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Abstract: Estrogen is one of the most important female sex hormones, and is indispensable for
reproduction. However, its role is much wider. Among others, due to its neuroprotective effects,
estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was
used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal
symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental
side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety.
Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here,
we review the current knowledge about estrogen effects in a broader sense, and the possibility of
using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators
(SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules
as treatment.

Keywords: estrogen; non-classical actions; tissue-selectivity; alternative therapies; menopause;
SERMs; ANGELS; phytoestrogens; osteoporosis

1. Introduction

Female sexual hormones, including estrogens, were discovered and characterized in
the 1920s and 1930s [1–3]. Although 100 years have passed since the first discovery, the
interest in estrogen, reflected by the high number of related publications (Figure 1), is still
increasing [4].

Figure 1. Number of published papers in a 10-year period based on a PubMed search on keyword
“estrogen” and dates.

Even though estrogen hormones affect the function of almost all genes in the mam-
malian body, they are best known for their major role in reproduction. Estrogens modulate
the development of secondary female characteristics [5], and mediate reproduction, the
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menstrual cycle, sexual behavior, and the emotional background [6,7]. During menopause
or after surgical removal of the ovaries (ovariectomy, OVX; a model in animals, but oc-
curs also in humans), the concentration of estrogen decreases, resulting in unpleasant
symptoms such as hot flushes, emotional disturbances, memory loss, and more severe
problems including osteoporosis [8,9]. Indeed, estrogen helps to develop long bones and
pubic epiphyses during puberty. Moreover, it protects the bone structure by inhibiting
the degrading osteoclast activity. With these mechanisms, it exerts positive effects on
osteoporosis in both estrogen-deficient and post-menopausal-aged women [10–12]. The
treatment of menopausal symptoms was one of the very first therapeutic applications
of estrogens. Nevertheless, estrogen may affect many other physiological processes and
plays an important role in their development, and thus, also in the treatment of various
diseases [13–15].

This review aims to discuss the effects of estrogen in a broader sense, to investigate
the importance of non-classical estrogen pathways in the whole body, and to analyze the
existing and possible treatment options for improving hormonal replacement therapies
(HRT).

2. Estrogen Synthesis and Receptors
2.1. Forms and Synthesis of Estradiol

Estrogen (next to progesterone) is the most important female sex steroid in verte-
brates [16]. For its synthesis, the cytochrome P450 aromatase (CYP19) enzyme is es-
sential. This enzyme, catalyzing the rate-limiting step in estrogen biosynthesis, was al-
ready detected in invertebrates; however, it shows only 40% amino acid identity with
human CYP19 [16]. In humans, there are three important estrogen molecules: estrone (E1),
17β-estradiol (E2), and estriol (E3) [17]. All three compounds are based on an 18 C-atom
hydrocarbon backbone called estrane (Figure 2).

Figure 2. Structure of estrane backbone and the three most important estrogen molecules in the
human body.

Their main structural features are the phenolic ring A, the cyclohexane ring B, ring
C with a methyl group in the C13 substitution, and ring D, to which a hydroxyl group
(Estradiol) or oxygen (Estrone) is attached at the C17 position.

E2 is the most potent estrogen hormone produced in the ovary. Its synthesis in the inter-
nal theca of the ovary starts from acetyl-CoA and cholesterol, from which androstenedione,
an androgen, is formed through several steps (Figure 3). The androstenedione crosses the
basal membrane of the granulosa cells where CYP19 catalyzes E2 synthesis. Furthermore,
E2 also can be synthesized from testosterone by CYP19 activity in one step [18–20]. Due
to the fact that E2 is lipophilic, it needs a transport molecule to pass through the aqueous
phases of the intercellular space, so it binds to sex-hormone-binding globulins (SHBG) to
reach the target cells [21,22].

According to the textbook knowledge, hydrophobic molecules can easily go through
lipid membranes by simple diffusion [23]. However, in fact, the lipophilic nature explains
why they are easily solved into the membrane, but it is hard to understand how they come
out on the other side of the membrane. During the synthesis, even within the same cell,
the intermediary metabolites go back and forth between the mitochondria and the smooth
endoplasmic reticulum [24]. However, in the ovary, due to the lack of specific enzymes
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in numerous cell-types (e.g., granulosa cells do not have CYP17, while theca interna cells
do not contain 17β hydroxysteroid dehydrogenase and CYP19), they are served between
cells [25]. To ensure this, the membranes of the cooperating cells/cell organelles have to be
rather close, and some chaperon molecules (e.g., heat shock proteins [23] and internalized
SHBG [26]) should catch the molecules on the other side of the membrane. Indeed, ex vivo
dissolved organic material can bind estrogens, although their aim is to eliminate them from
the system [27].

Figure 3. The biosynthesis of estrogen molecules (E1, E2, and E3). The enzymes that catalyze the
reactions are: CYP17—17α-hydroxylase; 3β-HSD—3β-hydroxysteroid dehydrogenase; 17β-HSD—
17β-hydroxysteroid dehydrogenase; CYP19—aromatase; CYP3A4/5—16α-hydroxylase.

2.2. Estrogen Receptors and Their Localization

Jensen and Jacobsen concluded 60 years ago that the E2-induced biological effects in
the uterus are due to a specific protein [28]. In 1986, two independent research teams cloned
this receptor from the uterus, which was later named estrogen receptor alpha (ERα) [29,30].
The development of genetic engineering and studies on ERα knock out (KO) mice have
helped the discovery of another estrogen receptor, named ER beta (ERβ) [31–34]. ERα
and ERβ are members of the steroid/thyroid hormone nuclear receptor superfamily with
a common structure [35–37]. They have three independent but interacting domains: the
NH2-terminal or A/B domain, the C or DNA-linker domain, and the D/E/F or ligand-
binding domain. ERα and ERβ have differences in their ligand-binding domain and their
size: ERα is larger (approx. 67 kDa) than ERβ (approx. 59 kDa) [38–40] (Figure 4).
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Figure 4. Structural units, homology, and size differences of estrogen receptors. A/B: NH2-terminal
domain; C: DNA-linker domain; D/E/F: ligand-binding domain. The percentage indicates the degree
of amino acid sequence homology between the different unites of ERα and ERβ.

Moreover, alternative splice variants may further diversify the localization and func-
tion of the receptors [41]. For example, the originally described ERβ (ERβ1) has high
affinity for E2 and is localized in the nucleus. In contrast, ERβ2 contains an 18 amino
acid insert within the ligand-binding domain and has low affinity to E2. The ERβdelta3
variant—due to a deletion in exon 3—does not bind to the estrogen response element in
DNA, while the ERβdelta4 variant—due to another deletion in exon 4—is localized to the
cytoplasm.

