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Abstract. Glioblastoma multiforme (GBM) is the most aggres‑
sive and lethal primary glial brain tumor. It has an unfavorable 
prognosis and relatively ineffective treatment protocols, with 
the median survival of patients being ~15 months. Tumor 
resistance to treatment is associated with its cancer stem 
cells (CSCs). At present, there is no medication or technolo‑
gies that have the ability to completely eradicate CSCs, and 
immunotherapy (IT) is only able to prolong the patient's life. 
The present review aimed to investigate systemic solutions for 
issues associated with immunosuppression, such as ineffective 
IT and the creation of optimal conditions for CSCs to fulfill 
their lethal potential. The present review also investigated the 
main methods involved in local immunosuppression treatment, 
and highlighted the associated disadvantages. In addition, 
novel treatment options and targets for the elimination and 
regulation of CSCs with adaptive and active IT are discussed. 
Antagonists of TGF‑β inhibitors, immune checkpoints and 
other targeted medication are also summarized. The role of 
normal hematopoietic stem cells (HSCs) in the mechanisms 
underlying systemic immune suppression development in 
cases of GBM is analyzed, and the potential reprogramming 
of HSCs during their interaction with cancer cells is discussed. 
Moreover, the present review emphasizes the importance of 
the aforementioned interactions in the development of immune 
tolerance and the inactivation of the immune system in 
neoplastic processes. The possibility of solving the problem of 
systemic immunosuppression during transplantation of donor 
HSCs is discussed.
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1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive 
and lethal primary brain tumor (1). Globally, it constitutes 
>50% of all diagnosed glioma cases and 20% of all central 
nervous system (CNS) tumors. In Europe and North America, 
the frequency of GBM is 3‑5 cases per 100,000 individuals, 
mostly affecting non‑Hispanic males (2). Notably, the average 
age of affected patients is 62 years. The tumor is characterized 
by invasive growth, intensive angiogenesis and an unfavorable 
prognosis. When following a modern protocol of complex 
treatment, the median survival of patients is ~15 months (1,3). 
GBM radiation resistance is attributed to plasticity and marked 
proliferation abilities of cancer stem cells (CSCs), which are 
the main catalyst of neoplastic processes. Irradiation and 
chemotherapy are unable to eliminate CSCs effectively (4); 
thus, development of fundamentally novel approaches to GBM 
treatment are required, and immunotherapy (IT) has great 
potential.

IT has demonstrated a high level of efficiency in treating 
hemoblastoses, melanomas, lung, prostate and bladder 
cancer (5). IT effectively damages CSCs, disrupts their interac‑
tion with local cellular microsurroundings and the extracellular 
matrix (ECM), and controls further actions of CSCs, such as 
inhibiting the interaction between non‑tumor cells and CSCs, 
thereby suppressing tumor progression and prolonging the 
patients' life. However, unlike other cancer types, GBM is 
protected from direct interaction with the immune system 
by the blood‑brain barrier (5,6). GBM cells do not express 
numerous unique antigens, create immunosuppressive micro‑
surroundings, and express anti‑inflammatory cytokines and 
inhibitors of the immune checkpoint (6), thereby affecting the 
immune response. The ability of these cells to suppress the 
immune system locally classifies GBM as a ‘cold’ tumor that 
is almost completely resistant to IT.

On the other hand, high radiation doses and chemotherapy 
inevitably cause myelosuppression (7), followed by severe 
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systemic immunodeficiency (8) that is intensified by glucocor‑
ticosteroids (9), which are used for preventing cerebral edema 
during all stages of GBM treatment. A combination of local 
and systemic immunosuppression limits the antitumor poten‑
tial of IT, and interferes with its ability to control CSCs (7‑9). 
Thus, a novel systemic approach to GBM treatment is required, 
that combines classic methods of antitumor therapy, IT and 
innovative biomedical technologies that would be aimed at 
overcoming local and systemic immunosuppression.

The present study aimed to review systemic solutions for 
the issues associated with immunosuppression that interfere 
with the antitumor potential of cell‑based IT used in patients 
with GBM.

2. Summary on GBM

The majority of patients with GBM require surgery to achieve 
brain decompression, minimize hydrocephalus and lower 
the risk of fatal complications (10). Using microsurgical 
equipment, modern neuro‑navigation and intra‑operative 
neuro‑monitoring increases the chances of effective tumor 
removal, and minimizes the risk of damaging key functioning 
areas of the brain (11). However, GBM eradication via surgery 
is not possible due to brain tissue infiltration with cancer cells; 
therefore, the main treatment focus is chemoradiotherapy (12).

Traditionally, γ‑radiation of 60 Gy is used, including 
2 Gy daily at 30 fractions for 6 weeks (13), together with 
chemotherapy, where temozolomide (TMZ) is considered the 
gold standard for the treatment of GBM. Treatment options 
may be extended by combining γ‑radiation with proton (14) 
or boron neutron capture therapy (15), the use of hyperbaric 
oxygen therapy, consuming a ketogenic diet or pharma‑
cological support with Olaparib (16), kynurenine pathway 
metabolites (17) or other inducers of genomic instability (18). 
Tumor‑treating fields increase the treatment effect (11,19) and 
improve the patient's condition.

