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Effect of Cutaneous Feedback on 
the Perception of Virtual Object 
Weight during Manipulation
Jaeyoung Park   1*, Bukun Son2, Ilhwan Han1 & Woochan Lee   3*

Haptic interface technologies for virtual reality applica have been developed to increase the reality 
and manipulability of a virtual object by creating a diverse tactile sensation. Most evaluation of the 
haptic technologies, however, have been limited to the haptic perception of the tactile stimuli via 
static virtual objects. Noting this, we investigated the effect of lateral cutaneous feedback, along with 
kinesthetic feedback on the perception of virtual object weight during manipulation. We modeled 
the physical interaction between a participant’s finger avatars and virtual objects. The haptic stimuli 
were rendered with custom-built haptic feedback systems that can provide kinesthetic and lateral 
cutaneous feedback to the participant. We conducted two virtual object manipulation experiments, 1. 
a virtual object manipulation with one finger, and 2. the pull-out and lift-up of a virtual object grasped 
with a precision grip. The results of Experiment 1 indicate that the participants felt the virtual object 
rendered with lateral cutaneous feedback significantly heavier than with only kinesthetic feedback 
(p < 0.05 for mref = 100 and 200 g). Similarly, the participants of Experiment 2 felt the virtual objects 
significantly heavier when lateral cutaneous feedback was available (p < 0.05 for mref = 100, 200, and 
300 g). Therefore, the additional lateral cutaneous feedback to the force feedback led the participants 
to feel the virtual object heavier than without the cutaneous feedback. The results also indicate that the 
contact force applied to a virtual object during manipulation can be a function of the perceived object 
weight p = 0.005 for Experiment 1 and p = 0.2 for Experiment 2.

The recent growth of the virtual reality industry calls for the means to let a user vividly feel and naturally interact 
with the virtual environment. In this context, various haptic technologies have been developed to increase the 
reality and manipulability of a virtual object by creating a diverse tactile sensation. A typical way of providing 
a tactile sensation to the user is kinesthetic feedback, which applies an interaction force between the user and a 
virtual object with a robot arm, called a force feedback interface. Most of force feedback interfaces allow the user a 
3-degree-of-freedom (3DOF) or 6-degree-of-freedom (6DOF) motion and provide kinesthetic feedback to a tool 
or a stylus/stylus that s/he is holding during virtual interaction1–4. A specific form of the force feedback interface 
is a glove-type or exoskeleton force feedback interface, which can represent contact force to the user’s fingertips5–9. 
This type of haptic interface has the advantage of letting the user directly feel the contact at his/her fingers while 
minimizing the constraint on hand movement. Another form of haptic interface is a cutaneous or fingertip haptic 
interface that stimulates the user’s skin at the fingertip10. This type of haptic device is developed to emulate the 
sensation of touching a real object by stimulating RA, SA1, and SA2 type mechanoreceptors11–14. Thus, tactile cues 
imparted from a cutaneous interface include contact location information15–17, the orientation of contact area18,19, 
and the change of contact area20,21. Most of the aforementioned haptic feedback interfaces have been evaluated 
in terms of improving the perception of a static virtual object’s tactile properties. On the contrary, little is known 
about the effect of haptic feedback on the tactile perception during object manipulation.

There are theoretical and experimental grounds that the addition of cutaneous stimulus can lead to a change 
in the perception of an object’s physical properties. According to the studies on multi-modal sensory integration, 
the addition of sensory cue with different modality can result in the shift of percept when the different types of 
information integrate optimally. Such optimal sensory integration is found in various combination of sensory 
cues, e.g., visual-haptic22–24, intra-visual25, or audio-visual integration26,27. Narrowing the range of modalities 
to only haptic cues, additional cutaneous feedback, along with kinesthetic cues, are known to affect the haptic 
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perception of physical properties such as friction28 or surface stiffness21,29 or object size30, as well as hand kines-
thesia31,32. However, fewer studies have been conducted to evaluate the relative role of cutaneous information in 
object weight perception, which is a crucial component in manipulation33–35.