Even though ERs are present in almost all cells of the body, ERα and ERβ show a large
difference in their expression pattern. ERα mRNA is highly expressed in the epididymis,
testes, ovaries, breasts, pituitary gland, uterus, kidneys, bones, and adrenal glands, while
ERβ is detectable in the ovaries, colon, vascular endothelium, and prostate. In addition,
the testes, uterus, bladder, and lungs show only moderate expression of ERβ mRNA [38].
Both ERα and ERβ is present in the central nervous system (CNS), but also with distinct
expression patterns [42]. ERs are mostly present in the cytoplasm and after ligand binding
they are translocated to the nucleus (cytonuclear receptor [43]). Interestingly, approximately
10% of the ERs are also found to be extra-nuclear in lipid-rich membrane organelles—also
called membrane estrogen receptors 1 or mESR1 [44]— including cell-membrane lipid rafts,
but also mitochondria, endoplasmic reticulum, and cytosolic endosomes [45]. Membrane-
located classical ERs are connected to scaffolding proteins, like caveolin-1 [7,46,47] and
considered to be alternative sex steroid receptors. Interestingly, there is a smaller isoform,
the ERα36, which exists as an independent receptor and can be found presumably in the
membrane [48]. Next to the classical receptors, we must mention the GPR30, or by its new
name: GPER1 (G-protein-coupled estrogen receptor 1) [49]. This is a G-protein-coupled
membrane receptor with seven transmembrane domains. In vitro studies in the early 2000s
showed that E2 can activate this receptor, and it is responsible for the non-classical estrogen
actions (see Section 3.2) [50–53]. GPER1 is highly expressed in the central and peripheral
nervous system, ovaries, uterus, mammary glands, gastrointestinal system, bone tissue,
cardiovascular system, immune cells, and adrenal glands [52,54–56].

3. Mechanism of Action
3.1. Classical Estrogen Actions

E2 is a lipophilic molecule and, therefore, passes through the cell membrane by pas-
sive diffusion, and in the cytoplasm, it binds to intracellular estrogen receptors [57]. The
biologically active ligand–receptor complex induces a complicated sequence of events
that begins with conformational changes in the receptor, followed by receptor dimeriza-
tion, and leads to direct translocation of the activated ligand–receptor complex to the
nucleus [58,59]. This process is promoted by several chaperon molecules including heat
hock protein 90 (HSP90) [60]. The dimerized receptor complex interacts with several
nuclear receptor coactivators, such as the 160-KD steroid receptor coactivator protein
(P160) or the cyclic adenosine 3′, 5′-monophosphate (cAMP)-responsive element-binding
protein (CREB) [61–63]. The entire complex then binds to a specific DNA sequence, the
estrogen-responsive element (ERE), to stimulate transcription, which ultimately leads to the
synthesis of new proteins [64,65] (Figure 5). Cytonuclear ERs are key receptors in activating
the classical pathway. However, the classical mechanism of action alone is not sufficient to
fully elucidate the broad spectrum of estrogenic effects.
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Figure 5. The cellular mechanisms of E2 action. Representative figure depicting the classical and non-
classical pathways, including second messenger molecules and downstream signaling. Abbreviations:
estradiol (E2), estrogen receptor (ER), heat shock protein 90 (HSP90), estrogen-responsive element
(ERE), non-receptor tyrosine kinase (Src), src homology 2 domain-containing transforming protein
(Shc), son of sevenless (SOS), RAS GTPase protein (Ras), RAF kinase (Rafl), mitogen-activated protein
kinase kinase (MEKKs), mitogen-activated protein kinase (MAPK), extracellular signal-regulated
kinases 1/2(ERK1/2), elk-1 transcription factor (Elk1), c-Fos transcription factor (c-Fos), MYC proto-
oncogene, BHLH transcription factor (c-Myc), phosphatidylinositol-3-OH kinase (PI3K), protein
kinase B (Akt), IκB kinase (IKK), nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), endothelial nitric oxide synthase (eNOS), nitric oxide (NO), G-protein-coupled estrogen
receptor (GPER1), cyclic adenosine monophosphate (cAMP), cAMP-responsive element-binding
protein (CREB), adenylate cyclase (AC), protein kinase A (PKA), cAMP-responsive element (CRE).

3.2. Non-Classical Estrogen Actions

The non-classical mechanism of E2 is mediated by direct effects on ion channels or by the
activation of intracellular signaling via protein kinase A (PKA), phosphatidylinositol-3-OH
kinase (PI3K), and mitogen-activated protein kinase (MAPK) pathways [66,67] (Figure 5).
E2 can directly bind to membrane receptors and rapidly activates intracellular signaling
pathways, leading to ERE-independent indirect gene transcription [68,69]. In addition to
initiating transcription of non-ERE-dependent genes, another key feature of the non-classical
pathway is the speed of response. An early study by Szego and Davis showed a rapid increase
in cAMP levels in uterine tissue, 15 s after E2 administration [70]. Given that cAMP is a
secondary messenger molecule of intracellular signaling, this study also aimed to provide
evidence for the involvement of the PKA pathway in rapid E2 signaling. In addition, E2
has been reported to activate the MAPK pathway in seconds [71]. Firstly, the non-receptor
tyrosine kinase (Src), Src homology 2 domain-containing transforming protein (Shc), and
son of sevenless (SOS) complex activate Ras GTPase. Secondly, the complex binds to Raf
and through a phosphorylation cascade on mitogen-activated protein kinase kinase (MEKKs)
and MAPK, the extracellular regulated kinase 1

2 (ERK1/2) will modulate the transcription
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of genes [72]. An alternative pathway is via PI3K signaling molecules that can be activated
by ERs as well as by GPERs [67,70,73,74] and interact with Akt, resulting in the activation of
endothelial nitric oxide synthase (eNOS) [75–81].

One of the most important endpoints in the non-classical estrogen signaling is the
cAMP-responsive element-binding protein (CREB). Phosphorylated CREB can form a
homodimer or heterodimer with the cAMP-responsive element modulator (CREM) or
can activate transcription factor (ATF), which then binds to the cAMP-responsive element
(CRE) on the DNA [82–84]. Ca2+ plays a pivotal role in the activation of PKA, ERK1/2,
and CREB [83]. Electrophysiological and Ca2+ imaging measurements showed that E2 can
increase intracellular Ca2+ levels, which also explains the activation of PKA-ERK1/2-CREB
signaling systems [85,86].

4. The Problem with E2 and Hormone Replacement Therapy (HRT)

Nowadays, E2 therapy is used in hormonal contraception, HRT, and in feminizing
hormone therapy to treat gender dysphoria in transgender women [87]. Indications for the
use of HRT in the postmenopausal age have risen sharply since the late 1980s, claiming
that “menopause is a hormone deficiency disease, curable and totally preventable, just take
estrogen” [88], as several epidemiological studies have shown that the use of HRT reduces
the risk of osteoporosis, coronary heart disease, and all-cause mortality [89,90]. However,
large-scale, controlled clinical trials in the late 1990s have resulted in a reassessment of the
favorable paradigm of HRT. In 1998, the Heart and Estrogen/progestin Replacement Study
(HERS) showed that HRT did not reduce the risk of recurrent myocardial infarction [91].
Subsequently, in 2002 and 2004, the Woman Health Initiatives (WHI) clinical studies showed
that neither the estrogen–progesterone combination, nor the estrogen alone reduced the
risk of coronary heart disease [92–94]. Moreover, the combined HRT even increased the
risk of stroke, venous thromboembolism, and breast cancer. Therefore, HRT is no longer
recommended for prevention of either coronary artery disease or osteoporosis, and the
beneficial effects are neglected due to these risk factors and severe side effects. A recent
20-year follow-up of the WHI study confirmed that in hysterectomized women, conjugated
equine estrogen (CEE) alone may decrease the prevalence and mortality of breast cancer;
however, in women with intact uterus, CEE in combination with progesterone may increase
its risk [95]. Thus, there is no “one size fits all” solution; individual differences should be
taken into consideration also by HRT.

