe sets corresponding to each gene.

Using the age at death and the reported age-related probability of being pre-
menopausal in the US Caucasian population27 we predicted that 67% of the female
donors (n¼ 24) were post-menopausal, whereas 17% (n¼ 6) were likely to be pre-
menopausal. As we were unable to detect any significant differences in gene
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E
nr

ic
hm

en
t s

co
re

 (
E

S
)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

2

1

0

–1

–2
0 2,500

R
an

ke
d 

lis
t m

et
ric

 (
S

ig
na

l2
N

oi
se

)

Enrichment profile Hits Ranking metric scores

5,000 7,500

Zero cross at 8803

‘M-WHMT’ (negatively correlated)

‘F-WHMT’ (positively correlated)

10,000
Rank in ordered data set

12,500 15,500 17,500

10

CRBL male (P=6.2e–0.1) CRBL female (P=1.7e–12)

9.5

9.0

8.5

8.0

7.5

IL
1R

L1
 e

xp
re

ss
io

n 
lo

g 
2 

sc
al

e

10

9.5

9.0

8.5

8.0

7.5

IL
1R

L1
 e

xp
re

ss
io

n 
lo

g 
2 

sc
al

e

P-value of SNP:sex interaction=18e–11

GG
(n=1)

TG
(n=36)

TT
(n=232)

GG
(n=0)

TG
(n=10)

TT
(n=111)

a b
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expression between pre- and post-menopausal women our analysis is limited to sex
differences alone.

Sex-biased expression and splicing was investigated in each brain region
separately using Partek’s mixed-model ANOVA (equation 1) and alternative splice
ANOVA (equation 2, Partek Genomics Suite v6.6) as described below:

Yijkl ¼ mþBrain Banki þ Sexj þ Scan Datek þ eijkl ð1Þ
Where Yijkl represents the lth observation on the ith Brain Bank jth Sex kth Scan
Date, m is the common effect for the whole experiment, eijkl represents the random
error present in the lth observation on the ith Brain Bank jth Sex kth Scan Date.
The errors eijkl are assumed to be normally and independently distributed with
mean 0 and standard deviation d for all measurements. Brain Bank and Scan Date
are modelled as random effects.

Yijklmn ¼mþBrain Banki þ Sexj þ Scan Datek þMarker IDl

þ Sample ID ðBrain Bank�Sex�Scan DateÞijkm

þ Sex�Marker IDjl þ eijklmn

ð2Þ

Where Yijklmn represents the nth observation on the ith Brain Bank jth Sex kth Scan
Date lth Marker ID mth Sample ID, m is the common effect for the whole
experiment. eijklmn represents the random error present in the nth observation on
the ith Brain Bank jth Sex kth Scan Date lth Marker ID mth Sample ID. The errors
eijklmn are assumed to be normally and independently distributed with mean 0 and
standard deviation d for all measurements. Marker IDl is exon-to-exon effect (alt-
splicing independent to tissue type).

Gender�Marker IDjl represent whether an exon expresses differently in
different levels of the specified Alternative Splice Factor(s). Sample ID (Brain
Bank�Gender� Scan Date)ijkm is a sample-to-sample effect. Brain Bank, Scan
Date and Sample ID are modelled as random effects.

In order to reduce the likelihood of false positives only probe sets called as
present in both male and female samples were analysed for evidence of alternative
splicing by sex. In all types of analysis, the date of array hybridisation and brain
bank (SHRI or MRC Sudden Death Brain Bank) were included as cofactors to
eliminate batch effects as discussed in detail in Trabzuni et al.10 All P-values were
corrected for multiple comparisons using the FDR step-down method.

We also investigated the value of integrating data across the different brain
regions based on the idea that small yet consistent differences in gene expression
may exist between male and female brain samples and while such differences might
not be significant in a single brain region they might be detected when all samples
are considered together. In order to test this approach we calculated the average
expression of each gene-level signal across all regions for each individual. The
resulting values were tested for sex-biased expression (including scan date and
brain bank as covariates).

In order to ensure that any reported sex differences in gene level expression or
splicing could not be explained by any of the other known covariates, we
performed additional analyses, where we modelled the effects of cause of death,
post-mortem interval, age at death and RIN as well as the factors described above.
We found that in fact the findings reported remained substantively the same.