Current treatment options for GBM are relatively ineffec‑
tive. In the majority of cases, despite the efforts of medical 
experts, tumor relapse occurs in 4‑6 months following 
removal (20). In the case of recurrent GBM, patients with ~70 
on the Karnofsky Performance Scale and 0‑1 on the Eastern 
Cooperative Oncology Group scale may be reoperated (21). 
Further rounds of irradiation are rarely used; however, 
brachytherapy and radiosurgery are considered promising 
options (22). Chemotherapy may help extend a patient's life, 
and TMZ or lomustine are often used with bevacizumab (23). 
Treatment with procarbazine, lomustine, vincristine and plat‑
inum‑based medications (24) remain limited. Best supportive 
care is recommended for all patients with recurrent GBM, 
as the associated prognosis is unfavorable, and the median 
survival is ~15 months (25) due to the coordinated combina‑
tion of local factors and systemic mechanisms.

3. Treatment resistance factors

At the genomic level (26), treatment resistance is caused by 
a unique range of genetic mutations, including the loss of 
heterozygosity on human chromosome 10q, the homozygous 
deletion of p16INK4a and mutations in Rb and TP53 genes, 
cyclin‑dependent kinases and the tyrosine kinase signaling 

pathway. Based on the aforementioned genetic mutations shown 
in The Cancer Genome Atlas (27), four subtypes of GBM have 
been defined: Proneural, neural, classical and mesenchymal. 
The first subtype is characterized by the hyperexpression of 
transcription factor SOX2, oligodendrocyte transcription factor 
2 and platelet‑derived growth factor genes. The second subtype 
is characterized by the expression of glial cell‑derived neuro‑
trophic factor, brain‑derived neurotrophic factor, insulin‑like 
growth factor 1 and other neuron‑related genes. The third 
subtype is characterized by mutations in the EGFR gene, and 
mutations in the neurofibromin gene are found in the fourth 
subtype. For the last 10 years, this classification system has 
expanded based on the data from genome‑wide association 
studies (28,29), and significant differences in the molecular 
landscapes of cancer cells in primary and recurrent tumors (30) 
have been described, indicating a high plasticity of GBM cells.

Cancer cell plasticity is mostly due to epigenetic damage. 
Notably, in 2016 the World Health Organization (25) selected 
the isocitrate dehydrogenase (IDH)1\2 mutations as the 
main determinant of prognosis for patients with GBM, as 
these mutations result in an excess of 2‑hydroxyglutarate in 
cancer cells that causes hypermethylation of the genome (31). 
This includes hypermethylation of the promoter regions of 
O6‑methylguanine‑DNA methyltransferase, which is respon‑
sible for the repair of damaged DNA and the subsequent 
adaptation to radiation and chemotherapy. The IDH‑mutant 
GBM often affects patients of a young age, developing from a 
diffuse or anaplastic astrocytoma and becoming localized in 
the frontal cortex (32). The IDH‑wild‑type GBM constitutes up 
to 90% of cases, develops de novo, and is localized in parietal, 
occipital or temporal areas of the brain. The median survival 
of patients with IDH‑mutant GBM is 23 months, and for those 
with IDH‑wild‑type GBM is 13 months.

At the cellular level, treatment resistance is associated 
with CSCs (33) that have a large combination of genetic and 
epigenetic alterations. These cells were initially discovered in 
1997, when Bonnet and Dick (34) described the cell hierarchy 
of acute myeloid leukemia based on a primitive CSC. These 
cells have since been described for lung (35), breast (36), 
ovarian (37) and colon (38) cancer, GBM and other malignant 
tumors. CSCs are characterized by plasticity (39), are capable 
of infinite self‑renewal and have the highest proliferation 
rate among all GBM cells. Only ~100 cells are required for 
GBM development in mammals (40), highlighting their 
oncogenic potential. The ability to repair DNA in a fast and 
effective manner renders CSCs resistant to treatment (41) and 
chemotherapy (42).

CSCs acquire a number of new oncogenic properties by 
interacting with neural stem and progenitor cells residing in the 
subventricular zone (43‑45) and other germinal centers of the 
human brain. Activation of primitive self‑organization mecha‑
nisms of CSCs (46,47) allows them to actively interact with 
other stem and differentiated cells (48), enabling the exchange of 
genes, chromosomes and whole nuclei (49), thereby increasing 
the viability of the tumor and its resistance to treatment.

The main requirement (50) for CSCs to activate their 
interaction with the ECM is the increased production of key 
cytokines for the remodeling phase of inflammation, including 
TGF‑β. Under normal conditions, TGF‑β synthesis begins 
at the periphery of the inflammatory area, and its source is 
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M2‑activated macrophages and other immunocytes. This 
cytokine inhibits proliferation and induces apoptosis in patho‑
logically altered cells, thereby triggering remodeling (51). 
Mutations in either SMAD or death domain‑associated 
protein 6 signaling pathways allows GBM cells to escape 
apoptosis (52). Moreover, GBM cells self‑activate TGF‑β and 
increase the levels of its synthesis based on autocrine induction.

TGF‑β inhibits inflammation, triggers ECM repair, 
increases the interaction between cancer cells and the 
ECM (53), creates a niche for cancer cells (54), hinders T cell 
proliferation, suppresses antigen presentation by macrophages, 
inhibits the expression of major histocompatibility complex 
(MHC) class II antigens by dendritic cells (DCs), increases the 
synthesis rate of atypical human leukocyte antigen molecules 
and activates M2 microglia (55) (Fig. 1). Subsequently, as a 
result of inhibiting T cells via the production of programmed 
cell death protein (PD)‑1 and cytotoxic T lymphocyte‑asso‑
ciated protein 4 by the tumor, the exhausted phenotype of T 
lymphocytes is created to interact with regulatory T cells, 
M2‑macrophages and myeloid‑derived suppressor cells (56). 
Thus, CSCs are isolated from the immune system, creating 
an optimum living environment and increasing the produc‑
tion of kynurenine pathway metabolites in the tumor (57,58); 
these metabolites act as negative controls of local inflam‑
mation. However, the ability of GBM to resist all existing 
types of treatment is not only due to local factors, but also 
immunosuppressive mechanisms.

