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Jonas Behr1,2,*,y, André Kahles1, Yi Zhong1, Vipin T. Sreedharan1, Philipp Drewe1 and
Gunnar Rätsch1,*
1Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA and 2Friedrich
Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany
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ABSTRACT

Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led

to tremendous improvements in the detection of expressed genes and

reconstruction of RNA transcripts. However, the extensive dynamic

range of gene expression, technical limitations and biases, as well

as the observed complexity of the transcriptional landscape, pose

profound computational challenges for transcriptome reconstruction.

Results: We present the novel framework MITIE (Mixed Integer

Transcript IdEntification) for simultaneous transcript reconstruction

and quantification. We define a likelihood function based on the nega-

tive binomial distribution, use a regularization approach to select a few

transcripts collectively explaining the observed read data and show

how to find the optimal solution using Mixed Integer Programming.

MITIE can (i) take advantage of known transcripts, (ii) reconstruct

and quantify transcripts simultaneously in multiple samples, and

(iii) resolve the location of multi-mapping reads. It is designed for

genome- and assembly-based transcriptome reconstruction. We

present an extensive study based on realistic simulated RNA-Seq

data. When compared with state-of-the-art approaches, MITIE

proves to be significantly more sensitive and overall more accurate.

Moreover, MITIE yields substantial performance gains when used with

multiple samples. We applied our system to 38 Drosophila melanoga-

ster modENCODE RNA-Seq libraries and estimated the sensitivity of

reconstructing omitted transcript annotations and the specificity with

respect to annotated transcripts. Our results corroborate that a well-

motivated objective paired with appropriate optimization techniques

lead to significant improvements over the state-of-the-art in transcrip-

tome reconstruction.

Availability: MITIE is implemented in Cþþ and is available from

http://bioweb.me/mitie under the GPL license.

Contact: Jonas_Behr@web.de and raetsch@cbio.mskcc.org

Supplementary information: Supplementary data are available
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1 INTRODUCTION

Most of the complexity of higher eukaryotic transcriptomes can

be attributed to the encoding of multiple transcripts at a single

genic locus by means of alternative splicing, transcription start

and termination (e.g. Nilsen and Graveley, 2010; Rätsch et al.,

2007; Schweikert et al., 2009). A comprehensive catalog of all

transcripts encoded by a genomic locus is essential for down-

stream analyses that aim at a more detailed understanding of

gene expression and RNA processing regulation.
RNA-Seq is a method for parallel sequencing of a large num-

ber of RNA molecules based on high-throughput sequencing

technologies (ENCODE Project Consortium et al., 2012;

Mortazavi et al., 2008; Wang et al., 2009). Currently available

sequencing platforms typically provide several 10–100 millions of

sequence fragments (reads) with a typical length of 50–150 bases.

By mapping these reads back to the genome, one can determine

where gene products are encoded in the genome (e.g. Denoeud

et al., 2008; Guttman et al., 2010; Trapnell et al., 2010; Xia et al.,

2011) and collect evidence of RNA processing such as splicing

(Bradley et al., 2012; Sonnenburg et al., 2007) or RNA-editing

(Bahn et al., 2012).

In many cases, the RNA-Seq reads are first aligned to a ref-

erence genome using an alignment tool that identifies possible

read origins within the genome. Contiguous regions covered with

read alignments (possibly with small gaps) are candidates for

exonic segments. Alignment tools for RNA-Seq reads, such as

PALMapper (De Bona et al., 2008; Jean et al., 2010), TopHat

(Trapnell et al., 2009), MapSplice (Wang et al., 2010), Star

(Dobin et al., 2012) or Gsnap (Wu and Nacu, 2010) are typically

able to identify new exon–exon junctions, which are candidates

for introns. This information can be compiled into a segment or

splicing graph, a directed acyclic graph, where the nodes corres-

pond to exonic segments and the edges correspond to intron

candidates (cf. Fig. 1 for an illustration). Assuming complete

coverage, an expressed transcript corresponds to a path in the

graph. Similar graphs are produced during de novo transcript

assembly with the difference that the graph can potentially be

cyclic, and the segments are not explicitly associated with a gen-

omic location. In genome- and assembly-based transcript recon-

struction, tools such as Scripture (Guttman et al., 2010),

Cufflinks (Trapnell et al., 2010), Trans-ABySS (Robertson

et al., 2010), Trinity (Grabherr et al., 2011) and OASES

(Schulz et al., 2012) select a subset of paths through the graph

as transcript predictions. For simplicity, we will focus on

genome-based transcript reconstruction when describing the ap-

proach and discuss de novo assembly whenever necessary.
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Owing to the nature of the RNA-Seq reads, the information

obtained from the alignments is of local nature only, even when

considering paired-end sequencing (e.g. Smith et al., 2012).

The splicing graph representation implicitly assumes independ-

ence of local events. Hence, it will typically contain more paths

than expressed transcripts. This is also true in the ideal case when

the graph is (i) complete in the sense that it contains all vertexes

and edges and (ii) accurate in the sense that it only contains

expressed exonic segments as vertexes and edges that correspond

to introns of expressed transcripts. For instance, the 183 807

splice variants annotated in any of the four human genome an-

notations (Ensembl, HAVANNA, ENCODE, Vega, see Coffey

et al., 2011; Flicek et al., 2012; Harrow et al., 2006) define

splicing graphs that encode 707 386 paths, with55% of the loci

contribute460% of the paths. Thus, we encounter a few particu-

larly complex cases that contribute most to transcriptome com-

plexity. Defining splicing graphs based on RNA-Seq data entails

the additional difficulty that inaccurate or ambiguous read align-

ments can substantially increase the size of these graphs.