Multiple studies indicate that lateral cutaneous feedback at fingertip provides information on an object’s 
weight. When one lifts an object with a precision grip, tangential torque is applied to fingertip skin depending 
on object weight36–38. Noting that the load torque is a function of object weight, a strong correlation is expected 
between weight perception and tangential torque at the fingertip. Also, cutaneous feedback to the fingertip is 
known to create an illusory perception of force with or without kinesthetic feedback39–42. Considering its strong 
correlation to force sensation, we can expect weight perception is affected by cutaneous feedback. The focus of the 
studies above was mainly on either the relation between object weight and tangential torque profile or the effect 
of lateral skin stretch feedback that substituted kinesthetic feedback. In the meanwhile, it is hard to find studies 
on the relative role of lateral cutaneous feedback on object weight perception during manipulation in the view of 
multi-modal sensory integration.

This study explores the extent that additional lateral cutaneous feedback to kinesthetic feedback affects the 
perception of virtual object weight during manipulation. Previous studies on haptic feedback mainly focused on 
its effect on haptic perception of static object’s surface properties. On the other hand, the present study analyzes 
the effect of cutaneous feedback on the weight perception during object manipulation. If we assume that the 
tactile information from cutaneous and kinesthetic feedback integrate optimally, rendering both cutaneous and 
kinesthetic feedback can shift the perceived object weight from the one represented only with kinesthetic feed-
back. We, therefore, hypothesize that the perception of a virtual object weight during manipulation can be affected 
by the addition of lateral cutaneous feedback. Also, varying the rate of providing cutaneous feedback may affect the 
perception of virtual object weight. We tested our hypothesis by evaluating the effect of cutaneous feedback on 
the perceived weight of a virtual object. The experimental task is to judge the perceived weight of a virtual object, 
manipulated with one or two fingers (Fig. 1). A participant of the experiment could feel the weight of the virtual 
object rendered with both lateral cutaneous feedback and kinesthetic feedback. Then, we evaluated the effect of 
the additional lateral cutaneous feedback on the perceived weight. The next section describes the experimental 
setup for virtual object manipulation and weight perception.

Methods
The experimental tasks of the present study were to move a virtual object with an index finger laterally, and to 
pull-out and lift-up a virtual object grasped with a precision grip. Since tactile information imparted to a user 
differs by the type of manual task, we built two different experimental setups. This section describes the system 
overview and haptic rendering algorithm for the two experiments. Then, we illustrate the experimental paradigm 
and procedure to evaluate the effect of lateral cutaneous feedback on the perceived object weight.

All methods were previously approved by the KIST (Korea Institute of Science and Technology) Institutional 
Review Board (IRB approval No. 2019-007) and carried out in accordance with the Declaration of Helsinki for 
research involving human subjects. Informed written consent was obtained from all participants involved in the 
experiments.

Experiment 1: rendering haptic feedback during virtual object manipulation with one fin-
ger.  For the experiment with one finger object manipulation in Fig. 1(a), we set up a virtual environment where 
a user can manipulate a virtual cube with one finger by feeling the contact force with a haptic system. Figure 2 
shows the overall experimental system architecture, including the virtual environment, controller, and physical 
environment. The haptic interface consists of a force feedback interface and a custom-built cutaneous feedback 
interface (Fig. 2(a)). The cutaneous feedback interface is worn around the user’s index fingertip beneath which a 
contact plate is located. When the user laterally moves a virtual object, the fingertip skin is deformed by moving 
the contact plate with a servo motor (model HV75K, MKS Servo Tech, Ilan, Taiwan). The rotation of a joint of 
the cutaneous interface or the motor is tracked with a magnetic rotary encoder (RM08, RLS, Slovenia). Being 
attached to the force feedback interface, the user can feel both cutaneous and kinesthetic feedback simultaneously.