Key factors of systemic immunosuppression in GBM are 
radiation and chemotherapy (59). Following chemoradiation 
treatment in vitro in GBM cells, these cells produce increased 
levels of IL‑10, IL‑6, prostaglandin E2 and other immuno‑
suppressive factors (60). Moreover, the supernatant obtained 
during cell culturing directly suppressed the proliferation of 
CD4+ and CD8+ T lymphocytes (61). After receiving 30 frac‑
tions of radiation, lymphocytes circulating in the blood flow 
accumulated an average radiation dose of 2.3 Gy, while the 
average amount of СD4+ cells in the patients' body decreased 
by two‑fold following chemoradiation, and remained low for 
a year (62). As patients are recommended radiation treat‑
ment (75 mg/m2/day) along with six subsequent cycles of 
TMZ treatment (150‑200 mg/m2/day), subsequent adjuvant 
therapy with chemotherapeutic drugs leads to the inhibition 
of immunopoiesis in the red bone marrow (63‑65). The use 
of corticosteroids (9,66,67) that have an adverse effect on the 
survival of patients with GBM is another factor of systemic 
immunosuppression.

Therefore, local immunosuppression and systemic immu‑
nodeficiency create optimal conditions for CSCs to fulfill their 
lethal potential, and a combination of these factors decreases 
the survival rate of patients.

4. Immune privilege of the CNS

Despite notable advances in the IT of malignant neoplasms, 
the application of IT in brain tumors has only been an option 
in recent decades (5). For >50 years, the brain was considered 
an immune‑privileged organ (68), due to its lack of a lymphatic 
system and isolation from other tissues by the blood‑brain 
barrier. This notion was based on the research by Medawar (69), 
who demonstrated the potential allogeneic graft acceptance in 

a rodent brain, while other grafts were rejected by the immune 
system. Furthermore, immunocyte functions in the brain have 
previously been associated with cells of resident microglia that 
originate from the yolk sac, which maintain their population 
through proliferation without any interaction with the immune 
system cells (70).

It is considered that microglia serve a key role (71) in antigen 
presentation to immunocytes in numerous diseases of the CNS. 
Tumor growth in the brain is accompanied by recruitment 
of microglial cells into the neoplastic tissue (72), where they 
interact with T lymphocytes and other immune cells that can 
freely penetrate the damaged blood‑brain barrier, or penetrate 
the tumor via the cerebrospinal and interstitial fluid. The poten‑
tial of antigen‑presenting cells to use the lymphatic vessels to 
enter the deep lymph nodes of the neck has previously been 
demonstrated, where they interact with T and B cells contrib‑
uting to the immune response (73,74). Therefore, the brain is 
an organ with both strong immune supervision and immune 
response. Preliminary vaccination with graft antigens (75) 
inhibits the potential of graft acceptance by the brain, which is 
the dominant principle of IT for the treatment of CNS tumors.

5. IT and CSC control

The presence of specific antigens in cancer cells is a key 
element of successful IT (76). Since 2009, the National 
Cancer Institute in the USA has regularly updated this list 
of antigens (5,6), which include IL‑13 receptor α2 (IL13Rα2) 
and HER2. IL13Rα2 is expressed by 60‑80% of GBM cells, 
is absent in healthy CNS cells, yet is often found in kidney 
cells. HER2 is expressed by >80% of GBM cells, but is also 
present in healthy tissues (77). The first phase of a clinical 
trial that aimed to target these antigens (78) demonstrated 
that the size of the tumor lesion and the associated risk level 
may be reduced; however, there was no significant increase 
in the survival rates of patients. In this case, IT may not be 
successful, as it is not specifically targeting CSCs, which have 
almost no specific antigens. Therefore, further investigations 
into the molecular targets are required to eliminate CSCs.

In order to specifically target CSCs, a number of proteins 
have been targeted, including heat shock proteins (79‑81), telom‑
erase reverse transcriptase (82), Wilms' tumor protein (83,84), 
glycoprotein 100 (85), tyrosinase‑related protein 2 (86), ephrin 
type‑A receptor 2 (87,88), A2B5 protein (89,90), SOX family 
of transcription factors (91) and cytomegalovirus phospho‑
protein 65 (92), among others. Alternative methods include 
the delivery of specific antigens to CSCs, using adenovi‑
ruses, lentiviruses, parvovirus and recombinant polioviruses 
DNX‑2401 and PVS‑RIPO (93‑95). However, the relative 
treatment success associated with these methods remains low. 
Selective elimination of CSCs in GBM is currently not an 
option, and therefore requires the development of novel and 
more systemic approaches.

CSCs are characterized by the heterogeneous nature of 
molecular genetic landscapes (96) not only in cell clones, but 
also in singular cells (97), and these have previously been 
extracted from tumor biopsy samples. Numerous immunocy‑
tochemical markers of CSCs (98‑100) and metabolic pathway 
maps of cancer cells have been described, and notable differ‑
ences have been demonstrated between patients with primary 
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and recurrent GBM. In addition, cancer cells that are immu‑
nopositive for the main CSC marker, CD133 antigen (101), 
do not always demonstrate properties of CSCs, while CD133‑ 
cancer cells may demonstrate these (102). However, the 
development of a systemic approach to CSCs should focus on 
the role of these cells in the pathogenesis of GBM.