In addition to its cardiovascular and endometrial adverse effects, HRT may also have
a negative impact on dementia development, although the question is still controversial.
The higher prevalence of dementia, including Alzheimer’s disease (AD), in females, espe-
cially in postmenopausal women, suggests a strong correlation between E2 and memory
function [96–98]. Indeed, E2 is involved in wide range of brain functions, from neuronal
development to neuronal plasticity and memory formation [99,100]. Current research has
shown positive effects [101–103] or ineffectiveness of HRT in cognitive disorders [104];
however, the Women’s Health Initiative Memory Study (WHIMS) provided evidence for
worsening dementia [105–108]. All in all, it was concluded that HRT may reduce the risk
during the first five years of menopause, but its long-term use may increase the risk of AD.
Interestingly, in a recent report, three days of E2 treatment enhanced core aspects of creativ-
ity and verbal memory in young male individuals [109], supporting gender-independent
positive effects.

The serious side effects steered estrogen research into a different direction. The
common goal is to find new formulas or molecules that do not have the harmful side effects
of estrogen but have a positive effect on menopausal symptoms, including nervous system
problems, vascular lesions, and osteoporosis.

5. Possible New Therapies: SERMs, Phytoestrogens, SERDs, and ANGELS

Several estrogen-like compounds are available with wide therapeutic indications,
divergently influencing different estrogen-related pathways.
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5.1. Selective Estrogen-Receptor Modulators (SERMs)

Selective estrogen-receptor modulators (SERMs) are a group of nonsteroid compounds
that have tissue-selective mechanisms of action (Figure 6A). SERMs act as partial estrogen
receptor agonists in one (e.g., bone tissue), and antagonists in other (e.g., breast cells)
tissues. In 2000, four compounds from the SERM and antiestrogen families were in clinical
use in the United States (US): clomiphene, tamoxifen (TMX), toremifene, and raloxifene
(RLX) [110]. The clinical database on these compounds is among the largest available.

Figure 6. Representative structure of different estrogen-receptor modifiers. (A) Selective estrogen-
receptor modulators (SERMs), (B) selective estrogen-receptor downregulator (SERD), (C) phytoe-
strogens, (D) activators of non-genomic estrogen-like signaling (ANGELS), (E) G-protein-coupled
estrogen receptor 1 (GPER1) agonist (G-1), and GPER1 receptor antagonist (G-15).

Clomiphene citrate was the first molecule with estrogenic action developed for the
treatment of polycystic ovarian syndrome (POS) and has been in use to treat female
infertility since 1967 [111]. Originally, it was known as a competitive antagonist of E2 at the
cytoplasmic nuclear receptor, but later it was considered as the first compound in the SERM
family. In case of the reproductive system, it acts centrally, modulating—among others—
the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons by blocking the
negative feedback of E2. However, it can be used in the treatment of male hypogonadism
and gynecomastia as well [112]. In bones, clomiphene seems to have an estrogen-like
effect, preventing osteoporosis with similar efficacy as E2 in animal models [113]. On the
other hand, in testosterone-deficient men younger than 50 years, it further decreased bone
mineral density [114].

TMX was the first SERM developed for the treatment of ER-positive breast cancer [115].
It is on the World Health Organization (WHO) “List of Essential Medicines” [116], and
in 2018, it was prescribed more than 1 million times in US [117]. In MCF-7 human breast
adenocarcinoma cells, TMX slowed down cell proliferation, confirming its antiestrogenic
potential [118]. Indeed, TMX (20–40 mg/day) treatment improved the 10-year survival
of women with ER-positive breast cancer and reduced breast cancer reassurance in sev-
eral clinical trials [119,120]. Moreover, similarly to clomiphene citrate, TMX can be an
ovulation initiator through the stimulation of the secretion of follicle-stimulating hor-
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mone (FSH) at the pituitary [121]. On the other hand, TMX is an agonist in the bones,
protecting bone integrity via inhibition of the osteoclast activity in vitro and in vivo in post-
menopausal women [122,123]. However, it may have an opposite effect on bone mineral
density (i.e., promoting bone loss) in premenopausal women, depending on the menstrual
status [124,125]. TMX is an ER agonist in the cardiovascular system; it decreases low-
density lipoprotein (LDL) (“bad” lipoprotein) concentrations and it increases the amount
of coagulation factors, and thus, the risk of thrombosis and stroke [126]. In the brain, TMX
might have neuroprotective effects by activating the astrocytes and microglia after brain
trauma or injury [127–129]. Unfortunately, TMX is an agonist on the endometrial ERs as
well. Thus, TMX-induced endometrium proliferation may increase the risk of endometrial
carcinoma [130].

Toremifene is a second-generation SERM, with very similar biological effects as
TMX [131]. It can be used in ER-positive breast cancer with the same efficacy, but with a
better safety profile [132,133].

RLX is also a second-generation SERM, currently used to treat osteoporosis. In 1999,
a 3-year randomized placebo-controlled study named Multiple Outcomes of Raloxifene
Evaluation (MORE) revealed that RLX (60–120 mg/day) increased bone mineral density
and reduced the vertebral fractures in postmenopausal women [134]. The study also
showed that RLX has an antagonist effect in the breast and reduces breast cancer prevalence
by 76% [135]. Therefore, RLX is often used to treat osteoporosis in patients with high risk
of ER-positive breast cancer [136]. In the cardiovascular system, although RLX decreases
LDL cholesterol levels, it has the same effect on nitric-oxide (NO) formation as E2, and
thus, increases the risk of thrombosis and stroke. However, compared to E2, TMX, and
toremifene, RLX lacks endometrial side effects.

Bazedoxifene (BZX) is a third-generation SERM used for osteoporosis treatment,
with a unique mechanism of action. In MCF-7 cells and animal models of breast can-
cer, BZX increased the degradation of ERα by inducing a conformational change on the
receptor [137,138]. This suggests an E2-antagonistic effect. All in all, BZX lacks breast and
endometrial side effects, and thereby has an improved safety profile [139]. BZX crosses
the blood–brain barrier (BBB), and enhances spatial memory in OVX rats, a model of
postmenopausal estrogen decline [140].

Ospemifene is another third-generation SERM, currently used to treat the genitouri-
nary syndrome of menopause (GSM, see Section 6.2.2.3) [141]. Being a partial agonist in the
endometrium, it has positive effects on vaginal dryness and atrophy [142]. As an agonist in
bones, it is advantageous in osteoporosis. However, it may exert estrogenic side effects in
the vascular system [143].

Lasofoxifene (LFX), from the same generation as BZX and ospemifene, is used in
osteoporosis prevention and to treat vaginal atrophy. The Postmenopausal Evaluation and
Risk Reduction with Lasofoxifene (PEARL) study showed that LFX improves bone mineral
density, and reduces the prevalence of vertebral fracture by 42% [144]. As a receptor
antagonist in breast, it reduced the risk of ER-positive breast cancer by 81% [144]. An
increased risk of venous thromboembolism was detected, but no increase in other coronary
events or stroke [145].

Thus, newer SERMs have favorable E2-antagonistic and -agonistic profiles with en-
hanced efficacy and less side-effects.