During the experiment, a user’s fingertip is mapped to a virtual environment and represented as a fingertip 
avatar (Fig. 2(b)). When the fingertip avatar touches a virtual object, the normal contact force Fn is calculated 
based on a virtual proxy based haptic rendering model43,44 as follows:

Figure 1.  Description of experimental tasks to evaluate the effect of cutaneous feedback on the perception of 
virtual object weight. (a) Lateral manipulation of a virtual object on the floor with one finger, and (b) Lifting a 
virtual object grasped with a precision grip.
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= −F x xK( ), (1)n p f

where K, xp, and xf denote virtual object surface stiffness, fingertip proxy contact position, and the fingertip con-
tact position, respectively. Haptic rendering of the lateral friction force is calculated from a contact model based 
on a Coulomb friction law. A direct application of the Coulomb friction model results in a sudden change of 
friction force and thus can cause the haptic feedback system unstable. Thus, we modeled the state of static contact 
and sliding by considering the Coulomb friction model and the velocity of the fingertip based on the piecewise 
linear approximate Coulomb friction model45,46. We calculate the relative lateral speed of fingertip vfo,t to the 
virtual object at timestamp t as

= − −v v v , (2)fo t f t o t, , , 1

where vf,t and vfo,t−1 are fingertip speed at timestamp t, and virtual object speed at timestamp t − 1, respectively. 
By incorporating the Eqs. 1 and 2 with a piecewise linear approximate Coulomb friction model, the following 
friction state model is derived as:
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where μa s, , μa d, , and vth are static and dynamic friction coefficients between the virtual fingertip, and state switch-
ing threshold speed, respectively. We modeled the tangential force between the virtual object and the virtual 
surface based on the Coulomb friction law as follows:
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where mobj is the virtual object weight. Equations 3 and 4 decide whether the virtual objects moves or not. When 
the virtual object moves, its position is updated along with its speed. The force to be exerted by the force feedback, 

= +F F Fkin n f  is a vector summation of the lateral and normal contact force, calculated as

Figure 2.  The haptic system architecture for Experiment 1. The interaction force between the user’s fingertip 
avatar and virtual environment is calculated with a virtual interaction model, including the lateral friction 
(Virtual Environment). Next, the controller transfers adjusted stimuli values to the haptic interface (Controller). 
Then, a user can perceive the haptic stimuli from the haptic interface providing lateral cutaneous and 
kinesthetic feedback (Physical Environment). (a) A cutaneous interface renders lateral friction by moving a 
contact plate placed beneath the user’s fingertip. (b) The virtual interaction model calculates the contact force 
(Fn and Ff) and cutaneous feedback (df). (c) Experimental apparatus to provide the cutaneous and kinesthetic 
feedback to a participant’s fingertip during object manipulation with an index finger.
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= + .F F F (5)kin n f

On each servo loop, the calculated lateral contact force Fkin is fed to the controller and the force feedback inter-
face. The desired displacement of the contact plate on the cutaneous interface is calculated as = | |F Fd l sgn( )ff f f . 
Then, the contact plate is positioned to the desired displacement with a PID controller. The output torque from 
the controller is converted to a PWM signal generated by a multifunction board (Model 826, Sensoray Co. Inc., 
OR, U.S.A) and is sent to a motor controller, connected to the servo motor of the cutaneous interface.

Figure 2(c) shows the experimental apparatus that can render both lateral cutaneous feedback and force feed-
back, as a user moves a virtual object with an index finger. The interaction force due to the friction between a 
fingertip avatar and a virtual object was rendered for force and cutaneous feedback (Fig. 2(c)). The force feed-
back interface directly applied the calculated force Fkin with a commercially available force feedback interface 
(PHANToM Premium 1.0, 3D Systems, SC, USA). The custom-built haptic interface (Fig. 2(a)) rendered lateral 
cutaneous feedback by moving a contact plate placed beneath a participant’s fingertip.

Experiment 2: rendering haptic feedback during virtual object manipulation with a precision 
grip.  For the experiment with two-finger object manipulation in Fig. 1(b), we set up a virtual environment 
where a user can feel when lifting a virtual cuboid grasped with a precision grip. Figure 3 shows the overall haptic 
system architecture, including virtual environment, controller, and physical environment. Two force feedback 
interfaces provides a user with kinesthetic feedback as s/he grasps a virtual object with a precision grip. A cutane-
ous feedback interface (Fig. 3(a)) was attached to the end-effector of each force feedback interface and a contact 
skin rotates fingertip skin, which emulates the torsional skin deformation as an object rotates due to its weight. A 
magnetic rotary encoder (RM08, RLS, Slovenia) with the resolution of +0.3 deg is attached at the bottom of the 
contact disk to track the disk’s rotation angle. A pair of springs tightly fixes the haptic interface to a user’s fingertip 
at the distal interphalangeal (DIP) joint.