Proliferation is a key property of CSCs, and intensive 
proliferation is accompanied by a notable increase in cancer 
cell number, leading to an increased oxygen consumption 
and hypoxia development (103). Long‑term hypoxia is detri‑
mental for all cancer cells, including CSCs (33,40). These 
cells can survive by triggering angiogenesis and providing 

Figure 1. Mechanisms of interaction between glioblastoma multiforme cells and the immune system. (A) Tumor cells produce PD‑Ls (PD‑L1 and PD‑L2) that 
bind to the PD‑1 receptor on the surface of T cells, which causes T cell anergy and blocks adaptive immunity. (B) The tumor produces a large amount of TGF‑β, 
which activates macrophages along the alternative (M2) pathway; in response, macrophages intensively produce TGF‑β, which prevents their activation along 
the classical pathway and turns off active immunity. (C) Tumor cells and damaged tissues produce a large amount of stromal cell‑derived factor‑1 (also known 
as C‑X‑C motif chemokine ligand 12), which is a chemokine of the C‑X‑C subfamily that interacts with the CXCR4 receptor on the membrane of HSCs and 
monocytes attracting them into the tumor, thereby enhancing immunosuppression and suppressing inflammation. (D) The production of CSF1 by tumor cells 
activates CSF1R on the membrane of normal stem cells and monocytes, which transforms them into macrophages activated by TGF‑β through the alternative 
pathway. PD, programmed cell death; PD‑L, PD ligand; HSCs, hematopoietic stem cells; CSF1, colony stimulating factor 1; CSF1R, CSF1 receptor; CXCR4, 
C‑X‑C chemokine receptor type 4.
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the corresponding tumor with a blood supply, and this is only 
possible through interaction with the ECM (48). Previous cell 
proteome studies have demonstrated that increased synthesis 
of proteins associated with the ECM‑receptor interaction 
signaling pathway is a key difference between CSCs and 
differentiated GBM cells (53). Proteome profiles of CSCs and 
normal stem cells are considered similar (104).

Thus, the optimum targets for managing CSCs may include 
cell‑surface receptors, such as integrin V, integrin β3 and 
integrin β1, as well as other components of the ECM‑receptor 
interaction signaling pathway. Optimum targets may also 
include ECM components secreted by CSCs, such as collagen 
type VI α1, laminin β1, fibronectin 1 and tenascin. Targeting 
these elements may inhibit the development of the CSC niche, 
and disrupt the corresponding intercellular interactions medi‑
ated by these cells (105). This method may be possible using 
the technologies of adaptive and active IT.

6. Adaptive IT

Adaptive IT involves the extraction of the patient's immune 
cells in order to activate them to tumor antigens, and subse‑
quently return them to the patient's body. An example of 
this process involved the vaccination of the patient with 
the antigens of destroyed cancer cells, along with Bacillus 
Calmette‑Guérin antigens (106). Furthermore, subsequent 
extraction of T cells was carried out, and these were addi‑
tionally stimulated with IL‑2 ex vivo, and injected into 
the patient. In a previous study, vaccination with cancer 
cell antigens was accompanied by injection of granulo‑
cyte‑macrophage colony‑stimulating factor (GM‑CSF), and 
T cells were subsequently obtained from the blood, activated 
ex vivo with Staphylococcus aureus antigens and returned to 
the patient (107). The use of immunocytes from patients with 
GBM may not be successful, as these immunocytes have 
been exhausted by anti‑inflammatory cytokines, inhibitors 
of immune checkpoints and other reprogramming factors 
produced by GBM cells, as well as by the systemic immune 

suppressing effect of antitumor treatment. Thus, their 
cytotoxic effect is relatively low (108).

A further example of adaptive IT involves intravenous or 
intracranial injection of genetically modified T cells equipped 
with chimeric antigen receptors (CAR), where the areas of 
antigen‑recognition domains, consisting of monoclonal anti‑
bodies, are connected with the areas of intercellular signaling 
domains of T lymphocytes (109). A previous study using rat 
models and monovalent CAR‑T cells targeting IL‑13Rα2, 
IDH1‑R132H, HER2 or EGFR variant (v) III demonstrated 
tumor regression, but the clinical application of CAR‑T 
cells (110) is yet to be fully established.

Previous data highlighting 6 clinical trials using CAR‑T cells 
in patients with GBM that have reached phase I are displayed 
in Table I. The aforementioned trials are limited by the small 
number of participants, the involvement of patients with recurrent 
and refractory GBM who have received multiple chemotherapy 
cycles, limited observation periods and treatment that does not 
target CSCs (111). Additionally, the combination of CAR‑T 
cell therapy and immune checkpoint inhibitors have been used 
in patients with first‑time diagnoses and recurrent GBM (112). 
Thus, this method has no clear potential. Moreover, despite a 
wide range of side effects, the life expectancy of patients with 
GBM who take part in clinical trials exceeds the life expectancy 
of those who are treated according to the standard protocol (113). 
The heterogeneous nature of GBM cells predetermines the need 
for creating multivalent CAR‑T cells that are capable of elimi‑
nating cancer cells that express HER2, ephrin type‑A receptor 2, 
IL13Rα2 and other antigens (114). Multivalent CAR‑T cells that 
have the ability to inhibit key components of the ECM‑receptor 
interaction signaling pathway in CSCs may act as a potential 
treatment option for managing CSCs.

7. Active IT

Active IT stimulates the development of antitumor immunity 
following injection of peptide vaccines, including tumor cell 
vaccines (TCVs) and DC vaccines (DCV). An example of a 

Table I. Completed clinical trials of CAR‑T cell therapy in patients with GBM.