Although this problem can be addressed by filtering the read

alignments, we find that strict filtering often leads to a reduced

sensitivity of transcript prediction and introduces artifacts, for

instance, in the presence of unknown genomic variations.
Based on a detailed analysis of the problem and of previous

work, we identified three important requirements that a tran-

script inference algorithm based on RNA-Seq data should

meet. First, following the arguments in Xia et al. (2011), we

note that it is important to simultaneously identify and quantify

transcripts to resolve long range dependencies. In Section 4.1, we

illustrate how quantitative information can perfectly deconvolve

contributions from multiple transcripts, whereas ignoring quan-

titative information leads to inaccurate predictions. Second, enu-

meration of all paths defined by a splicing graph is often not

tractable. For instance, for �13% and �3% of human genes,

the number of paths in splicing graphs generated from the
annotation and RNA-Seq reads (see Section Supplementary
Section C) is greater than 1000 and 1 000 000, respectively

(see Supplementary Fig. B). This large number is the result of
a combinatorial explosion of possible combinations of alterna-
tive segments and edges (This is even larger in case of de novo

assembly where several loci are merged into cluster of connected
segments if sequence is repeated). Therefore, a generally applic-
able approach should avoid explicit enumeration, ideally still

guaranteeing optimality. Third, we show that multiple RNA-
Seq samples help to solve the ill-posed problem of transcript
identification (see e.g. Lacroix et al., 2008; Lin et al., 2012). By

sharing information between samples, while still considering
them separately, we can often exactly determine the correct set

of expressed transcripts. We provide illustrative examples where
neither merging data of multiple samples nor the independent
analysis of data from each sample can solve the problem.

We describe an approach called MITIE (Mixed Integer
Transcript IdEntification) that meets the aforementioned
requirements. The main idea of MITIE is to report a small

optimal set of transcripts that can well explain the observed
RNA-Seq data in multiple samples. It does not require an expli-
cit enumeration of all paths to find the optimal set of transcripts.

This is achieved by using branch-and-bound algorithms that
prune parts of the combinatorial search tree that cannot yield
the optimal solution.

MITIE consists of two main parts: A data processing part
generates a splicing graph from RNA-Seq alignments in Binary
Sequence Alignment/Map-(BAM)-format, the annotation in

Gene transfer format-(GTF)-format or both (Section 3.1). The
second part solves the core optimization problem and starts with
the graph decorated with quantitative information (Section 3.2).

The design enables the flexible use of MITIE in existing RNA-
Seq pipelines. For example, we can use the output of Trinity’s

inchworm tool (Grabherr et al., 2011) as input to the second part
of MITIE and thereby solve the transcript reconstruction task,
also solved by Trinity’s butterfly tool.

In the following section, we relate MITIE with previous work
and illustrate the idea of combining multiple samples in a simu-
lation study in Section 4.1. We then apply MITIE to a larger set

of simulated RNA-Seq reads generated from the human genome
annotation in Section 4.2. Finally, in Section 4.3 we analyze the
performance of MITIE on a large set of RNA-Seq data for

Drosophila melanogaster generated within the modENCODE
project (Celniker et al., 2009).

2 RELATED WORK

In this section, we discuss related work grouped by the primary

goals and assumptions underlying the approaches. Approaches
for genome-wide transcriptome reconstruction and quantifica-
tion preceding the RNA-Seq era were mainly based on expressed

sequence tags (ESTs) or microarrays. Heber et al. (2002) first
defined and identified splicing graphs based on EST alignments,
but did not devise a method to obtain transcripts from the

graphs. Xing et al. (2004) constructed EST-based splicing graphs
and called transcripts using a dynamic programming approach,
preferring paths with high EST support. Wang et al. (2003) and

Shai et al. (2006) identified and quantified alternative splicing

Read Coverage

1. Segment Id.

2. Exon Id. 

3. Intron Id. 

1 2 3 4 5 6 7 9 11 12 13 14 158 10
Annotations

Segment No.

Fig. 1. Splicing graph generation from aligned RNA-Seq reads: 1.

Segment identification: Given a genomic region, we construct splicing

graphs by generating a list of segment boundaries. Boundaries are

either splice sites (SS) depicted as dashed vertical lines, potential tran-

scription start sites (TSS) and termination sites (TTS; both depicted with

solid vertical lines). Potential SS positions can originate from spliced

reads (e.g. between segments 4 and 5) or annotated transcripts.

Analogously, TSS and TTS sites can stem from annotated transcripts

or from potential transcript end positions (e.g. between 2 and 3 as well

as 13 and 14). See Supplementary Section B for more details. 2. Exon

identification: We keep (i) segments that have45% of their nucleotides

covered, (ii) are part of annotated transcripts or (iii) if the removal of

segment s does not leave any path between two segments connected by

paired-end reads (if available). 3. Intron identification: We connect seg-

ments based on spliced reads and annotated introns
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events using microarray probes for exon junctions and flanking
regions. Candidates were processed from annotated alternative
splicing events (Wang et al.) or EST-alignments (Shair et al.),

respectively. Alternative splicing events were then embedded
into the reference transcript, and the resulting transcripts were
finally quantified using probabilistic models for the microarray

measurements. These methods constitute the algorithmic foun-
dation of RNA-Seq based approaches, but are not directly ap-
plicable to RNA-Seq data owing to the extensive differences in

abundance, error sources and biases of the underlying expression
measurements.
The following RNA-Seq based methods build on quantifica-

tion approaches but identify additional transcripts by enumer-
ating all potential transcripts from a splicing graph. iReckon
(Mezlini et al., 2012) and NSMAP (Xia et al., 2011) are capable

of finding new transcripts but limit the search to transcripts
having the same transcription start and termination site as
known transcripts. Although this significantly reduces the search

space and therefore allows simpler optimization techniques, it is
a biologically implausible restriction.
Scripture (Guttman et al., 2010) enumerates all potential

transcripts from a splicing graph and reports them in the result
file. Although this approach guarantees maximal sensitivity in
the case of unfiltered data, it is in general not feasible, and align-

ments have to be filtered stringently. The approach does not aim
to achieve specific results. IsoLasso (Li et al., 2011) and rQuant
(Bohnert et al., 2009) use the l1-norm to regularize transcript

abundance. This approach significantly reduces the number of
reported transcripts, but the choice of the regularizer is subopti-
mal, given that all abundance values are positive and the sum is

fixed. Thus, the regularizer does not sufficiently penalize a solu-
tion explaining the coverage with two similar transcripts
compared with a solution with only one transcript (compare

Mezlini et al., 2012).
CLIIQ (Lin et al., 2012) addresses this problem by applying an

integer linear programing approach to limit the number of iso-

forms expressed in any sample combined with an l1 loss on the
difference of observed and expected coverage. Athough this is
conceptually similar to the MITIE optimization problem with

respect to the integration of multiple samples, the formulation
has significant disadvantages. The number of integer variables in
the CLIIQ integer linear programing depends on the number of

potential isoforms, which increases exponential with the number
of exons. Thus, given S exonic segments, the theoretical runtime
of the algorithm is Oð22