Haptic rendering of the force and cutaneous feedback for manipulating an object with a precision grip was 
calculated in a similar way to Experiment 1. When a user holds a cuboid with his/her index finger and thumb 
(Fig. 3(b)), we can calculate the frictional torque at the surface of the contact point (red circle in the figure) as 

Figure 3.  The haptic system architecture for Experiment 2. The interaction force between the user’s fingertip 
avatars and virtual environment is calculated with a virtual interaction model, including the torsional friction 
(Virtual Environment). Next, the controller transfers adjusted stimuli values to the haptic interface (Controller). 
Then, a user can perceive the haptic stimuli from the haptic interface providing torsional cutaneous and 
kinesthetic feedback (Physical Environment). (a) A cutaneous interface renders torsional friction by moving 
a contact disk touching the user’s fingertip. (b) The virtual interaction model calculates the contact force (Fkin) 
and the cutaneous feedback generated by rotating the contact disk. (c) Experimental apparatus to provide the 
cutaneous and kinesthetic feedback to a participant’s fingertip. A contact plate on the cutaneous interface rotates 
to provide torsional friction feedback to the fingertip as the virtual object rotates.
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τ μ= Frf s disk n
2
3

 (μs: friction coefficient, rdisk: rotating disk radius, and Fn: normal contact force)47. Then, applying 
the Coulomb friction model48 on the torque, we get the friction model as follows:
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where τe and xr are the torque due to the object weight and the displacement vector from the contact point to 
the center of mass, respectively. Fn is the normal contact force in Eq. 1. Then, total torque at the fingertip contact 
point τtot is

τ τ τ= + ⋅ (7)tot e f

We can calculate the rotation of the contact plate from τ α= Itot  (I: the moment of inertia and α: angular 
acceleration), and ω with Euler integration. The rotation of the contact plate is then updated as follows:

θ θ ωδ= ++ t, (8)i i1

where i denotes the timestamp. The force to be exerted by each force feedback device in the vertical direction is 
calculated as = . −F gm m m m(0 5 ) ( : virtual object weight, and : cutaneous feedback interface weight)v obj tip obj cut  
to avoid the effect of haptic weight interface on the perception of virtual object weight. Then, total force to be 
exerted by each force feedback interface Fkin is,

= +F F F , (9)kin v n

where Fn is the normal contact force calculated by the Eq. 1.
Figure 3(c) shows the experimental apparatus that can provide kinesthetic feedback and cutaneous feedback 

to the participant. Two commercially available force feedback interfaces (Touch, 3D Systems, SC, USA) directly 
rendered the force vector Fkin as a vector sum of normal-directional contact force Fn and the weight of the virtual 
cuboid, Fv. A cutaneous interface (Fig. 3(a)) is attached to the end-effector of each force feedback interface to 
provide cutaneous feedback by rotating contact plate.

Friction coefficients of real object surfaces.  We measured the friction coefficients between real objects 
to estimate the degree of slipperiness/roughness of the virtual friction coefficient for the experiments. The friction 
coefficient was measured for three surface materials (metal, plastic, and silicon), and two sliding object materi-
als (metal, and silicon). We employed a typical inclined slope method to measure the static friction coefficient, 
where the friction coefficient was decided as a tangent of the angle that the object begins to slide. For the sake of 
measurement accuracy, we attached markers on the sides of the slope, video-recorded the sliding, and derived the 
sliding angle by analyzing the image at the moment of sliding. The measurement was conducted three times for 
each condition. The static friction coefficients between two materials were 0.21 ± 0.01 (metal-metal), 0.16 ± 0.03 
(metal-plastic), 0.65 ± 0.12 (metal-silicon), 0.43 ± 0.03 (silicon-plastic), and 0.55 ± 0.11 (silicon-silicon).