5.2. Phytoestrogens

Phytoestrogens are plant-based estrogen-like substances. Their mechanism of action is
comparable to SERMs, because they have tissue-specific antagonist and agonist properties.
Their effect might depend on E2 concentrations [146]. Isoflavonoids may act as estrogen
antagonists with the premenopausal concentration of E2, whereas they exert estrogen
agonistic activity with lower E2 concentration, close to the serum levels of postmenopausal
women. Genistein and daidzein are the two major compounds isolated from soybeans, and
belong to the group of isoflavones [147] (Figure 6C).
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Several articles showed that phytoestrogens have a positive effect on post-menopausal
women [148]. Genistein supplements reduced menopausal symptoms, such as hot flushes [149,150].
Phytoestrogens are also agonists in the bone tissue; therefore, they have a positive influence on
osteoporosis [151]. Daidzein stimulates MAPK/PI3K pathways in bones, exhibiting bone-sparing
effects against osteoporosis [152]. A mixture of genistein, daidzein, and equol, which has ERβ
binding selectivity, proved to be neuroprotective and promoted estrogenic mechanisms in the
brain, while avoiding feminizing activity in the reproductive system [153,154]. Phytoestrogens are
also anticarcinogenic in the breast, by exerting antiangiogenic, antimetastatic, and epigenetic ef-
fects [155]. In OVX rats, genistein shows a similar vasodilative, vasoprotective effect as E2 treatment
and increases NOS activity without affecting the mass of the uterus, and thus, lacks endometrial
side-effects [156]. In another experiment, it was shown that genistein (and RLX) ex vivo increased
NOS activity and decreased NO-mediated platelet aggregation [157]. Thus, its cardiovascular
profile seems to be also beneficial.

5.3. Selective Estrogen-Receptor Downregulators (SERDs)

Selective estrogen-receptor downregulators or degraders (SERDs) are a group of
molecules with the ability to downregulate classical estrogen receptors [158]. In fact, the
previously mentioned BZX also has some similar effect. Fulvestrant was developed as a
steroidal antiestrogen and currently it is the most important molecule from the SERD group
(Figure 6B), which binds to ERs in a monomeric form, and inhibits dimerization [159]. It
reduces the half-life of the receptor protein without influencing its mRNA levels [160].
Fulvestrant is currently in use to treat advanced ER-positive breast cancer, but also showed
a minimal positive effect in a Phase II endometrial cancer study [161,162].

Fulvestrant is used as an intramuscular injection, but different oral SERD agents are
also under investigation [163], especially for the therapy of treatment-resistant breast
cancer [164]. Indeed, several non-steroidal molecules such as RAD-1901, AZD-9496,
GDC-0927, etc. are already in clinical trials.

5.4. Activators of Non-Genomic Estrogen-like Signaling (ANGELS)

Activators of non-genomic estrogen-like signaling (ANGELS) are a new approach in
E2 therapy. ANGELS can selectively activate the non-classical action of E2 [165]. There
are three known molecules with such effect: estren (4-estren-3alpha, 17beta-diol), com-
pound A (2-(4-hydroxyphenyl)-3-methylbenzo[b]thiophen-5-ol), and compound B (3′,15b-
dihydrocyclopropa [14,15]estra-1,3,5(10),8-tetraene-3,17alpha-diol), but neither of them are
used in therapy yet [166–168].

Estren has bone-protective effects (see Section 6.2.3.1) without influencing endometrial
proliferation [167] (Figure 6D). It was shown to have neuroprotective potentials on basal
forebrain cholinergic (BFC) neurons in an animal model of AD [169,170]. Moreover, estren
also induces vasodilatation and has vasoprotective effects (see Section 6.2.2.1).

Specific GPER1 agonists and antagonists may also influence the non-classical estro-
genic mechanism of action. G-1 is a GPER1 receptor agonist that mediates rapid signal-
ing [171] (Figure 6E). G-1 was proven to be effective in preclinical studies regarding multiple
sclerosis, ischemia, stroke, epilepsy, and brain injury [172–174]. However, in murine bone
marrow mesenchymal stem cells and endometrium cells, G-1 had proliferative proper-
ties [175,176]. Therefore, G-1-like compounds may possibly have carcinogenic side-effects.
In contrast, GPER1 antagonists such as G-15 and G-36 [177,178] have anticarcinogenic
properties [176] and might be used to fight cancer (Figure 6E).

Beside their therapeutic potential, novel HRTs and potential therapeutic agents (see
Table 1 for summary) help us to better understand the details of physiological E2 action. The
perfect therapy with neuroprotective, antithrombotic, osteoprotective, and anticarcinogenic
effects is yet to be discovered, but accumulating data might bring us closer to it.
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Table 1. Summary table about the tissue-specific action of E2 and other alternative estrogen-like
compounds. The brain column includes the vasomotor symptoms (VMS). (+) Agonistic effect on ERs,
(−) antagonistic effect on ERs, (−/+) controversial literature data, (?) not known.

Molecule Brain (VMS) Cardiovascular
System Bone Breast Endometrium Therapy References

Estrogen + + + + +

Hormonal contraception, hormone
replacement therapy (HRT),

feminizing hormone therapy in
transgender woman.

refer
Section 6

Clomiphene
citrate

−/+
(dose-

dependent)
+ + − − Treatment of female infertility, and

male hypogonadism. [111–114]

Tamoxifen − + + − +
Adjuvant treatment of ER+ breast

cancer, prevention in
high-risked women.

[115–130]

Toremifene − + + − +
(weak)

Adjuvant treatment of ER+
breast cancer. [131–133]

Raloxifene − + + − neutral
Treatment of osteoporosis in

postmenopause, or in women with
high risk of ER+ breast cancer.

[134–136]

Bazedoxifene − + + − − Treatment of osteoporosis in
postmenopausal women. [137–140]

Ospemifene − + + − −/+ Treatment of genitourinary
syndrome of menopause. [141–143]

Lasofoxifene −
(weak) + + − −/+ Treatment of osteoporosis and

vaginal atrophy. [144,145]

Phyto-estrogens + + + − − Treatment of
menopausal symptoms. [146–157]

Fulvestrant − − − − − Treatment of advanced ER+
breast cancer. [158–164]

ANGELS + + + ? − Not in therapy. [166–170]

G-1 + + + + + Not in therapy. [171–176]

G-15 and G-36 − − ? − − Not in therapy. [176–178]

5.5. Aromatase Inhibitors

Beside manipulating its receptor, another possibility to modulate the E2 level is to
interact with the synthesizing enzymes. Indeed, CYP19 (aromatase) is a crucial step in
the E2 synthesis (see Figure 3), and its activity can be pharmacologically inhibited by
aromatase inhibitors [179]. This might be beneficial when enhanced E2 levels are harmful,
especially in the case of E2-dependent cancers. Testing other possible indications, such as
hypogonadism, did not lead to satisfactory results [180]. In this case, for example, SERMs
were more beneficial.

Interestingly, some phytoestrogens, such as genistein—beside interacting with ERs,
see Section 5.2—may even stimulate aromatase [181].

Nevertheless, E2 replacement rather than reduced E2 levels is desirable in most cases,
and selective, tissue-specific interventions (such as SERMs and ANGELS) may provide
such targeted manipulation more satisfactorily.

5.6. Future Direction of HRT

Due to its multidimensional beneficial effect, HRT was widely introduced, but large-
scale studies highlighted its side-effects (see Section 4). Therefore, although HRT is still
a standard therapy in women with premature ovarian failure (age bellow 51) for the
prevention of osteoporotic complications, its usage for menopausal hormone therapy is
still controversial [182]. Nevertheless, new guidelines recommend its usage for Vasomotor
symptoms (VMS) and vulvo-vaginal atrophy (GSM) in women aged less than 60 years or
who have had menopause for less than 10 years [183].
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6. Estrogen Effects with Therapeutic Consequences
6.1. Main Role of E2 on Reproduction; Contraceptives

The hypothalamic–pituitary–gonadal axis (HPG) is the most important endocrine
pathway in the regulation of reproduction. Neuroendocrine control of the reproductive
axis is performed directly by the GnRH-producing neurons, scattered in the basal fore-
brain [184] with a prominent occurrence in the preoptic area of the hypothalamus (POA) in
humans [185]. GnRH production stimulates the release of luteinizing hormone (LH) and
FSH in adenohypophysis, of which FSH stimulates estrogen secretion in the granulosa cells
of the ovary [186–188].