S

Þ, and therefore stringent filters on the

read data and on the enumerated transcripts have to be applied
to prevent a combinatorial explosion.
The following approaches avoid the explicit enumeration of

transcripts using different techniques. Cufflinks reports the min-
imal number of transcripts such that each read alignment is
explained by at least one transcript. Although this parsimony

assumption reduces the computations significantly, it is violated
by many known genes, and it does not deal well with inaccurate
read alignments. We will discuss the benefits and drawbacks of

Cufflinks in more detail in Sections 4.1 and 4.2. Montebello
(Hiller and Wong, 2012) uses a probabilistic model to score
sets of transcripts and implements a probabilistic search strategy

to generate and modify transcript sets until a certain criterion is
reached. Although this strategy allows for a wide range of

functions to quantify the quality of a solution, it does not pro-
vide any guarantee of optimality. MITIE instead guides the

search using the branch and bound strategy and can therefore
avoid regions in the search space that cannot yield the optimal

solution.
De novo transcript assemblers have been proven useful in cases

where the reference genome is missing or of poor quality. They

have the additional advantage of treating alternative transcripts
and paralogous genes (resulting in multiple mappings for reads in

genome alignment) naturally the same way. The optimization
problem formalized by MITIE generalizes to solve transcript

prediction also in the de novo setting, and we show in Section

4 that the MITIE strategy is superior to the dynamic
programming-based strategy of Trinity. OASES follows a differ-

ent heuristic, which has been shown by the authors to be more
sensitive but less specific than the Trinity approach.

Trans-ABySS extends the genome assembly method ABySS

(Simpson et al., 2009) to cope with the high variation in local
read densities observed in RNA-Seq data. Like Cufflinks and

OASES, Trans-ABySS does not aim to explain the read data
quantitatively during the transcript prediction.

Given this context, the strategy of MITIE is comparable with
quantification methods like rQuant, NSMap, iReckon and

IsoLasso. The main distinctions are an improved loss function,

a parsimony regularizer and the ability of MITIE to avoid an
exhaustive enumeration of transcripts. The latter solves a com-

putational problem but raises difficulties of explicitely modeling
biases in the read count data with MITIE. As the improvements

in quantification accuracy achieved by explicitely modeling biases

have shown to be moderate [Using rQuant with an l2-loss func-
tion, an explicit model of the transcript length bias increased the

pearson correlation coefficient by 0.4–1.7 percentage points
(Bohnert, 2011, Table 3.1)], we decided not to incorporate this

into our model. To our knowledge, MITIE and Cufflinks are the

only approaches to RNA-Seq-based transcript identification that
can perform predictions with and without prior annotations. We

will outline the details of MITIE in the following section.

3 METHODS

MITIE can build a segment graph based on given alignments of RNA-

Seq reads to a genome or start with segment graphs obtained by other

means, in particular by de novo assembly. Building such graphs from

RNA-Seq data has been reported several times before (e.g. Denoeud

et al., 2008), and we only describe it briefly in Section 3.1 and

Supplementary Section B. In the following Sections 3.2–3.4, we describe

(i) the main aspects of core optimization problem, (ii) how to ensure the

construction of valid transcripts and (iii) give a probabilistic derivation of

our loss function. We then discuss how to take advantage of paired-end

reads, cope with multi-mapping reads and approximate the solution of

the optimization problem in Sections 3.5 and 3.6.

3.1 Constructing the splicing graph

We start by defining the boundaries of a region either based on annotated

genes or read coverage. If gene/transcript annotations are available, we

define regions within each annotated genic locus (see Fig. 1). Otherwise,

we define islands by identifying genomic regions that are connected by

fragment alignments (cf. Supplementary Section B). Each region may

contain exonic and intronic segments, and the splicing graph generation

is performed independently from other regions. This process is illustrated
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and described in more detail in Figure 1. The main emphasis of the graph

generation is completeness, whereas false information can be tolerated to

some extent (see end of Section 4.3 for discussion).

3.2 The core optimization formulation

Preliminaries We define segments as sets of neighboring genomic

positions corresponding to minimal entities of paths in the splicing

graph G ¼ ðS, IÞ with nodes (segments) S and edges (introns) I . A

segment s can be allowed to be used as the initial or terminal segment

in a transcript. This information is assumed to be given as

�ðsÞ ¼
1 s is initial
0 otherwise

�
and �ðsÞ ¼

1 s is terminal
0 otherwise

�
. The transcript

matrix U is defined as a k� S binary matrix, where S ¼ jSj and k is a

parameter determining the maximal number of transcripts returned by

the algorithm. Paths through the splicing graph G can be represented as a

binary vector of length S. Let P be the set of all valid paths, R the number

of RNA-Seq samples and Wr 2 ½0, 1�
k the (normalized) abundance

estimates for the k transcripts and sample r. Moreover, Cexp
r 2 R

S and

Iexpr 2 R
jIj are the expected segment read counts and intron confirmation

values (from spliced reads) for sample r under our model, respectively.

Analogously, Cobs
r and Iobsr correspond to observed segment and intron

counts for sample r.

The optimization problemUsing these definitions, the core of MITIE is

an optimization problem that can be formalized as:

minW, U
PR
r¼1

ðLðCexp
r ,Cobs

r Þ þ �1LðI
exp
r , Iobsr ÞÞ þ �2jjWjj0

s:t: Ut 2 P 8t 2 f1, ::, kg,
W 2 ½0, 1�k�R

U 2 f0, 1gk�S:

ð1Þ

For technical reasons, we use the normalized transcript abundance

Wr 2 ½0, 1�
k. However, without loss of generality, we can define the

maximal observed count as cg, r ¼ maxðCobs
r , Iobsr Þ, and then the expected

counts can be computed fromWr andU as Cexp
r ¼ cgU

TWr. Similarly, we

can compute the expected number of reads I
exp
ðs1, s2Þ, r

from sample r that

span from segment s1 to segment s2 for all ðs1, s2Þ 2 I as

I
exp
ðs1, s2Þ, r

¼ cg
Pk

t¼1 i
t
s1, s2
�Wr, t

� �
, where its1, s2 is a binary variable

indicating whether intron ðs1, s2Þ is part of transcript t. L is a loss function

(see Section 3.4) and jjWjj0 is defined as the number of non-zero rows in

W; hence, we only count transcripts that are quantified above zero in any

of the samples. �1 and �2 are hyper-parameters determining the trade-off

between the different terms [The hyper-parameters have to be tuned by

model selection to obtain the best performance. We provide useful default

settings using bayesian hyper-parameter optimization strategies (Snoek

et al., 2012; Rasmusen and Nickisch, 2010; cf. Supplementary Section J)].