Experimental procedure.  For the experiments, we employed a one-up one-down adaptive procedure to 
match the perceived weight of a virtual object rendered with both cutaneous and kinesthetic feedback to that 
rendered only with kinesthetic feedback49. The adaptive procedure estimates the PSE of comparison stimuli that 
is perceived to be equivalent to the reference stimulus.

Each participant conducted four (six) experimental runs by reference object weight and lf for Experiment 1 
(μs for Experiment 2). The order of reference stimuli was randomized for each participant. On each trial, a par-
ticipant was presented with two virtual objects: a reference object rendered both with cutaneous and kinesthetic 
feedback and a comparison object rendered only with force feedback. If the participant responded that the ref-
erence object felt heavier than the comparison plane, the weight of the comparison plane decreased. Otherwise, 
the weight of the comparison plane increased. The initial weight was 400 g and 300 g for Experiments 1 and 2, 
respectively, considering the stability of the force feedback interface used for each experiment. The step size of 
increasing/decreasing the weight changed from 100 g to 25 g after the first three reversals of the responses. Each 
experimental run terminated after 12 reversals of the responses at the smaller step size. The total number of trials 
for one experimental run typically ranged between 30 and 40.

Before the main experiment, a participant was seated in front of a computer and asked to wear noise-canceling 
headphones (MDR10RNC, Sony, Tokyo, Japan). Then, s/he inserted his/her index finger inside cutaneous inter-
face (Figs. 2(a) and 3(a)). Then, a training session was initiated where the participant could feel the weight of a 
virtual object rendered with both cutaneous and force feedback or only with force feedback. Virtual fingertips 
were visually displayed as green spheres along with the virtual object. When the participant felt ready for the main 
experiment, the training session terminated.

In the main experiment, the order of presenting reference and comparison stimuli was randomly decided on 
each trial. In the beginning, fingertip avatars and a virtual object were displayed on the screen. In Experiment 
1, a participant was asked to laterally move the virtual object with an index finger and feel the object weight. In 
Experiment 2, a participant was asked to grasp and lift up the cuboid laid on a virtual plane with a precision 
grip and feel the object weight. During the main experiment, white noise was played on headphones to block 
possible audio cues from the haptic interface. By hitting the enter key, the participant moved to the next phase 
to feel the other stimulus. Then, the participant was asked to indicate which stimulus felt heavier. For each trial, 
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the magnitude of comparison stimulus, the answer, collision depth to derive the contact force, and trial time 
were recorded. After each experimental run, the participant took a 5-min break to minimize the fatigue from the 
experiment.

Results
We conducted two psychophysical experiments by how to manipulate the object (Fig. 1), to investigate the effect 
of the cutaneous feedback on the perceived object weight. In the first experiment, participants moved a virtual 
object on a floor sideways by feeling cutaneous and kinesthetic feedback, to perceive the object weight. The sec-
ond experiment evaluated the effect of cutaneous feedback on the perceived weight of a virtual object grasped 
and lifted with a precision grip. For both experiments, we also investigated how the rate of providing cutaneous 
feedback affects the perceived weight of the virtual object. The following subsections describe the experimental 
setup and report experimental results.

Experiment 1: Perceived weight of a virtual object manipulated with one finger.  The goal of this 
experiment is to evaluate the effect of cutaneous feedback on the perceived weight of a virtual object manipu-
lated with an index finger. Total 12 subjects participated in the experiment which matched the perceived weight 
of a virtual object rendered both with cutaneous and kinesthetic feedback to the one rendered with kinesthetic 
feedback only.

In the main experiment, a participant laterally manipulated a virtual cube (dimension: 3 cm × 3 cm × 3 cm) 
with a weight of 100 and 200 g, which is about as heavy as a hand-held device, with an index finger. We decided 
the weight of the virtual object to be around that of a handheld device while conserving the stability of the force 
feedback interface. The friction coefficients were 0.74, 0.57, and 0.25 for fingertip-object static friction (μa,s), 
fingertip-object dynamic friction (μa,d), and object-floor friction respectively (μb). We intentionally chose the 
friction coefficients for fingertip-object (∼silicon-metal) to be higher than that for object-floor (∼metal-metal). 
Then, the object can slide when sufficient normal and lateral force is applied. For the rendering of cutaneous 
feedback, we define lF, which is the ratio of contact plate displacement to the lateral force. We used two lF values, 
0.005 and 0.01 m/N for the experiment to evaluate the effect of cutaneous feedback intensity on the perceived 
weight of a virtual object.