ClinicalTrials.gov    CSC‑targeted
identifier Phase Antigen Type of GBM therapy

NCT02664363 I EGFRvIII‑CAR‑T cells Newly diagnosed WHO Grade IV No 
   malignant glioma 
NCT03283631 I EGFRvIII CAR‑T cells Recurrent GBM No
NCT02209376 I Autologous CAR‑T cells redirected to EGFRvIII + GBM No
  EGFRvIII‑receptor  
NCT01109095 I CMV‑specific cytotoxic T lymphocytes Newly diagnosed and recurrent GBM No
  expressing  
  CAR targeting HER2  
NCT03726515 I EGFRvIII CAR‑T cells + pembrolizumab Newly diagnosed, MGMT‑unmethylated No
   GBM
NCT01454596 I‑II EGFRvIII CAR‑T Cells EGFRvIII + GBM No

GBM, glioblastoma multiforme; CSC, cancer stem cell; CAR, chimeric antigen receptor, WHO, World Health Organization; v, variant; CMV, 
cytomegalovirus; MGMT, O6‑methylguanine‑DNA methyl‑transferase.
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peptide vaccine is rindopepimut, that targets cancer cells 
expressing a mutant peptide of EGFRvIII (115‑117). In March 
2016, the phase III ACT IV trial was terminated as the overall 
survival rate of patients was not increased (118). This may be 
associated with a lower antigen load due to previous surgery, 
influence of PD‑ligand 1 (PD‑L1) or the immunosuppressive 
effect of radiation and chemotherapy. This peptide vaccine 
may still be used in complex personalized treatment of patients 
with GBM cells that express the EGFRvIII antigen.

The development of TCVs involves recruiting immune 
cells into the blood stream and presenting them with specific 
antigens, followed by stimulation with pro‑inflammatory 
cytokines that determine the main type of intercellular inter‑
actions in the neoplastic lesion. Immunization is performed 
simultaneously with injecting GM‑CSF, and immunocytes 
are subsequently extracted from the patient's body, activated 
with Staphylococcus enterotoxin A antigens, multiplied in 
the culture medium with IL‑2 and returned to the patient. 
Autologous or gene‑modified allogeneic cancer cells that are 
either treated with ultrasound or deactivated with radiation, 
are used as antigens for TCV creation (6). One TCV has been 
developed with genetically modified cancer cells producing 
GM‑CSF (119). In addition, a vaccine from radiation‑treated 
autologous cancer cells with inactivated allogeneic cancer 
cells producing GM‑CSF has also been described (55).

Stimulation of GM‑CSF (106) is one of the crucial conditions 
of the effective application of TCVs. In a recent study (120), a 
GM‑CSF injection in animals with implanted glial brain tumor 
was accompanied by the recruitment of mononuclear CD45+ 
cells into the blood flow. The subsequent injection of bacterial 
lipopolysaccharide and IFN‑γ enriched the tumor tissue with 
markers of M1‑activated microglial cells, increased the number 
of antigen‑presenting CD86+ cells, and decreased the amount 
of TGF‑β and IL‑10 in the tumor, thus destabilizing one of the 
main mechanisms underlying local resistance to treatment. 
Notably, such stimulation increased the life expectancy of the 
experimental animals. Furthermore, stimulation of healthy 
animals along with the subcutaneous injection of dead cancer 
cells eliminated the chance of graft acceptance, or notably 
increased the period of tumor development in rats following 
the intracranial injection of cancer cells (55,121).

Previous data detailing 78 clinical trials for TCV suggested 
that only 30 biomedical products passed phase I. These studies 
were characterized by the small number of patients, lack of a 
unified approach to selecting patients and complete disregard 
for local immunosuppression and systemic immunodeficiency. 
Moreover, only two studies targeted CSCs (NCT00846456 
and NCT01171469). Notably, the results of these clinical trials 
demonstrated that the average life expectancy of patients that 
received TCV was significantly increased, compared with the 
control group. However, no biomedical product that is currently 
on trial can be categorically classified as TCV, as a part of 
the immunocytes returned to the patient following stimulation 
with cancer cell antigens includes DCs, which present the 
antigens with MHC class I and II molecules to T cells. This 
induces immune aggression in the tumor tissue (122).

DCV is one of the most important elements of adap‑
tive tumor IT. These vaccines are created in a traditional 
manner, for example, cancer cells are lysed, and incubated 
with mononuclear CD45+ cells of the red bone marrow and 

the corresponding cytokine mixture that contains IL1 or IL2, 
GM‑CSF and IFNγ (123). DCs attached to the surface of the 
plate are washed, stimulated with pro‑inflammatory cytokines 
and returned to patients with GBM. DCs migrate from the 
patient's blood flow into the lymphatic system, and subsequently 
move into the regional lymph nodes, where they stimulate the 
proliferation and differentiation of T lymphocytes, enabling an 
antitumor immune response (124).

DCV‑based IT is one of the most promising methods of 
GBM treatment (125), and in certain cases the median survival 
of patients is 525 days, compared with a median survival of 
380 days for patients who have been treated according to the 
standard protocol (126). Notably, 52 clinical trials of DCV are 
currently being conducted, and only 14 have been completed 
(Table II). Myeloid, lymphoid and plasmacytoid DCs are used 
to generate DCVs (68). Myeloid DCs are of bone marrow 
origin from a common hematopoietic CD34(+) stem cell. More 
mature progenitors of such cells, circulating in the blood, have 
the morphology of monocytes, but the CD34 antigen is absent 
on their membrane, while markers of myeloid differentiation 
CD11c, CD13, CD14 and CD33 are present. Plasmacytoid DCs 
are of lymphoid origin and are characterized by the absence 
of myeloid markers; however, they express CD4, CD45RA, 
BDCA2/CD303, BDCA4/CD304, MHC II antigens and 
co‑stimulatory molecules CD80, CD86 and CD40, and contain 
a large number of IL3 receptors (70,75). Creation of a DCV (99) 
is possible using such potential antigens as autologous live 
cells of GBM, allogeneic cancer cells, lysates of cancer stem 
CD133(+) and differentiated CD133(‑) cells of GBM, as well as a 
combination of autologous cancer cells, which were previously 
killed with irradiation, with lysates of allogeneic cancer stem 
CD133(+) cells. However, a brief analysis of the corresponding 
results indicated clear differences in the number and composi‑
tion of the used immunocytes, different vaccination methods, a 
lack of uniform criteria for evaluating the effectiveness of the 
vaccine and disregard for issues associated with local immuno‑
suppression and systemic immunodeficiency.