Quantitative RT–PCR. Aliquots of total RNA previously extracted from each brain
region and analysed on Exon Arrays were used for validation by quantitative RT–
PCR analysis. These experiments were performed on a subset of samples (N¼ 85)
and analysed for the expression of genes/transcripts using human-specific TaqMan
assays (Applied Biosystems, UK). RPLP0-, TUBB- and UBC-specific assays were
used as endogenous controls. Samples were analysed using Fluidigm 96.96
Dynamic (Fluidigm Europe) arrays with assay triplicates in accordance with the
manufacturer’s protocol. RNA (100 ng) was used as input, reverse transcription
performed using the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) in accordance with the manufacturer’s protocol and amplified as
described in the ‘Fluidigm Specific Target Amplification Quick Reference Manual’
(Fluidigm, Europe). The Ct value (cycle number at threshold) was used to calculate
the relative amount of mRNA molecules. The Ct value of each target gene was
normalized by subtraction of the Ct value from the geometric mean of the three
endogenous control genes to obtain the DCt value. The relative gene expression
level was shown as 2�DCt. Sex-biased gene expression or splicing candidates were
considered confirmed if the P-value calculated by unpaired t-test was o0.05.

Gene set enrichment analysis. GSEA was performed using GSEA v2.0.6 soft-
ware33 with phenotype permutation. We investigated sex-biased enrichment of 71
gene sets annotated by the KEGG34,35), Reactome36 and BioCarta pathway
databases with relevance to CNS function (Supplementary Table S1).

DNA genotyping and imputation. Genomic DNA was extracted from sub-
dissected samples of human post-mortem brain tissue using either Qiagen’s
DNeasy Blood & Tissue Kit (Qiagen, UK) or phenol–chloroform. The samples
provided by either the MRC Sudden Death Brain and Tissue Bank or San Health
Research Institute were genotyped on the Illumina Infinium Omni1-Quad Bead-
Chip and on the Immunochip, a custom genotyping array designed for the fine-
mapping of auto-immune disorders43. The other samples were genotyped using the
Illumina Infinium HumanHap550 v3 (Illumina, USA). In all cases, the BeadChips

were scanned using an iScan (Illumina) with an AutoLoader (Illumina, USA).
GenomeStudio v.1.8.X (Illumina, USA) was used for analysing the data and
generating SNP calls.

After standard quality controls both genotype data sets were combined and
imputed using MaCH44,45 and Minimac using the European panel of the 1,000
Genomes Project (March 2012: Integrated Phase I haplotype release version 3,
based on the 2010-11 data freeze and 2012-03-14 haplotypes). We used the
resulting B5.5 million SNPs with good post-imputation quality (Rsq40.50) and
minor allele frequency of at least 5%.

Processing of samples analysed by illumina expression arrays. Subdissected
samples from cerebellar and frontal cortex samples originating from 390 control
individuals were frozen before processing12,13,43. Total RNA was extracted from
subdissected samples using either Qiagen’s miRNeasy Kit (Qiagen,UK) or using a
glass-Teflon homogenizer and 1 ml TRIzol (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. RNA was biotinylated and amplified
using the Illumina TotalPrep-96 RNA Amplification Kit and directly hybridized
onto HumanHT-12 v3 Expression BeadChips (Illumina Inc.) in accordance with
the manufacturer’s instructions.

Analysis of illumina expression arrays. In order to maximise the number of
samples available, this analysis was performed using expression data generated
from 390 individuals who were expression-profiled on the HT-12 v3 BeadChip
array, some of whom had also been analysed using the Exon Arrays. Raw intensity
values for each probe were transformed using the cubic spline normalization
method and then log2-transformed for mRNA analysis. After re-mapping the
annotation for probes according to ReMOAT46, we restricted the analysis to probes
that uniquely hybridized, were associated with gene descriptions, were located on
autosomal chromosomes and that passed Illumina Detection P-values of o0.01 in
410% of male or female individuals. We also removed all probes containing SNPs
or indels present in the European panel of the 1,000 Genomes Project (March 2012:
Integrated Phase I haplotype release version 3, based on the 2010-11 data freeze
and 2012-03-14 haplotypes) with a frequency of at least 1%. This resulted in the
analysis of 13,425 transcripts in cerebellum and 13,396 transcripts in frontal cortex.
The resulting expression data was adjusted for age, post-mortem interval and batch
effects.

Identification of sex-biased eQTLs. A combined data set of 390 individuals (121
women and 269 men) was used to identify expression QTLs that behave differently
in men and women. For each probe, an expression value that exceeded 3 s.d. from
the mean was considered as an outlier and removed from analysis. The outlier
detection was run in men and women separately and a total of 1.2% of the
expression values was removed. The QTL analysis was run for each probe
against a SNP, sex and the interaction term between sex and SNP in Matrix-
EQTL47. The P-value for the interaction term was used to select combinations of
SNPs and probes for further analysis in R (http://www.r-project.org/). We treated
multiple expression QTLs from a tissue as one signal if the SNPs involved were
clustered with linkage disequilibrium 40.50 and report the most significant
expression QTL. The P-value threshold corresponding to the Bonferroni correction
of multiple testing is B3.7� 10� 12.
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