The most critical point of this reproductive communication system is the estrogen-
dependent regulation of GnRH. The pulsatile activity of the GnRH neurons is attributable
to the negative feedback of E2. In the brain of male rodents, E2 is produced by the CYP19
(aromatase) enzyme from testosterone. This mechanism exerts a constant inhibition on the
pulsatility of GnRH neurons [189,190]. In females, during the majority of the estrus cycle,
GnRH is under E2 negative feedback too [191] (Figure 7).

Figure 7. Hypothalamic–pituitary–gonadal axis (HPG). The gonadotropin-releasing hormone
(GnRH)-producing cells are mainly present in the preoptic area (POA) and reach the anterior lobe of
the pituitary (AL) through the hypophyseal portal circulation, stimulating the synthesis and release
of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which, through the general
circulation, affect the target organ (ovaries in females, while testes in males). The end hormones
estrogen/progesterone and testosterone provide negative feedback.

In 2012, István Ábrahám and colleagues explored this mechanism in mice, and found
that knocking out the CREB in GnRH neurons resulted in abnormal E2 negative feedback.
Therefore, they concluded that rapid, non-classical action of E2 on CREB phosphorylation
may be an important player in the estrus cycle regulation, at least in mice [192]. Indeed, it
was previously described that the non-classical pathway might be involved in E2’s negative
feedback actions at the level of the hypothalamus and/or pituitary gland [68]. Besides,
the same study showed that the positive feedback of E2 during the LH-surge, inducing
ovulation [193,194], is regulated by classical ERα signaling [68,195]. The lordosis behavior,
observed in female rodents as the sign of sexual receptivity, is also influenced by rapid E2
actions through membrane signaling on neuropeptide Y and µ-opioid receptor circuits [196].
However, E2 not only regulates ovulation but also plays a role in other processes during the
menstrual cycle. For example, during endometrial regeneration, E2 supports angiogenesis
presumably via ERβ [197]. Furthermore, E2 is one of the key hormones in the regulation
of human parturition due to its inducing of changes in the uterus and cervix, which are
crucial for labor and birth (for a detailed review, see [198]).

The role of GPER1, as a main player in non-classical E2 actions in the reproductive
system, is widely studied. However, investigations in humans are still rare [199]. GPER1
expression, among many other tissues, can be found in endometrium during the prolifer-
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ative phase, where it might contribute to estrus cycle regulation via rapid, non-classical
actions [200]. GPER1 agonist and antagonist treatments have suggested that this receptor
subtype may directly affect estrogen-induced epithelial proliferation in mice uterus [177].
In a study with another rodent species, GPER1 expression in ovarian granulosa and in
theca cells was found to be regulated by gonadotropins (FSH and LH) [201]. Moreover,
the same research group described that GPER1 regulates the E2-mediated stimulation
of primordial follicular formation in hamsters [202]. A recent study in mice examined
herbicide-induced oocyte maturity failure, and found an activation of GPER1 dysregulation
as a possible cause. The herbicide-disrupted oocyte maturation was rescued by a GPER1
receptor antagonist [203]. This result suggests that non-classical estrogen action through
GPER1 may be present in oocytes not only in lower vertebrates but also in mammals.
Indeed, this receptor subtype has been described in the mouse oocyte membrane during
maturation [204] as well as in human granulosa cells, where its expression was induced by
LH [205]. Additionally, in a human study, GPER1 activation was found to potentiate the
contraction response of the myometrium to oxytocin [206]. Based on this finding, the role
of this G-protein-coupled receptor can be assumed during labor.

Due to its widespread role in reproduction via classical as well as non-classical signal-
ization, estrogen is often used in contraception, mostly in combinations with progesterone,
in many forms from oral pills, transdermal patches, and vaginal rings to contraceptive coils
(Figure 8).

Figure 8. Estrogen effects throughout the body and the role of E2 in a tissue-specific manner. Up
arrow—increase; down arrow—decrease. Abbreviations: bone mineral density (BMD), receptor
activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG).

As a contraceptive agent, the main mechanism of E2 is the negative feedback on
GnRH neurons discussed above [187] (Figure 7). Hormonal contraception—similarly to
HRT (see Section 4)—has many contraindications, because it can increase thromboembolic



Biomedicines 2022, 10, 861 13 of 39

disorders such as stroke and acute myocardial infarct, and increase the risk of cancer devel-
opment in exposed women [207]. Therefore, previously mentioned alternative substances
may be eligible. Indeed, estetrol (E4), a natural human estrogen produced during human
pregnancy in the fetal liver, behaves as a natural SERM, and was approved in 2021 in
Canada in combination (with drospirenon, a progestin medication) as an oral contracep-
tive [141,208]. E4 acts as an estrogen agonist on the vagina, uterus, and endometrium,
and also shows bone-sparing activity. Moreover, in a mouse model, it had a favorable
cardiovascular effect with antithrombotic activity [209]. On the contrary, other SERMs with
antiestrogen activity may normalize amenorrhea and restore reproduction, especially in
POS (see Section 5.1 Clomiphene citrate, Table 1).

6.2. Menopausal Symptoms

Menopause affects every woman at a certain age by influencing their quality of life and
their performance at work [210]. Premenopause is also associated with greater hormone
fluctuations compared to the luteal and follicular phases of the menstrual cycle, which
may cause severe neurochemical changes in the CNS, leading to emotional disturbances as
well as cognitive alterations [211]. Menstruation is permanently lost due to loss of ovarian
follicular activity, leading to a gradual decrease in circulating E2 during the menopausal
transition. In postmenopause, E2 stabilizes at a constant low level [212]. The main symp-
toms of this period are as follows: hot flushes, mood changes, memory deterioration,
migraine, metabolic and cardiovascular changes, skin and hair aging, muscle degradation,
and osteoporosis.

6.2.1. Effects in the Brain
6.2.1.1. Hot Flushes

Hot flushes affect 75% of menopausal women [211]. They occur mainly during the first
stages of sleep, influencing its quality [213]. Decreases in E2 levels at the thermoregulatory
center of the hypothalamus influence the activity of catecholamine and noradrenergic
pathways (i.e., sympathetic activity), ending in vasomotor symptoms (VMS) [214] (Figure 8).
Thus, CNS changes are the source of hot flushes, and mainly the thermoregulatory centrum
in the POA is affected [215]. In addition, hypertrophy of ERα-expressing neurons in the
infundibular nucleus is also characteristic, with increased kisspeptin, neurokinin B, and
substance P mRNA concentrations [216–219]. Moreover, at the level of the pituitary, the
withdrawal of ovarian estrogen-dependent negative feedback during menopause leads to
increased LH synthesis [220] (Figure 7). Changes in the expression pattern of these genes
lead to increased signaling to heat dissipation effectors in the CNS [221].