A version of this optimization problem is illustrated in Figure 2.

3.3 Validity of paths and known annotations

We add several constraints onU to make the resulting transcripts paths in

the splicing graph. In particular, the constraints ensure that all feasible

transcripts start at initial segments (�ðsÞ ¼ 1), terminate at a terminal

segment (�ðsÞ ¼ 1) and uses only valid edges of the graph. The number

of constraints is OðSð1þQÞ þ jIjÞ, whereQ is the average of the number

of segments over-spanned by the longest intron edge starting at a specific

segment s but is not connected to s (see Supplementary Section L for

more details).

In cases where all transcripts are known a priori, we can keep the

transcript matrix U fixed and only optimize over the abundance vector

W. This is still a mixed integer optimization, as the sparsity term jjWjj0
needs integer variables. If some transcripts are known and others are not,

we can fix parts of the U matrix correspondingly. We then penalize the

selection of new transcripts higher than the selection of known tran-

scripts, thereby only predicting additional transcripts if the observed

read coverage cannot be well explained by known transcripts.

3.4 The loss function

A commonly used loss function is the sum of squared deviations between

expected and observed values (‘2-loss, see for instance, Bohnert et al.,

2009; Li et al., 2011), i.e.
PS

s¼1 ðC
exp
s � Cobs

s Þ
2. The choice of the loss

function, however, reflects assumptions on the variance of the measure-

ments (e.g. Nelder and Wedderburn, 1972). The underlying assumption

of penalizing the quadratic deviation is that the measurement is Gaussian

distributed with mean equal to the true abundance of the mRNA and

variance constant for all expression levels. It was previously observed (e.g.

Anders and Huber, 2010; Drewe et al., 2012) that a negative binomial

distribution with a standard deviation dependent on the mean of the

observation is a better model for the distribution of read count data.

We therefore make use of this distribution to define the log-likelihood-

based loss function. In addition, we model background noise stemming
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0.5
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0.5
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1   2       3     4     5         6       7

1                     ...                      S
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Fig. 2. Illustration of the core optimization problem of MITIE. The transcript matrix U (bottom left) and abundance matrix W (bottom center) will be

optimized such that the implied expected read coverage of the k valid transcripts (bottom right) matches the observed coverage (top right) well. Validity

of the transcripts is ensured by appropriate constraints derived from the segment graph (top left). We illustrate the case of two samples. For each sample,

we have abundance estimates W for each of the k¼ 4 transcripts. The identity of the transcripts, i.e., the rows of U, is shared among the samples. By

Occam’s razor principle, we implement a trade-off between loss between the observed and expected coverages and the number of used transcripts, i.e.

number of rows in W with non-zero abundances
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from false alignments or incomplete RNA processing using a Poisson

distribution with fixed mean l.
We define the likelihood of observing a count V in dependence of the

unknown expected count V� as follows

pMðVjV
�Þ ¼

XV
x¼0

pPðxj�Þ � pN V� xjV�, ð1þ �1ÞV
� þ �2V

�2
� �

,

where pPð�j�Þ is the probability under the Poisson distribution with

mean l, and pNð�jV
�, ð1þ �1ÞV

� þ �2 � V�
2

Þ is the likelihood under the

negative binomial distribution with mean V� and variance

ð1þ �1ÞV
� þ �2V

�2 . The choice for parameters �1, �2 � 0 depends on

the extent of biases present in the RNA-Seq library. These parameters

can be estimated for a given RNA-Seq library based on single transcript

genes (see Supplementary Section D for more details).

We assume deviations being independent between the segments and

can thus define the negative log-likelihood L̂ðCexp,CobsÞ for all segments

in sample r as follows:

� log
YS
s¼1

pM ðC
obs
r, s jC

exp
r, s Þ

 !
¼ �

XS
s¼1

logðpM ðC
obs
r, s jC

exp
r, s ÞÞ:

3.5 Exploiting paired-end reads

There are a number of ways to exploit paired-end reads. We chose a

simple and efficient approach and incorporate paired end data into

MITIE as follows: For each pair of segments ðs1, s2Þ, Ns1, s2, r stores the

number of read pairs, where one read overlaps segments s1 and the other

read overlaps segment s2 in sample r. We then add the penalty term

�3 �
PR

r¼1 Pr to the objective function where

Pr ¼
X
ðs2, s2Þ

Ns1, s2, r �
Yk
t¼1

ð1�Us1, t �Us2, tÞ

This prefers solutions in which combinations of segments supported by

paired-end reads are part of a predicted transcript. A straightforward

extension of this strategy also allows for integration of partial transcript

information. This provides an efficient way to directly integrate

information from ESTs or third-generation sequencing platforms (see

e.g. Rasko et al., 2011).

3.6 Solving the optimization problems

Optimal solutions by mixed-integer programming For certain classes of

mixed integer optimization problems, fast solver implementations are

available that guarantee to find the optimal solution. An important

requirement is that the relaxed version of the problem (allowing real

values for integer variables) can be solved efficiently. This allows the

use of branch and bound techniques. The combinatorial tree defined by

the different choices of integer variables is traversed, and on each node,

the relaxed optimization problem has to be solved. As the relaxed

solution is always a lower bound (in the minimization case) of the integer

solution, the result of the relaxed optimization can be used to prune

branches from the combinatorial tree, which cannot contain the optimal

solution. In the current study, we used CPLEX (http://bioweb.me/cplex)

to solve the mixed integer optimization problems.