A one-up one-down adaptive procedure was employed to derive the point of subjective equality (PSE) for a 
reference stimulus rendered with cutaneous and kinesthetic feedback, matched to the weight of a virtual object 
rendered only with kinesthetic feedback. Both cutaneous and kinesthetic feedback was provided to a participant 
for the reference stimuli while only kinesthetic feedback was provided for the comparison stimuli.

Figure 4(a) shows the average PSE estimate of a virtual object weight plotted as a function of reference object 
weight by two lF values. We compared the PSE estimate to the reference object weight, to see the effect of cutane-
ous feedback on the perceived object weight. The results of one-sample t-test ( μ >H m: PSE ref0  where mref means 
the reference weight) indicate that the PSE estimates are significantly larger than the reference object weight for 
all experimental conditions [ = . = .t p(11) 3 73, 0 0017 for lF = 0.005 m/N, mref = 100 g; = . = .t p(11) 2 69, 0 011 
for lF = 0.005 m/N, mref = 200 g; = . = .t p(11) 2 23, 0 023 for lF = 0.01 m/N and mref = 100 g; = . = .t p(11) 2 0, 0 035 
for lF = 0.01 m/N, mref = 200 g]. Thus, the cutaneous feedback to the fingertip led the participants to feel virtual 
object weight heavier than when there is only kinesthetic feedback. When we conducted a two-way repeated 
measures ANOVA on the PSE estimates with the factors of reference weight and lF, only mref had a significant 
effect on the PSE estimates [ η= . = . = .F p(1, 11) 0 223, 0 646, 0 022  for lF; = . < .F p(1, 11) 90 95, 0 001,
η = .0 8922  for mref]. No significance interaction between the two factors was found [ = .F(1, 11) 1 447,

η= . = .p 0 254, 0 1162 ]. Overall, the addition of lateral cutaneous feedback led the participants to feel a virtual 
object heavier than the one rendered with only kinesthetic feedback. The modulation of lF did not affect the per-
ception of virtual object weight.

Figure 4(b) shows the mean of the maximum normal-directional contact force by lF as a function of reference 
object weight, mref. We conducted a two-way repeated measure ANOVA to determine the effects of lF and mref on 
the maximum normal-directional contact force. We found no significant interaction of the two factors 
[ = . = .F p(1, 11) 0 31, 0 589, η = .0 0272 ]. mref had a significant main effect on the maximum normal-direction 
directional contact force [ η= . = . = .F p(1, 11) 11 94, 0 005, 0 522 ] meaning increasing trend of the maximum 
normal-directional contact force with the increase of mref. In the meanwhile, the effect of lF was insignificant 
[ η= . = . = .F p(1, 11) 1 14, 0 31, 0 092 ]. In Fig. 4(c), the mean of the maximum lateral contact force is shown by 
lF as a function of reference object weight. When we conducted a two-way repeated measure ANOVA with the 
factors lF and mref, no significant two-way interaction was found between the two factors [ = .F(1, 11) 0 046,

η= . = .p 0 84, 0 0042 ]. The effect of mref was significant on the maximum lateral contact force [ = .F(1, 11) 7 37,
η= . = .p 0 02, 0 42 ], which implies that the maximum lateral contact force increased with the increase of mref. lF 

had no significant main effect [ η= . = . = .F p(1, 11) 1 19, 0 3, 0 1112 ].
Overall, the addition of lateral cutaneous feedback to force feedback resulted in the increase of the perceived 

weight of a virtual object during one-finger manipulation. It is also notable that the reference object weight sig-
nificantly affected both the normal and lateral force contact force. We discuss the implication of the findings in 
the discussion section.