Due to detrimental side effects, HRT is not recommended nowadays (see Section 4). Even
some widely used SERM, such as TMX [222] or the third-generation ospemifene [223,224],
might induce and not ameliorate hot flushes. Thus, for the treatment of hot flushes, phytoe-
strogens are widely used, being closer to something “natural” (Table 1). Indeed, in a recent
study, nutraceuticals containing—among others—soy isoflavone significantly reduced both
hot flushes and sweating during a 6- and 12-week treatment period [225]. Another study also
found significant improvement of the menopausal symptoms reflected by the Kupperman
Index (an 11-item menopausal symptom questionnaire) after 90-day phytoestrogen treat-
ment [226]. A study based upon self-reports of several thousand women concluded that
soy products but not soy milk are associated with lower likelihood of reporting subsequent
VMS [227]. It was also suggested that genistein, an important isoflavone of soy-derived food,
may reduce hot flushes via the inhibition of visfatin, an inflammatory adipokine [228].

6.2.1.2. Mood Swings

Female sexual hormones deeply influence mood, as reflected by cyclic changes during
the menstrual cycle, and especially by dysphoria during the premenstrual phase [229].
A recent meta-analysis showed an approx. 40% prevalence of premenstrual syndromes
in Indian women [230]. Moreover, ongoing mood disorders may also be exacerbated dur-
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ing the premenstrual period [231]. Additionally, there is a well-known sex difference in
the prevalence of anxiety and depression with higher occurrence in females. COVID-19
pandemic-induced depression is also more prevalent in women [232], and functional gas-
trointestinal disorders, such as irritable bowel disease, are also more common in them [233].
There is a female preponderance of adolescent insomnia [234], which may also contribute
to mood alterations. Moreover, sex hormones differentially organize dimorphic circuits
during sensitive developmental periods [235]. All of this suggests that mood stands under
strong influence of sexual hormones, presumably under the influence of E2. Indeed, there
are ERs in the amygdala [236,237] and hippocampus, parts of the limbic system that are
well-known for their regulatory roles in emotions. However, the hippocampus is important
for spatial memory formation, while the amygdala is also important in social behavior
regulating, e.g., pair bonding and dominance through ERα [236,237]. The amygdala was
also shown to have non-classical, CREB-related E2 signaling [238].

Anxiety and depression are stress-related disorders and highly connected with stress-
regulation disturbances (among others, alteration in the hypothalamic–pituitary–adrenocortical
axis (HPA)). E2 fluctuation during menopause may contribute to dysregulation of the HPA
axis, leading to perimenopausal depression [239].

All in all, these E2-deficiency-induced anxiety- and depression-related symptoms can
be treated by E2, and preferably with newer, non-classical E2-like substances.

6.2.1.3. Neuroprotection

The higher prevalence of dementia in postmenopausal women suggests that female
sexual steroids, especially E2, might be preventative [240]. Indeed, there are significant
amounts of ERs in the centers of episodic and working memory, the hippocampus and
prefrontal cortex, so during perimenopause, the E2 fluctuation can cause a significant
cognitive deficit [241]. However, besides classical pathways, non-classical signaling should
be also taken into consideration.

Alongside memory formation, E2 also influences neuroinflammation (Figure 9). Unsta-
ble E2 levels in the brain were found to be associated with the development of neurogenic
inflammation leading to migraine [242]. The connection is supported by the conclusion of
the Prospective analysis of actors related to migraine aura (PAMINA) study, namely that
the sudden decrease in E2 levels is a major risk factor for migraine [243].

The neuroprotective estrogen comes from different sources. Firstly, it comes from the
periphery through the BBB. Secondly, it can be locally transformed from androsterone, an
androgenic compound. Thirdly, E2 is produced directly from cholesterol by neurons or glial
cells. All enzymes involved in estrogen biosynthesis are expressed in both neurons and
astrocytes [244,245]. CYP19, which catalyzes the last biosynthetic step, is found in higher
amounts in neurons than in glial cells [246]. The regulation of steroidogenesis in the brain
is independent from the periphery, so the plasma steroid concentration does not correlate
with the amounts measured in the brain [247,248]. However, GnRH, which regulates E2
synthesis in the ovary, also affects hippocampal production. During brain injury, astrocytes
also begin to produce CYP19, and therefore E2 as a product. This seems to be essential for
neuroprotection. There is an interplay between neurons and glial cells, as the activation of
astrocytes depends on the E2 produced by the neurons [249,250].

Previous studies have shown the participation of the two most important receptors,
ERα and ERβ, in the neuroprotective effects of E2 with a more prominent role of ERα [251].
E2 therapy also increased ERα expression during neuroinflammation [252]. On the other
hand, ERβ was responsible for increasing dendritic spine density [253]. Moreover, E2-
related neuroprotective mechanisms can also be mediated by GPER1. In a schizophrenia
model of GPER1-KO mice, this receptor showed an important role in learning and mem-
ory [254]. In human BFC neurons—from the nucleus basalis of Meynert—both E2 and G-1
proved to have anti-inflammatory effects [56].
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Figure 9. Neuroprotective effects of estrogens in the central nervous system. TNFα: tumor necrosis factor α;
IL-6: interleukin-6; IL-1β: interleukin 1β; NMDA: N-methyl-D-aspartate; GABA: gamma-aminobutyric
acid; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; D1: dopamine recep-
tor 1; D2: dopamine receptor 2; MMP-9: matrix metallopeptidase 9; BBB: blood–brain barrier; HCN1:
hyperpolarization-activated cation channel. Up arrow—increase; down arrow—decrease.

There are several possible mechanisms for the neuroprotective effect of E2. Firstly, it
reduces the amount of proinflammatory cytokines, leptins, and also the expression of tumor
necrosis factor α [255]. E2 therapy also decreased the interleukin-1β and interleukin-6
expression, and therefore decreased the incidence of brain edema in OVX female rats [256]
(Figure 9). These processes may contribute to the reducing of neurodegeneration during
neuroinflammation by reducing microglia activation. A further possible mechanism is the
inhibition of the matrix metallopeptidase 9 (MMP-9) gene; in this way, E2 may protect
the breakdown of the BBB after trauma [257,258] (Figure 9). Indeed, MMPs are important
regulators of vascular and uterine remodeling, and are under the regulatory control of
E2 and progesterone [259]. Furthermore, the level of MMP-9 is known to increase during
stroke [260]. Next, E2 regulates synaptic function because ER activation may induce rapid
alterations in neuronal excitability by means of the protein kinase-dependent phosphory-
lation of membrane ion channels. These effects depend on the type of neuron [261]. For
example, E2 triggers increased Ca2+ oscillation through T-type channels and potentiates
K+ channels in GnRH neurons. However, it reduces L-type and N-type Ca2+ current in
neostriatal and cortical neurons with concomitant increases in excitability through fast
K+ channels [262]. Moreover, E2 inhibits the hyperpolarization-activated cation channel
(HCN1) in the hippocampal pyramidal and dorsal ganglionic neurons, an essential molecule
for hippocampal information processing [262]. This process was mediated by GPER1 [263].
Another aspect of synaptic function is the dendritic spine density, which fluctuates in the
hippocampus—but not in the cortex—during the estrus cycle [264]. However, removal of
E2 by OVX decreased the spine density not only in the hippocampus, but also in the cortex,
and this effect could have been prevented by HRT [265] (Figure 9). The same effects were
observable in pyramidal cells in the sensorimotor cortex and medial nucleus of the amyg-
dala in rats and in dorsolateral pyramidal cells of the prefrontal cortex in monkeys [266,267].
Additionally, E2—through GPER1—increased excitatory postsynaptic potentials in the
entorhinal cortex of OVX rats, the major source of cortical sensory and associational input
to the hippocampus [268]. Furthermore, E2 might alter the appearance and function of
other receptors. In the hippocampus, E2 increased the excitability by upregulating the
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expression of N-methyl-D-aspartate (NMDA), an ionotropic excitatory glutamate receptor,
in the plasma membrane. In parallel, E2 inhibited the inhibitory gamma-aminobutyric acid-
erg (GABA) transmission, in part due to the interactions of ERα and a glutamate receptor,
which led to the mobilization of anandamide, a retrograde signaling endocannabinoid [269].
E2 rapidly modulates synaptic plasticity including long-term potentiation (LTP) and depres-
sion [270]. Several steps lead to the development of LTP involving NMDA or metabotropic
glutamate receptors, downstream phosphorylation cascades, dynamic changes in the post-
synaptic membrane expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, another ionotropic glutamate receptor, CREB-mediated transcriptional
activation, and microtubule-dependent transport processes; and E2 might influence most of
them. For example, in the hippocampus, E2 promoted LTP by increasing the incorporation
of the AMPA receptors into the postsynaptic membrane of pyramidal neurons [270]. On
cultured cortical neurons, E2 transiently enhanced the internalization of AMPA, while it
increased the incorporation of NMDA receptors into the plasma membrane. The work
of our research group confirmed that E2, via non-classical actions mediated by GPER1,
decreased the movement of AMPA receptors in neurites [271]. The glutamate receptor
dynamics might be associated with rearrangement of the cytoskeleton by regulating actin
polymerization and rearranging the morphology of the dendritic spine [272,273]. As an
additional mechanism, E2 may modulate dopaminergic transmission in the nigrostriatal
system through ERα and ERβ [274]. E2 acutely increased dopamine (DA) synthesis, release,
and turnover, as well as the expression of the DA transporter and D1 and D2 receptors in
the striatum [274]. E2 induced an increase in motor behavior not only due to an increase
in DA release, but also by inhibiting the DA uptake in astrocytes [274]. Last but not least,
E2 upregulates neuroglobin and translocates it to the mitochondria to sustain neuronal
and glial cell adaptation to injury [275]. Indeed, neuroglobin may act as a gas sensor upon
hypoxic insults and intervenes in anti-oxidant and anti-apoptotic signaling pathways [276].