Piece-wise quadratic loss function For efficient optimization, we

approximate the log-likelihood term � logðpMðC
obs
s jC

exp
s ÞÞ using a piece-

wise quadratic proxy function lðCobs
s ,Cexp

s Þ with the property that it is

convex and has the same global minimum as � logðpMðC
obs
s jC

exp
s ÞÞ (which

is reached at Cobs
s ¼ Cexp

s ). See Supplementary Section K for details on

estimating lð�, �Þ. We then use this proxy function to define our loss

function:

LðCexp,CobsÞ ¼
XS
s¼1

lðCobs
s ,Cexp

s Þ:

We will further refer to this loss function as the approximate negative

binomial loss or gNB-loss.

Iterative approximations The run-time of the branch and bound algo-

rithm depends on how widespread the near optimal solutions are in the

combinatorial tree and how branched, i.e. complex, the tree is. The former

can be addressed to a certain extend by eliminating equivalent solutions if

possible (cf. Supplementary Section L). The complexity of the search tree

can be reduced using constraints to exclude transcripts that are not paths

in the splicing graph. However, it might become necessary to search

distant parts of the tree to find the optimal solution, in particular when

the number of samples is insufficient to exactly determine the solution (cf.

Section 4.1). We found that we can obtain good approximations to (1), if

we iteratively solve it in the following way: We first solve it for one new

transcript (and available annotated ones). This speeds up computation

significantly, as the number of free integer variables in U is S instead of

k� S. Moreover, the complexity of the combinatorial search space is

significantly reduced. Once we found the first transcript, we fix the U

variables for this transcript, keepW free and find a new transcript with a

row of free U variables. This strategy significantly speeds up the opti-

mization, and we did not notice a significant reduction in prediction

accuracy.

3.7 Confidence quantification for transcript calls

Given a set of k transcripts, we are interested in the importance of each

transcript for explaining the total RNA-Seq data. We make use of a

likelihood-ratio test (Huelsenbeck and Crandall, 1997) to quantify the

confidence in each predicted transcript t. We compute the test statistic:

T ¼ �2ln
~pðDjMÞ

~pðDjMtÞ

� �
; ð2Þ

Where ~pðDjMÞ is the approximate likelihood of observing the read dataD

under our model M based on all k transcripts and ~pðDjMtÞ is the ap-

proximate likelihood when restricting the quantification value of tran-

script t to zero. To compute this, we solve the quantification task k times

using all transcripts from the transcript inference step and set the quan-

tification value of transcript t to zero. We compute the objective function

setting all regularization parameters to zero. We assume the test statistic

to be �2- distributed with df ¼ k� ðk� 1Þ ¼ 1 degrees of freedom and

compute a P-value for each transcript. This strategy allows us for ex-

ample to estimate the probability that a newly predicted transcript ex-

plains features of RNA-Seq data that cannot be explained by known

annotated transcripts.

3.8 A test for differential transcript expression

Similar to the strategy in the previous section, we can also perform a test

for differential transcript expression in two samples. We compute the like-

lihood of a model that quantifies a set of k transcripts independently, and

the likelihood of a model that quantifies the transcripts identically in the

two samples. We can then compute the log-likelihood ratio as test-statistic

and apply the �2-test with df¼ k degrees of freedom. It is straightforward

to apply this test only to a subset of the transcripts. One can also extend this

strategy to take replicates into account. There are a few other approaches

for testing for differential transcript expression (Anders et al., 2012; Drewe

et al., 2012; Katz et al., 2010), and it goes beyond the scope of this work to

provide a thorough comparison with these methods.

3.9 Multi-mapper optimization

The quantification of RNA-transcripts is strongly affected by reads that

map to multiple locations on the genome (multi-mapped reads; cf. Section

4.2.2, for results). Predicting transcripts is even harder, and one can there-

fore assume that appropriate handling of multi-mapped reads can lead to

significant improvements.
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Our strategy is based on the multi-mapper-resolution (MMR)

approach [Kahles and Rätsch personal communication: For each read

with multiple possible mapping location MMR decides for the location,

such that the variance in read coverage is minimized.] that decides on the

read coverage distribution how to optimally choose one of several am-

biguous alignments. We augmented MMR now referred to as MMO

(Multi Mapper Optimization) to take the predicted transcripts and

their abundance estimates into account. Given the latter, we can compute

the expected read coverage throughout the genome. For each read with

multiple mapping locations, we can then determine which mapping loca-

tion would lead to the smallest loss over all genes in the genome [cf. (1)].

This approach has the conceptual advantage that minimizing the same

loss in the core optimization step and in the multi-mapper optimization

step is a consistent way of integrative RNA-Seq analysis. As MMO de-

pends on transcript predictions and abundance estimates, it needs to be

run multiple times in conjunction with solving the MITIE core optimiza-

tion problem in an expectation-maximization-like manner. We describe

more details of this approach in Supplementary Section F.

4 RESULTS

4.1 An illustrative simulation study

We start by considering a specific case of transcript inference to

illustrate the limits of transcript identification from a single sam-
ple and to show how multiple samples can help identifying com-

monly expressed transcripts. In Figure 3A, we consider a splicing
graph encoding three exons skips leading to eight possible tran-

scripts. The task is to determine which transcripts are expressed.
We consider multiple samples and assume that the same small set

of transcripts is expressed in all samples but with different abun-
dances (including the possibility of zero abundance).
This problem can be reduced to solving systems of linear equa-

tions (Lacroix et al., 2008). If a system of equations is solvable,
then the corresponding set of transcripts can fully explain the

observed read coverage (see Supplementary Section G; for

simplicity, we ignore statistical fluctuations and use exact, i.e.

expected, quantities). In case of multiple samples, we identify

the sets of transcripts that are consistent with all samples (inter-

section of the sets of sets of transcripts). If only one such set of

transcripts remains, then we can be sure to have found the cor-

rect solution (‘identifiable’). If several sets remain, the best strat-

egy is to randomly select one set out of the possible ones

(‘optimal strategy’).
It turns out inference for the considered example becomes in-

creasingly more difficult, the more transcripts are expressed

(Fig. 3B). If only one transcript is expressed, all strategies always

find the correct answer. If two of the eight transcripts are

expressed, it is theoretically always possible to identify them cor-

rectly. Also, Cufflinks andMITIE often identify the correct set of

transcripts (see Fig. 3B, top). Repeating the same experiment for

three expressed transcripts, the observations change completely.