Experiment 2: Perceived weight of a virtual object grasped and lifted with a precision grip.  The 
goal of this experiment is to examine the effect of torsional cutaneous feedback on the weight perception of a 
virtual object held with precision grip during object pull-out and lift-up task. A new group of 12 subjects par-
ticipated in the experiment, which matched the perceived weight of a virtual cuboid with the dimension of 
6 cm × 5 cm × 14 cm, rendered both with cutaneous and kinesthetic feedback to the one rendered with kinesthetic 
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feedback only. On each trial of the main experiment, a participant was asked to pull out a virtual cuboid attached 
to a virtual wall, by grasping the object with a precision grip. Then, the virtual object tilted forward, and the par-
ticipant could feel its weight rendered with kinesthetic and cutaneous feedback.

The weight of the virtual cuboid is 100, 200, and 300 g, which are about as heavy as a hand-held electron-
ics including a smartphone or a tablet. To see the effect of varying cutaneous feedback on the perceived object 
weight, we used two values for the friction coefficient μs between a participant’s fingertip and the cuboid, 0.35 
(∼silicon-plastic) and 0.7 (∼silicon-metal). As was in the first experiment, we used a one-up one-down adaptive 
procedure to derive the point of subjective equality (PSE) for a reference stimulus rendered with cutaneous and 
kinesthetic feedback, matched to the weight of a virtual object rendered only with kinesthetic feedback.

In Fig. 5(a) are shown the average PSE estimates of a virtual object weight plotted as a function of reference 
object weight by the two μs values. When we compared the PSE estimates to the reference object weight with 
one-sample t-test ( μ >H m: PSE ref0 ), the PSE estimates are significantly larger than the reference object weight for 
all μs values and reference weight [ = . < .t p(11) 7 72, 0 0001 for μ = .0 02s  and mref = 100 g; = .t(11) 4 79 and 

= .p 0 0002 for μ = .0 02s  and mref = 200 g; = .t(11) 2 43 and = .p 0 017 for μs = 0.02 and mref = 300 g; = .t(11) 7 61 
and < .p 0 0001 for μs = 0.04 and mref = 100 g; = .t(11) 5 09 and = .p 0 0002 for μ = .0 04s  and mref = 200 g; 

= .t(11) 2 43 and = .p 0 001 for μs = 0.04 and mref = 300 g]. The result is, therefore, consistent with Exp. 1, in that 
the cutaneous feedback to the fingertip led the participants to feel virtual object weight heavier than when there 
is only kinesthetic feedback. When a two-way repeated measures ANOVA on the PSE estimates with the factors 
μ s and mref on the PSE estimates, a significant interaction was found between the two factors 
[ η= . = . = .F p(2, 22) 3 65, 0 04, 0 252 ]. Simple main effects analysis shows that if mref = 100 g, the participants 
felt the virtual object heavier for μs = 0.02 than μs = 0.04 [p = 0.009]. Overall, the addition of torsional cutaneous 
feedback led the participants to feel a virtual object heavier than the one rendered with only kinesthetic feedback. 
The modulation of μs affected the perception of virtual object weight when a virtual object light (mref = 100 g).

Figure 5(b) shows the mean of the maximum grip force by the type of haptic feedback as a function of refer-
ence object weight. When we conducted a three-way repeated measure ANOVA with the factors μs and, mref, on 
the mean normal-direction contact force, a significant two-way interaction was found [ = .F(2, 22) 4 69,

η= . = .p 0 02, 0 32 ]. The result of a simple main effects analysis indicates that there was a significant difference 
in the maximum grip force between the two ms values when mref = 100 g [p = 0.02].

The results of Experiment 2 show a similar trend to those of Experiment 1. Additional torsion feedback led the 
participants to feel the weight of a virtual object heavier than when there was only kinesthetic feedback, during 

Figure 4.  The results of Experiment 1. (a) Mean estimated PSE of perceived virtual object weight by lF and 
reference weight. (b) Mean of the maximum normal-directional contact force by lF, and reference weight. (c) 
Mean of the maximum lateral contact force by lF, and reference weight. Error bars indicate standard errors.
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the pull-out and lift-up task. It is notable that varying μs resulted in the change of both perceived weight, and the 
normal contact force at mref = 100 g. We discuss the implications of the findings in the next section.