Although the neuroprotective effect of E2 is obvious in females, similar effects can
be detected in males as well. In this sense, ERβ was found to be involved in ischemia-
reperfusion-induced cerebral damage in male rats [277]. Moreover, TMX, a SERM, pre-
vented the ischemia-induced neuronal damage in the hippocampus of male rats [278,279].
Additionally, G-1 and G-15, a GPER1 agonist and antagonist, respectively, modulated
synaptic plasticity during temporal lobe epilepsy in Sprague Dawley rats [173]. However,
E2 modulated hippocampal neurogenesis and cell death in adult female rats, but not in
male rats [280,281].

6.2.2. Changes at the Periphery
6.2.2.1. Cardiovascular Effects

The first clues on the regulatory role of E2 in the vascular system came from the
observations of low incidences of coronary artery diseases in premenopausal women
compared to men and postmenopausal women [282–286].

At first, it was thought to be due to the E2 effect on lipid homeostasis, but soon it
was connected to its direct vascular effects [287], especially through the classical pathway
induced by nuclear receptors. Endothelial and smooth muscle cells express nuclear ERα in
the mammalian body [71,288,289]; thus, it was the first target. The role of ERα was further
confirmed during vascular injury; however, there is a complex mechanism and interplay
between splice variants resulting in this protective effect [290]. Interestingly, in smooth
muscle cells, the activation of inducible NOS (iNOS) during inflammatory responses may
lead to adverse vasodilatory effects; therefore, its termination is also important. E2 inhibits
the over-activity of iNOS via ERα [291]. This protective function might be damaged under
different pathological conditions, e.g., in diabetic rats [292]. ApoE KO mice are often used
as an animal model for atherosclerosis with increased cardiovascular risk. In this strain, E2
treatment reduced OVX-induced atherosclerotic plaques and plasma cholesterol levels—at
least partially—through the ERα [293].
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On the other hand, ERβ is the main subtype occurring in the endothelial cells of the
mammalian endometrium [78,294–298]; therefore, the cardiovascular E2 effects—having a
pivotal role also in cyclic bleeding—were also connected to its activation. Although, in one
study, ERβ expression showed a reactive response after vascular injury in male rats [299],
other studies did not confirm this [76,300]. However, ERβ still seems to be connected to
vasoprotective properties: in an in vitro human-brain vascular smooth muscle cell model,
dihydrotestosterone, an androgen hormone, reduced inflammation via ERβ [301]. Another
study showed that a specific ERβ agonist, indazole-Cl, also decreased inflammation after
hypoxic stress [302]. Urocortin, an important player in stress adaptation, induced vasodi-
lation also through ERβ; however, as of now, it is unknown whether this is regulated by
genomic or non-genomic pathways [303]. Interestingly, secreted HSP27, an ERβ-associated
protein, also has a positive cardiovascular effect promoting atheroprotection [304]. HSP27
levels were lower in plaques versus normal (disease-free) arteries and serum HSP27 levels
were reduced in patients with stable coronary artery disease versus controls [304]. An
ERβ-specific agonist, diarylpropionitrile, was able to reproduce the predicted atheropro-
tective effects of HSP27 [304]. Additionally, ERs may induce long-term changes, such
as angiogenesis and vascular remodeling, to adapt to the physiological changes during
pregnancy [79,305,306].

However, less is known about the membrane bound, non-classical pathways that
exert rapid vasodilatation and, thus, may increase blood flow in the uterus [78,298,307].
Indeed, E2 can act in an ER-independent way in the smooth muscle cells, by inhibiting the
Src pathway (see Figure 5) and, thus, the voltage-gated potassium channels that mediate
serotonin-induced vasoconstriction [308]. On the other hand, other authors argued that
this relaxant effect is mediated by the inhibition of L-type Ca2+ channels, and proges-
terone also plays a role in it [309]. Cerebral arteries are of particular importance where E2
regulates vasodilatation through the NO-NOS system [310]. In vitro and ex vivo exper-
iments confirmed that—besides E2—ANGELS compounds (see Section 5.4) also induce
vasorelaxation. However, they are doing so via both eNOS-dependent and -independent
pathways [71,311–313], for which intact endothelia and arteries are required [314]. There
is also evidence that the expression of insulin-like growth factor 1, a potent mitogen for
vascular smooth muscle cells, is modulated by E2 without activating ERs [315]. Newer
studies directly showed that GPER1 also plays a role in these processes [172,316]. In an
in vitro study, E2 (in high concentrations) had relaxant effect on the contracting uteri of
pregnant rats, which was mediated by non-genomic pathways and GPER1 [317].

While preclinical and cellular studies are promising, clinical studies show controversial
results [91,318–320]. Although low-dose oral and transdermal HRT preparations were
shown to be cardioprotective [321], overall HRT increased the risk of thromboembolic
events rather than being beneficial (see Section 4). It is still controversial as to whether E2
agonists or antagonists would be beneficial. Therefore, a more selective compound without
any effect on the cardiovascular system seems to be preferable (see Table 1).