8. IT and molecular‑based therapy

Solving issues associated with local immunosuppression 
and systemic immunodeficiency is complex. The increased 
synthesis of TGF‑β by GBM cells is a key element of local 
immunosuppression. Previous studies have focused on 
suppressing TGF‑β synthesis with pharmacological agents, 
such as trabedersen (127) and galunisertib (128), but the 
use of TGF‑β inhibitors alone (129) for the management of 
local immunosuppression was insufficient. Blockade of the 
signaling axis colony stimulating factor 1 (CSF1)\CSF1 
receptor (CSF1R; also known as macrophage colony‑stimu‑
lating factor receptor) is one of the most important ways of 
regulating local immunosuppression. CSF1, through CSF1R, 
induces the differentiation of hematopoietic stem cells 
(HSCs) and monocytes into tumor‑associated macrophages, 
which under the influence of TGF‑β are activated along the 
alternative M2 pathway and markedly increase the synthesis 
of this cytokine (130). In this regard, certain prospects may 
be associated with the combination of TGF‑β inhibitors with 
CSF1R antagonists (131) such as pexidartinib, emactuzumab 
and cabiralizumab.



ONCOLOGY LETTERS  23:  133,  2022 7

In addition, local immunosuppression is caused by the 
production of PD‑L1 and other molecules from cancer 
cells (132‑134), which inhibit receptor activation on cytotoxic 
T lymphocytes (135) allowing cancer cells to take control of 
the immune system. Notably, following PD‑L1 stimulation, 
resident tumor microglia with M2 activation not only increase 
the levels of these ligands, but also induce monocyte‑derived 
macrophages that inhibit the immune response and promote 
tumor growth (136). Nivolumab, an inhibitor of PD‑1 receptors, 

is able to direct the tumor microglia to the M1‑phenotype and 
alter the microsurroundings of cancer cells (137). However, 
the combination of TGF‑β antagonists with agents that prevent 
neutralization of T lymphocytes remains inefficient (138). 
Only seven clinical trials of immune checkpoint inhibitors in 
the complex treatment of glioblastoma have been completed 
worldwide to date (Table III).

Bevacizumab is a monoclonal antibody that targets 
vascular endothelial growth factor (139‑141), and when used 

Table II. Completed clinical trials of dendritic cell vaccines for the treatment of GBM.

ClinicalTrials.gov    Phase of Median survival
identifier CSC‑targeted IT Type of GBM clinical trial time, months

NCT02049489 Yes Recurrent GBM  I No data
NCT00323115 No Newly diagnosed GBM I 28.0
NCT00576537 No All types of GBM II No data
NCT00846456 Yes Newly diagnosed and recurrent GBM I‑II 23.0
NCT00576641 No All gliomas and GBM I No data
NCT00626483 No Newly diagnosed GBM I No data
NCT01006044 No Newly diagnosed GBM II 23.4
NCT03615404 No Newly diagnosed and recurrent GBM I No data
NCT01213407 No Newly diagnosed I No data
NCT02820584 No Recurrent GBM I No data
NCT00612001 No All gliomas I No data
NCT01280552 No All type of GBM II 11.2
NCT00890032 No Recurrent GBM I No data
NCT00068510 No All type of gliomas 1 No data

GBM, glioblastoma multiforme; CSCs, cancer stem cells; IT, immunotherapy.

Table III. Completed clinical trials of immune checkpoints inhibitors for the treatment of GBM.

ClinicalTrials.gov  Phase of 
identifier Study title clinical trial Median of survival

NCT02798406 Multi‑center, open‑label study of a conditionally replicative adenovirus II No results posted
 (DNX‑2401) with pembrolizumab (Keytruda®) for recurrent  
 glioblastoma or liposarcoma  
NCT03493932 Cytokine microdialysis for real‑time immune monitoring in I No results posted
 glioblastoma patients undergoing checkpoint blockade  
NCT02550249 Neoadjuvant nivolumab in glioblastoma (neo‑nivo) II No results posted
NCT03636477 A study of Ad‑RTS‑hIL‑12 with veledimex in combination with I No results posted
 nivolumab in subjects with glioblastoma; a substudy to ATI001‑102  
NCT02327078 A study of the safety, tolerability, and efficacy of epacadostat I\II No results posted
 administered in combination with nivolumab in select advanced  
 cancers (ECHO‑204)  
NCT02335918 A dose escalation and cohort expansion study of anti‑CD27 I\II No results posted
 (varlilumab) and anti‑PD‑1 (nivolumab) in advanced refractory  
 solid tumors  
NCT02529072 Nivolumab with dendritic cells vaccines for recurrent brain tumors I ~4 years from study
 (AVERT)   initiation

PD‑1, programmed cell death protein 1; Ad‑RTS‑hIL‑12, human interleukin‑12 vector.
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together with TMZ, has been indicated to increase the average 
life expectancy of patients with GBM from 6.5 to 9.5 months. 
Nivolumab is more effective than bevacizumab (142), but a 
combination of these agents allows the treatment of cerebral 
edema without corticosteroids (6,143), which enhances the 
potential of IT. However, a significant increase in the life 
expectancy of patients is yet to be achieved, which highlights 
issues associated with these treatment methods that are more 
profound. Nevertheless, despite the small number of completed 
clinical trials (Table III), immune checkpoint inhibitors are 
among the most promising drugs for immunochemotherapy 
of GBM.