Only in 16 and 60% of the cases, there is exactly one solution or

the optimal algorithm identifies the correct one (one sample),

respectively. The success rate increases significantly with the

number of samples (88 and 95%). The accuracy of MITIE is

close to the optimum and better than the optimal conservative

algorithm. Cufflinks finds the correct three transcripts in only

2% of the runs, which comes close to randomly guessing three

of eight (1.78%) (see Fig. 3B, middle). If four of eight transcripts

are expressed, Cufflinks never finds the correct solution, whereas

MITIE performs comparable with the optimal strategy (cf.

Fig. 3B, bottom) (Cufflinks was run on merged samples, as the

Cufflinks/Cuffmerge combination as described in Section 4.2 did

perform worse).

4.2 Results for simulated human reads

4.2.1 Read simulation A major obstacle for the evaluation of

tools for transcriptome reconstruction is the lack of a gold
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Fig. 3. (A) Example with four samples of simulated reads. All four samples express the same four transcripts (marked with asterisks) with different

relative abundances. The different relative abundances lead to distinct coverage patterns in the alternative regions. (B) We randomly selected 2 (top), 3

(middle) and 4 (bottom) transcripts and simulated four samples RNA-Seq reads each. For each sample, we uniformly redistributed the abundance

between the selected transcripts. We then predicted transcripts with different methods. The prediction was counted as correct if all transcripts were

exactly matched and no additional transcripts were predicted. To obtain more robust measurements, we repeated the whole procedure 50 times and

report the mean number of correct predictions for each method
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standard set of RNA-Seq libraries and known expressed tran-

scripts. Simulated reads have the advantage that we can evaluate

different aspects of predictions, which we would not be able to

observe in reality. They are therefore an important part in
evaluating many RNA-Seq-based algorithms. To obtain realistic

RNA-Seq read alignments, we (i) randomly draw the transcript

abundances in multiple samples, (ii) used the FluxSimulator

(Griebel et al., 2012) to incorporate typical biases from library

preparation and sequencing, (iii) introduced errors into the gen-
erated reads and (iv) mapped the generated reads against the

whole genome (see Supplementary Section A for more details).

For this study, we generated simulated reads for a set of 1000

human genes with 8592 transcripts in total. The first 500 genes

were used to tune hyper-parameters for all compared methods.
Reported results correspond to the performance on the second

set of 500 genes.

4.2.2 Quantification, loss functions and multi-mapper

resolution Figure 4A illustrates the effect of different loss func-
tions on the Pearson correlation of predicted and ground truth

transcript abundances. Similar to MITIE’s loss function (gNB-

loss), we implemented a quadratic proxy function for the nega-
tive log-likelihood under the model of Poisson-distributed reads

( ~P-loss). The gNB-loss generally gives more accurate results than

the ~P-loss and the ‘2-loss. Both the ~P-loss and gNB-loss are sig-

nificantly more robust to erroneous data (for instance, spurious

alignments when allowing more mismatches) than the ‘2-loss
(For independence of hyper-parameters, we only use the exon

coverage). The correlation of Cufflinks quantification values is

significantly lower and less robust to noise (cf. Supplementary

Fig. E) (We computed the correlation based on the lower

confidence interval reported by Cufflinks, which has higher cor-

relation to the true abundance than the estimated abundance

value itself). Bohnert (2011) performed a thorough comparison

of different quantification strategies including Cufflinks Trapnell

et al. (2010) and MISO (Katz et al., 2010) with and without bias

correction and found that the effect of bias correction are often

minor.
We also investigated the effect of multi-mapper handling on

the quantification performance (Fig. 4B). For this experiment,

we used the full set of MITIE features as described earlier in the

text and the gNB-loss. We observe that using all features, the

quantification is much more robust with respect to noise in the

reads. Moreover, by using MMO (see Section 3.9), one can sig-

nificantly improve the quantification. After resolving multi-map-

pers with MMO, the quantification improves even beyond less

stringent filtering.

Finally, we evaluated how indicative the confidence value

based on the likelihood-ratio test (Section 3.7) is for a transcript

to be expressed. We find that among the 4718 non-zero

quantified transcripts with P50.1, we have 86% correct tran-

scripts with non-zero simulated expression, whereas of 326 tran-

scripts with P� 0.1, we find 44% correct predictions. This result

shows that the confidence values accurately indicate cases with

possible alternative explanations. We argue that it is more favor-

able to use the confidence values for filtering transcripts than the

frequently used filtering based on relative or absolute abundance

estimates because ambiguities might originate from the topology

of the splicing graph and may therefore be independent of the

expression level. This is supported by a relatively low Pearson

correlation between predicted relative transcript abundance and

P-values of only 0.18, indicating that the likelihood-ratio test

adds additional information about the topology of the graph

that cannot be retrieved from the predicted abundance alone.

4.2.3 Accuracy of transcript prediction (MITIE and

Cufflinks) For most genes of many organisms, we know a sub-
set of transcripts in advance. The known transcripts are likely the

ones with the highest expression level as those are easiest to

identify by traditional annotation strategies. To test the accuracy

for this realistic scenario, we omit the information of all tran-

scripts, except the one that has the highest simulated abundance.

We ran both MITIE and Cufflinks, given only this one annotated

transcript and the RNA-Seq reads from a larger set of transcripts

to predict transcripts. We compare transcript-level sensitivity and

specificity of the predictions relative to all known transcripts. We

counted transcripts as being correct, if the intron structure

matched the one of an annotated transcript. Single exon tran-

scripts were counted as being correct if they overlapped with an

annotated single exon transcript. Each prediction was matched

to at most one annotated transcript, and each annotated tran-

script was associated to at most one predicted transcript (cf.

Section Supplementary Section J.1).

The results for one to five samples are shown in Figure 5A.

For Cufflinks, we optimized the hyper-parameters (see

Supplementary Section H) and used two different strategies to

perform predictions. The first strategy merged all RNA-Seq

alignments, and the second strategy merged individual

Cufflinks predictions for each of the samples with Cuffmerge.