Discussion
The results of the experiments show that the addition of cutaneous feedback to kinesthetic feedback during 
manipulation led participants to feel virtual object weight as being significantly heavier than that rendered with 
kinesthetic feedback only. We varied the rate of providing cutaneous feedback for the two experiments. We mod-
ulated the rate of the contact plate’s lateral motion to the calculated force for Experiment 1. For Experiment 2, we 
varied the friction coefficient of rotating the contact plate during manipulation. The experimental results indicate 
that the effect of varying the rate of cutaneous feedback was insignificant except for the reference weight of 100 g 
in Experiment 2. We also observed that the grip force was affected by the rate of cutaneous feedback for the ref-
erence weight of 100 g.

One common feature of the two experiments’s results is that the addition of cutaneous feedback to a partic-
ipant’s fingertip led the participants to feel a virtual object heavier during manipulation, than with kinesthetic 
feedback only. This result can be partly explained with the optimal integration model for multi-modal sensory 
input. Then, the weight perception can be estimated with the following model:

= +ˆ ˆ ˆS w S w C, (10)weight K K C

where ŜK and ŜC are the estimates of weight from kinesthetic and cutaneous information, respectively, and wK and 
wC are their respective weights. If we assume the distribution of ŜC is larger than that of ŜK, Ŝweight with the addition 
of cutaneous feedback will be larger than ŜK, as is the case with the present study. To substantiate the model, how-
ever, additional experimental grounds are needed to show that ŜC > ŜK.

The effect of the friction coefficient on the perceived object weight in Experiment 2 can be explained with the 
results of previous studies that investigated the perception of fingertip slip perception during tangential loading. 
Barrea et al. demonstrated that the participants of their experiment could perceive the slippage at the fingertip 
with the partial skin deformation due to passive tangential loading50. Similarly, Srinivasan et al. showed that the 
tactile afferents could encode surface slippage at the fingertip51. In other words, Ĉ in 10 is a function of the cuta-
neous feedback. Then, their results suggest that the cutaneous feedback in the present study generated the tactile 
information indicating the existence of tangential loading. For Experiment 2, the slippage at the fingertip due to 
cutaneous feedback could have been more significant for the lower friction coefficient of μs = 0.35 because the 
virtual object would have rotated more easily. In the meanwhile, the difference of the perceived object between the 
two friction coefficient was insignificant for larger reference weight, mref = 200 and 300 g. This result can ascribe 
to the insensitivity to smaller cutaneous stimulus change as the overall perceived stimulus, Ŝweight increases with 
the increase of the reference weight by Weber’s law.

The experimental results suggest that the force applied to virtual object during manipulation can be a function 
of perceived object weight. The maximum contact force in Experiment 1 shows an increasing trend along with 
the increase of the perceived weight of the virtual object. Also, when we compare the maximum contact force of 
Experiment 2 (Fig. 3(b)) to the PSE estimates (Fig. 3(a)), the effect of varying μs shows the same trend that the 
difference is significant for low mref value of 100 g. Previous studies36,38 indicate that when one is manipulating 
an object with a precision grip, s/he applies normal force being proportional to tangential torque at the fingertip. 
Their findings coincide with the results of Experiment 2 where participants felt an object heavier with larger 
torsional cutaneous feedback (lower μs) and thus exerted larger grip force. Thus, the contact force during object 
manipulation can be modeled as a function of the perceived object weight, and thus depend on kinesthetic and 
cutaneous information as follows:

= =ˆF f S f I I( ) ( , ), (11)contact weight K C

Figure 5.  The results of Experiment 2. (a) Mean estimated PSE of perceived virtual object weight by μs and 
reference weight. (b) Mean of the maximum normal-directional contact force by μs, and reference weight.
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where Ŝweight, IK, and IC are the perceived weight, kinesthetic, and cutaneous information, respectively.
To summarize, the present study provides grounds that the addition of lateral cutaneous feedback to kines-

thetic feedback during object manipulation can increase the perceived weight of the object. Also, the experimen-
tal results suggest that the contact force during object manipulation can be a function of the perceived object 
weight.

Received: 15 October 2019; Accepted: 13 January 2020;
Published: xx xx xxxx
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