9. HSCs and IT

The results of previous studies have demonstrated that patients 
with GBM with a high level of leukocytes exhibit an improved 
prognosis following the use of antitumor vaccines (144), 
inhibitors of immune checkpoint (145‑147) and other immu‑
notherapeutic agents. This indicates the impact of systemic 
immunodeficiency caused by the damage to the bone marrow 
tissues following radiation and chemotherapy. Systemic solu‑
tions involve transplantation of HSCs. In cases of unimpaired 
hematopoiesis, the proportion of HSCs in the blood of a 
healthy individual does not exceed 0.01%, and stimulation 
with GM‑CSF increases the number of HSCs in the blood 
>100‑fold, which allows HSC extraction for further use in the 
reconstruction of the immune system (148). However, this task 
is difficult to achieve. Following radiation and several courses 
of chemotherapy, the bone marrow of patients becomes 
exhausted (132,133), and it is impossible to obtain an adequate 
quantity of HSCs for transplantation. This issue may be 
resolved with the transplantation of autologous HSCs obtained 
from the patient, that have been cryopreserved prior to disease 
occurrence, but only a number of patients have this option.

Restoring the immune system of a patient using autologous 
HSCs may not be the only option, as the development of novel 
antitumor immunity may counter high levels of tumor aggres‑
sion. In the entire existence of both mammals and humans, 
infective agents have posed serious threats; however, life 
expectancies were never long enough for cancer development. 
Thus, evolution has led to the development of a number of 
mechanisms for eliminating pathologically altered cells (such 
as inflammation, apoptosis and autophagy), but only if their 
number is relatively small and it does not interfere with cell or 
tissue homeostasis (149).

HSCs are progenitors of the immune system, as well as coor‑
dinators and stabilizers of regeneration processes. Proliferation 
speed and the number of these cells decreases with age, thus 
reducing the levels of immune protection and increasing the 
number of pathologically altered cells in the body. Notable 
increases in the number of cancer cells are observed during 
the rapid invasive growth of GBM, resulting in the destruction 
of neurons and glial cells, inflammation, cerebral ischemia and 
the intensified production of chemo‑attractants that stimulate 
the migration of HSCs into the brain (150).

The key mechanism underlying the recruitment of HSCs 
into the tumor lesion is carried out by hypoxia‑inducible 
factors a group of ligands that activate the production of 
>80 cytokines by damaged tissues. Key cytokines involved 

in this process include monocyte chemoattractant protein‑1 
and stromal cell‑derived factor‑1α, which interact with C‑C 
motif chemokine 2 and C‑X‑C chemokine receptor type 4 
receptors on the HSC membrane, and induce their migration 
to the tumor lesion (151). Results of a previous study demon‑
strated that following 3 days of HSC injections into rats with 
implanted C6 gliomas, the transplanted cells migrated into the 
tumor and were visible in the blood vessels of glioma (152). In 
addition, following 4 and 5 days of the experiment, these cells 
penetrated areas of invasive growth and necrotic segments of 
neoplastic tissue, where they aggregated and interacted with 
cancer cells.

Briefly, HSCs adhere to cancer cells and interact with them, 
which has been demonstrated by the aggregation of fluorescent 
stain in cancer cells that is bound to the HSC cytoplasmic 
proteins during this interaction (153). Results of a previous 
in vitro study revealed that aggregation of the stain in the 
cancer cells decreased the adhesion to the culture plate surface 
and eliminated the interaction with the ECM, due to TGF‑β 
stimulation and reduced proliferation of GBM cells (154). This 
effect became more pronounced when the cancer cell: HSC cell 
ratio reached 1:3, indicating the antitumor potential of HSCs. In 
natural conditions, aggregation of normal stem cells in a damaged 

Figure 2. Reprogramming of healthy HSCs when interacting with CSCs 
of GBM allows the tumor to avoid being targeted by the immune system. 
(A) HSCs with C‑X‑C chemokine receptor type 4 on their cell membrane 
migrate from the bone marrow into the tumor, along with a concentration 
gradient of SDF‑1. (B) Reprogramming of HSCs when interacting with 
CSCs. (C) Migration of reprogrammed HSCs back to the bone marrow 
and reprogramming of further HSCs. (D) Appearance of reprogrammed 
progenitor cells and (Е) reprogrammed immunocytes that are non‑reactive 
towards CSCs and cancer cells of GBM. HSCs, hematopoietic stem cells; 
CSCs, cancer stem cells; GBM, glioblastoma multiforme; SDF‑1, stromal 
cell‑derived factor‑1.
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area results in M2‑polarization of macrophages, suppression of 
antigen presentation, increased production of IL‑4 and other 
anti‑inflammatory cytokines, accompanied by the apoptosis 
of pathologically altered cells, clearance of the dead cells and 
debris of the phlogogenic site, and ECM remodeling (155). 
Thus, disruption of the interaction between CSCs and the ECM 
induced by HSCs is a powerful regulatory stimulus.

Furthermore, the exchange of the fluorescent stain is not 
one‑sided, indicating the transfer of information in both direc‑
tions. When HSCs interact with cancer cells, their cytoplasm 
also displays fluorescent stain aggregation and the transfer of 

specific proteins, accompanied by the epigenetic reprogram‑
ming of HSCs (154). The ability of these cells to effectively 
restore hematopoiesis and immunopoiesis requires further 
investigation; however, a previous clinical trial demonstrated 
that oncologic and autoimmune diseases cause significant 
changes in the molecular phenotype of HSCs, impacting treat‑
ment outcomes and the prognosis of patients (156).