We observe that the latter strategy outperforms the data merge
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Fig. 4. (A) MITIE quantification results for the three different loss func-

tions gNB, ~P and ‘2-loss. We consider stringent (0 mismatches) and liberal

read alignments (up to 5 mismatches), leading to fewer or more multi-

mapping reads, respectively. (B) MITIE quantification results with gNB-

loss, when considering ground truth alignments, all multiple alignments,

or after multi-mapper handling with MMO (see Section 3.9)
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strategy, but both strategies cannot benefit from additional sam-

ples. This is mostly attributed to a drastically decreasing specifi-

city, whereas the sensitivity improves with more samples (cf.

Supplementary Fig. D). MITIE with MMO outperforms the

best Cufflinks prediction on average by 6.7 percentage points

in F-score. MITIE/MMO on five samples is 2.4% more accurate

than with one sample. We observe that the significant improve-

mentsMMO contributes in quantification accuracy to not trans-

late to similarly high transcript recognition improvements. We

attribute this to the robustness of the loss function.

4.2.4 Comparison to Trinity On the same set of simulated reads,
we also compared the core optimization of MITIE to the tran-

script calling method Butterfly, which is part of the Trinity pipe-

line. We ran the entire Trinity pipeline and then generated

MITIE predictions based on the graphs reported by the Trinity

component Chrysalis.
We evaluated the performance of both methods by aligning

predicted mRNA sequences to the annotated mRNA sequences.

A prediction was counted to be correct if (i) it was 	 1% longer

than the annotated transcript and (ii) the region 20 nt upstream

of the first exon–exon junction to 20 nt downstream of the last

exon–exon junction aligned with at most five edit operations to

the reference sequence (For efficiency reasons, we ran the entire

experiment for each gene separately on a FASTA file only con-

taining the simulated reads, as they were simulated from this

genic locus without mismatches.). In its current implementation,

Trinity is not capable of integrating multiple samples. Therefore,

we compared the results using only a single sample. We per-

formed a model selection to tune hyper-parameters of Trinity

and observed that the parameter determining the merging/

splitting behavior of components (–min_glue) strongly influences

the performance of Trinity. If –min_glue¼ 1 predictions are more

sensitive but approximately 15 percentage points less specific

compared to the performance with –min_glue¼ 2 (default). For

both sets of predictions, we selected Pareto-optimal predictions

and ran MITIE on the corresponding graphs. The MITIE core

optimization problem outperforms Butterfly significantly in

terms of sensitivity while having similar or higher specificity

(cf. Fig. 6).
As Trinity applies stringent filtering in the Inchworm step, the

obtained segment graph does not contain all true transcripts.

From our results on genome-based assembly, we expect even

higher performance gains with a more sensitive graph generation

algorithm. Furthermore, we expect improvements from multiple

samples, which can theoretically be used in the same way as in

genome-based assembly.

4.3 Application to modENCODE RNA-Seq libraries

4.3.1 Setup To show that the performance improvements we
have seen on simulated data translate to large-scale experimental

datasets, we applied MITIE to a dataset of seven developmental

stages of D.melanogaster (550 M alignments from 38 RNA-Seq

libraries for seven developmental stages). We filtered the

modENCODE D.melanogaster genome annotation (available

from the MITIE website) for genes with at least two annotated

transcripts. We then randomly removed one transcript variant (a

transcript differing in splice structure to all other transcripts),

which had a non-zero Cufflinks quantification value. We dis-

carded genes where no such transcript could be found. From

the remaining genes, we randomly selected 1000 genes for tuning

the hyper-parameters and 1000 genes for testing. This setup

retrospectively simulates the identification of new transcripts in

already well-annotated genomes (as in Section 4.2.3).

4.3.2 Results We evaluated the sensitivity of MITIE and

Cufflinks based on the omitted transcripts and the specificity

with respect to all annotated transcripts. Figure 5B shows a com-

parison of the F-score as a function of the number of samples.

MITIE outperforms the best (in terms of F-score) Cufflinks pre-

diction in sensitivity and specificity. Similar to the simulated

data, the merge of the Cufflinks predictions using Cuffmerge sig-

nificantly outperforms the Cufflinks prediction on merged data

(not shown). Although having a similar performance for large

sample numbers, MITIE has a much higher F-score on up to five
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Fig. 5. (A) Transcript-level F-score as a function of the number of sam-

ples for the simulated human dataset. (B) Transcript-level F-score as a

function of the number of modENCODE samples for up to seven devel-

opmental stages of D.melanogaster

Fig. 6. Cycles show a subset of Trinity model selection runs. We selected

the best performing predictions for different trade-offs of sensitivity and

specificity. We ran MITIE predictions on the De Bruijn graphs generated

by trinity. Dotted lines connect the corresponding predictions
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samples. This is mostly due to a higher sensitivity at a similar

specificity.
We estimate the runtime for Cufflinks andMITIE for genome-

wide predictions and obtain four and 19 CPU hours for one

sample, respectively (see Supplementary Section E for details).

Using multiple samples significantly increases the computing

time as well as the accuracy. Future releases of the software

will provide more efficient strategies and implementations.
As we used the alignment files provided by Celniker et al.

(2009), we had no control over the quality or sensitivity of the

alignments and multi-mapper resolution. Our results on

simulated data let us expect an even higher performance for

more sensitive alignments and appropriate multi-mapper

handling.

5 CONCLUSION

The transcript prediction problem is typically under-determined.

One important consequence of this observation is that deeper

sequencing only helps to reduce the variance of abundance esti-

mation and to close gaps in the splicing graph, but it does not

solve the transcript identification problem as such. The proposed

method reduces the set of solutions by leveraging quantitative

information and multiple RNA-Seq samples combined with mild

biologically plausible assumptions. Furthermore, prior informa-

tion can be taken into account in a direct way within a single

optimization problem, which we think will turn out particularly

advantageous for integrating long reads from third-generation

sequencing platforms with RNA-Seq data.

Our results highlight the importance of a well-motivated loss

function to penalize the read count deviation. The application of

the gNB-loss significantly improved our quantification and tran-

script recognition results, while it comes at nearly zero additional

computational cost.
The underlying assumption of previously published transcript

calling strategies like Cufflinks and Trinity is correctness and

completeness of the graphs. Achieving both at the same time is

challenging and typically not possible. This results in either

wrong transcript predictions that have to be filtered out heuris-

tically or in fragmented transcript predictions. MITIE assumes

completeness of the graph, but not correctness. Completeness

can often be achieved by not filtering the input alignments or

not pruning the assembly graph. The decision of filtering can be

deferred to the optimization problem that may choose to discard

information in a context-dependent way. This is conceptually

more attractive than global and uninformed filtering as a pre-

processing step.
MITIE finds a solution that is compatible to the overall

observed read data. As observed on simulated and real world

RNA-Seq data, MITIE pushes the boundaries of what can be

observed from RNA-Seq data toward more complex mixtures of

transcripts by leveraging variability between samples. These im-

provements come with the downside of higher computational

costs; however, the vast majority of cases can be optimally

computed within seconds, and our implementation provides op-

tions for approximations in cases where exact computations are

too expensive. Furthermore, our experiments clearly show that

we can obtain the same performance as competing methods with

only a fraction of the data, which in turn can save the time,

money and storage capacity of deeper sequencing.
MITIE allows us to pool information from different samples

in an effective way. This conceptual improvement will further

future RNA-Seq studies; rather than spending efforts into deep

sequencing of a few samples, future studies will have the choice

to investigate a larger variety of samples at a lower depth. The

combination of these samples allows us to obtain more confident

transcript predictions in each sample and more insights into the

biological questions at the same time.
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lib.uni-tuebingen.de/volltexte2011/5918/pdf/Dissertation_Regina_Bohnert.pdf.

Bohnert,R. et al. (2009) Transcript quantification with RNA-Seq data. BMC

Bioinformatics, 10 (Suppl. 13), P5.

Bradley,R.K. et al. (2012) Alternative splicing of RNA triplets is often regulated and

accelerates proteome evolution. PLoS Biol., 10, e1001229.

Celniker,S. et al. (2009) Unlocking the secrets of the genome. Nature, 459, 927–930.

Coffey,A.J. et al. (2011) The gencode exome: sequencing the complete human

exome. Eur. J. Hum. Genet., 19, 827–31.

De Bona,F. et al. (2008) Optimal spliced alignments of short sequence reads.

Bioinformatics, 24, i174–i180.

Denoeud,F. et al. (2008) Annotating genomes with massive-scale RNA sequencing.

Genome Biol., 9, R175.

Dobin,A. et al. (2012) Star: ultrafast universal RNA-Seq aligner. Bioinformatics, 29,

15–21.

Drewe,P. et al. (2012) Accurate detection of differential rna processing. Nucleic

Acids Res., 41, 5189–5198.

ENCODE Project Consortium et al. (2012) An integrated encyclopedia of dna

elements in the human genome. Nature, 489, 57–74.

Flicek,P. et al. (2012) Ensembl 2012. Nucleic Acids Res., 40, D84–D90.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-Seq

data without a reference genome. Nat. Biotechnol., 29, 644–652.

Griebel,T. et al. (2012) Modelling and simulating generic RNA-Seq experiments

with the flux simulator. Nucleic Acids Res., 40, 10073–10083.

Guttman,M. et al. (2010) Ab initio reconstruction of cell type-specific transcrip-

tomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat.

Biotechnol., 28, 503–510.

Harrow,J. et al. (2006) Gencode: producing a reference annotation for encode.

Genome Biol., 7 (Suppl. 1), S41–9.

Heber,S. et al. (2002) Splicing graphs and est assembly problem. Bioinformatics, 18

(Suppl. 1), S181–S188.

2537

MITIE: Transcript identification and quantification in multiple samples

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt442/-/DC1
Since
,
which
s
,
.
,
very 
http://tobias-lib.uni-tuebingen.de/volltexte2011/5918/pdf/Dissertation_Regina_Bohnert.pdf
http://tobias-lib.uni-tuebingen.de/volltexte2011/5918/pdf/Dissertation_Regina_Bohnert.pdf


Hiller,D. and Wong,W. (2012) Simultaneous isoform discovery and quantification

from RNA-Seq. Stat. Biosci., 1–19.

Huelsenbeck,J.P. and Crandall,K.A. (1997) Phylogeny estimation and hypothesis

testing using maximum likelihood. Annu. Revi. Ecol. Syst., 28, 437–466.

Jean,G. et al. (2010) RNA-Seq read alignments with palmapper. Curr. Protoc.

Bioinform., 32, 11.6.1–11.6.38.

Katz,Y. et al. (2010) Analysis and design of rna sequencing experiments for iden-

tifying isoform regulation. Nat. Methods, 7, 1009–1015.

Lacroix,V. et al. (2008) Exact transcriptome reconstruction from short sequence

reads. In: Proceedings of the 8th International Workshop on Algorithms in

Bioinformatics. WABI ’08. Springer-Verlag, Berlin, Heidelberg, pp. 50–63.

Li,W. et al. (2011) Isolasso: a lasso regression approach to RNA-Seq based tran-

scriptome assembly. In: Bafna,V. and Sahinalp,S. (eds) Research in

Computational Molecular Biology. Vol. 6577, Lecture Notes in Computer

Science. Springer, Berlin Heidelberg, pp. 168–188.

Lin,Y.Y. et al. (2012) Cliiq: accurate comparative detection and quantification of

expressed isoforms in a population. In: Raphael,B. and Tang,J. (eds) Algorithms

in Bioinformatics. Vol 7534 Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg. pp. 178–189.

Mezlini,A.M. et al. (2012) iReckon: simultaneous isoform discovery and abundance

estimation from RNA-Seq. Genome Res., 23, 519–529.

Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by

RNA-Seq. Nat. Methods, 5, 621–628.

Nelder,J. and Wedderburn,R. (1972) Generalized linear models. J. R. Stat. Soc. 135,

375

Nilsen,T.W. and Graveley,B.R. (2010) Expansion of the eukaryotic proteome by

alternative splicing. Nature, 463, 457–463.

Rasko,D.A. et al. (2011) Origins of the e. coli strain causing an outbreak of hemo-

lytic-uremic syndrome in Germany. N. Engl. J. Med., 365, 709–17.

Rasmusen,C.E. and Nickisch,H. (2010) Gaussian processes for machine learning

(gpml) toolbox. J. Mach. Learn. Res., 11, 3011–3015.
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