Thus, whether GBM develops only as a result of patholog‑
ical transformation of neural stem cells in the human brain, or 
arises as a result of the interaction of normal neural stem cells 
with HSCs remain to be fully elucidated. During an in vitro 

Figure 3. Hypothetical scheme for immunotherapy of GBM using donor HSCs. (A) Patient with newly diagnosed GBM who has been treated according to 
the standard protocol. (B) Healthy donor is a sibling of a patient with GBM. Step 1: Obtaining a primary culture of GBM cells from cancer tissue which was 
removed from the patient's brain during surgery. Step 2: γ‑irradiation of the culture of primary GBM cells in vitro at a dose of 60 Gy, with the addition of TMZ 
to the medium. Step 3: Cultivation of cells of primary and irradiated GBM on serum‑free media with subsequent isolation of CSCs from glioma spheres. Step 
4: Comparative proteome mapping of primary and irradiated CSCs. Step 5: Bioinformatic analysis of cellular proteomes with the identification of proteins 
that are maximally upregulated in irradiated CSCs. Step 6: Isolation of proteins upregulated in irradiated CSCs and creation of a peptide vaccine. Step 7: 
Vaccination of individual B with a peptide vaccine based on upregulated proteins of irradiated CSCs, in combination with an injection of G‑CSF and IFN‑γ. 
Step 8: Isolation of CD34(+) CD45(+) cells from the bloodstream of individual B. Step 9: Subsequent transplantation into the bloodstream of patient A. GBM, 
glioblastoma multiforme; CSCs, cancer stem cells; G‑CSF; granulocyte colony‑stimulating factor; HSCs, hematopoietic stem cells; TMZ, temozolomide.
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experiment, neural stem cells demonstrated a high mobility 
to cancer cells of different lines, and this level of migration 
was markedly increased between neural stem cells and GBM 
cells, which may be attributed to their origin from the same 
histogenetic source in the central nervous system Additionally, 
GBM cells demonstrated a high mobility towards neural 
stem cells, actively interacting with them and exchanging 
fluorescent stain. HSCs are stem cells of a different origin, 
but their mobility towards GBM cells is not as active as 
that of neural stem cells (152) Notably, unlike stem cells in 
germinal regions of the brain, HSCs play a key part in the 
mechanisms underlying the memory retention of antigens, 
managing the processes of immune tolerance and immuno‑
cyte activation (157). Following the aforementioned antitumor 
vaccination, HSCs may inactivate the immune system, leading 
to ineffective methods for the treatment of GBM (Fig. 2).

Collectively, the aforementioned research demonstrated 
that transplantation of autologous HSCs to patients with GBM 
is not a systemic approach to the issue of immunodeficiency. 
Based on the hypothesis that epigenetic reprogramming of 
HSCs occurs during their interaction with cancer cells, IT 
may only be effective following complete regeneration or 
replacement of the immune system, using allogeneic HSCs 
of a healthy donor. The allogeneic transplantation of bone 
marrow should become the basis for a novel approach to GBM 
treatment. Both the duration and quality of remission for 
patients with leucosis (158) and multiple myeloma (159), who 
have received allotransplantation of bone marrow, are signifi‑
cantly improved. This is directly associated with the initiated 
graft‑versus‑tumor effect. This approach requires extensive 
further investigation; however, future treatment options should 
involve the use of allogeneic HSCs.

10. Conclusion

Modern oncology exhibits a wide range of antitumor prod‑
ucts and methods. However, despite all recent scientific 
advances, the survival rates of patients with GBM still 
remains low. This issue requires novel systemic solutions, but 
novel treatment options for patients with GBM should not be 
confined to medication, radiation or a combination of both 
methods. GBM treatment success is dependent on the use 
of modern surgical, radiation and chemotherapy methods. 
Cytoreductive, cytotoxic and cytostatic therapies are a first 
treatment stage that must involve CSC management in order 
to be successful. At present, the only method of managing 
CSCs is IT, but fulfilling the cytoregulatory potential of IT is 
only possible following complete restoration of the immune 
system functions.

HSC transplantation should be performed directly after 
chemoradiation treatment. Autologous HSCs obtained from the 
patient prior to disease development should be the first choice 
for a graft. Therefore, cryopreservation of HSCs is required, to 
allow potential cancer treatment before its occurrence. If this 
option is unavailable, transplantation of allogeneic HSCs from 
a biologically compatible donor may be considered; however, 
further experimental studies are required.

Subsequent IT should be based on the use of immunocytes 
from a healthy donor that are targeted against the key proteins 
of CSCs, with a main focus on components of the ECM‑receptor 

interaction signaling pathway. Following HSC transplantation 
and restoration of healthy immunopoiesis, TCVs are required, 
based on CSC antigens, DCVs and multivalent CAR‑T cells 
targeting key elements of the ECM‑receptor interaction 
signaling pathway. Such IT should be used in combination 
with inhibitors of the immune checkpoint, antagonists of 
TGF‑β and antiangiogenic agents.

The assumption that HSCs are the main tool of the immune 
memory requires a healthy donor to receive a vaccine based on 
key CSC antigens prior to obtaining HSCs. This would allow 
the production of biomedical HSC‑based products for person‑
alized proteome‑based GBM therapy (Fig. 3). This method 
requires further experimental and clinical investigation; 
however, the current review may provide a theoretical basis for 
the development of novel GBM treatment options.
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