6.2.2.2. Metabolic Disturbances

One of the most disturbing changes around menopause is the weight gain leading to se-
rious health problems. Indeed, postmenopausal women have higher rates of severe obesity
when compared with their male counterparts [322]. Metabolic changes during menopause
are due to a shift in E2 levels to an androgenic state [323]. The increase in bioavailable
testosterone stimulates the accumulation of visceral fat, which is exacerbated by the lack of
E2, further promoting the accumulation of centrally stored adipose tissue [324,325]. Indeed,
OVX, a model of menopause, increased body weight with significant fat accumulation
(Figure 10). On the contrary, in males, the lack of testosterone after orchidectomy decreased
the body weight without changes in fat content, most probably due to the lack of its anabolic
effect on protein synthesis [326].
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Figure 10. Effect of removal of sex hormones on the body composition in 4-month-old C57/Bl6 mice
measured by magnetic resonance imaging (MRI) in the Metabolic Laboratory of the Institute of Exper-
imental Medicine, Budapest, Hungary, 4 weeks after removal of the hormones (orchidectomy (OCX)
in males and ovariectomy (OVX) in females under ketamine-xylazin anesthesia [327]). (A) The body
weight difference showed significant sex difference (F(1,34) = 39.5, p < 0.01) as well as sex * OCX-OXV
interaction (F(1,34) = 15.0, p < 0.01), with a decrease in males and an elevation in females. (B) For the
body fat content, the removal of the sex hormones had a significant impact (F(1,34) = 8.3, p < 0.01) in a
highly sex-dependent way (interaction: F(1,34) = 6.1, p = 0.02). More specifically, there was no change
in males, and an increase in females. Abbreviations: M-C—male, control operated; M-OCX—male,
orchiectomized; F-C—female, control operated; F-OVX—female, ovariectomized. * p < 0.01 vs. control
operation of the same sex; # p < 0.01 vs. male.

Besides the peripheral effect on metabolism (e.g., facilitation of insulin secretion,
control of glucose availability, and shifting to the use of lipid as the main energy substrate),
E2 also exerts central effects, largely through neural modulation, thereby regulating the
energy management of the whole body [328].

Obesity, especially visceral fat, is a serious risk factor—among others—for cardiovascu-
lar events as well as for type 2 diabetes mellitus (T2DM) [329], also called cardiometabolic
diseases [321]. Large scale randomized clinical trials have suggested that HRT may reduce
insulin resistance and decrease the risk of developing T2DM [321]. Despite promising
evidence, HRT use is not recommended in the primary prevention of T2DM due to the
complex interplay between underlying conditions and other health risks (e.g., obese women
with T2DM may have higher risk of developing venous thromboembolism). Finding novel
SERMs with beneficial E2-like metabolic effects on the tissue of interest while antagonizing
ERs in the breast and uterus is desired [330]. Indeed, in the OXV rat model, TMX as
well as RLX reversed undesirable metabolic blood levels [331]. Moreover, a new SERM
(GSK232802A) reduced body weight and adiposity in non-human OVX primates by sup-
pressing food intake and increasing activity, suggesting its possible therapeutic usage
in humans [332]. On the other hand, with phytoestrogens, there is a lot of uncertainty
due to the relative abundance of different phytoestrogens in a given diet, the need for
conversion to an active principle through the gut microbiome, the synergistic effect of
different phytoestrogens, etc. [333]. Therefore, despite the positive association between,
e.g., urinary excretion of isoflavones and lower T2DM risk in US women [334], there are no
clear recommendations on their usage.

6.2.2.3. Atrophy of the Outer Barrier (Skin, Mucosa) and Hair

Menopause is also associated with the deterioration in the condition of skin and hair.
An increasing number of studies have found a link between a drastic decrease in E2 levels
and damage in the cellular and homeostatic mechanisms of the skin [335]. Moreover, a de-
crease in E2 levels may also play a role in reduced skin elasticity due to loss of collagen and
elastin fibers [336]. Additionally, E2 plays a pivotal role in the regulation of hyaluronic acid,
mucopolysaccharides, and sebum production as well [337–339]. Due to these alterations,
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E2 deficiency may result in changes in the moisture content and hydration of the skin as
well as of all urogenital tissue including the vulva, vagina, bladder, and urethra vaginal
mucosa [340]. One of the most serious consequences is the urogenital atrophy (newly
renamed as GSM, see Section 5.1), which may contribute to sexual dysfunction [183].

To prevent side-effects, local treatment with E2-containing creams is available; how-
ever, systemic administration of selective compounds can be also beneficial. For example,
ospemifene, a SERM, during a 3-month treatment significantly improved GSM, sexual
function, and quality of life in general [341]. Thus, it is recommended for treatment of
dyspareunia, persistent or recurrent genital pain that occurs just before, during, or after
sex [141]. Ospemifene had even less cardiovascular side-effects than other SERMs [342];
however, it might even worsen the hot flushes [223,224].

6.2.3. Musculoskeletal System

As for the musculoskeletal system, both ERs are found in human skeletal muscle
regardless of gender or age [343]. Thus, loss of ovarian estrogen can directly trigger changes
in skeletal muscle. As a molecular mechanism, E2—through ERα and ERβ—contributes to
the binding of myosin and actin [344]. E2 deficiency also has a major influence on growth
hormone secretion, which contributes to a faster decrease in muscle mass as well [345].
These changes may also contribute to GSM during menopause [346]. However, one of the
most characteristic effects of E2 deficiency is an increased risk of osteoporosis.

6.2.3.1. Osteoporosis: Role of E2 in Bone Integrity

Osteoporosis can be associated with several factors, such as menopause and aging, and
is characterized by weakened bone microstructures with overall bone loss and excessive
risk of fractures [347]. Every other postmenopausal woman has/will have an osteoporosis-
related fracture [348]. In fact, the initial, first 3–5 years phase of postmenopausal osteoporo-
sis (PMOP) might be linked to E2 deficiency [349] and is characterized by a rapid loss of
trabecular bone structure, while the second stage, a slower period of 10–20 years, involves
an age-dependent bone loss of both the cortical and trabecular bone structure, affecting
women and men equally [350,351] (see Figure 11A).

Figure 11. (A) Bone structure and the classical estrogen receptors on the bone. (B) Estrogen’s influence
on bone formation. Green arrows indicate stimulation, while red bookend means inhibition of cell
formation and survival. Abbreviations: E2—17β-estradiol; Erα—estrogen receptor alfa; Erβ—estrogen
receptor beta; OPG—osteoprotegerin; RANK—receptor activator NF-κB; RANKL—RANK ligand.

HRT (either E2 alone or with progesterone) has been shown to prevent the bone
loss and fracture not only in OVX mice [352], but also in women with PMOP [353]. The
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cellular basis of this effect is the fact that ERα and ERβ have been found in osteoblasts,
osteoclasts, and osteocytes alike [351]. Bone formation and remodeling is regulated mainly
by ERα, which mediates most of the effects of natural estrogen ligands, and is expressed
primarily in cortical bone cells (Figure 11A). On the other hand, ERβ is expressed primarily
in trabecular bone and may mediate the effects of phytoestrogens [37,354,355]. E2 increases
osteoblast and osteocyte lifespans directly by inhibiting their apoptosis and regulating the
osteoclast formation, survival, and activity [356,357] (Figure 11B). Moreover, indirect effects
on osteoclast formation are mediated by the ERα-related effects of osteoblasts, as well as T-
cells and B-cells [358]. E2 regulates the receptor activator NF-κB (RANK) ligand (RANKL),
RANK, and osteoprotegerin (OPG) pathways. Indeed, these three molecules are essential,
non-redundant factors for osteoclast biology [359]. Osteoclasts are entirely absent in RANK-
or RANKL-deficient mice, leading to osteopetrosis, whereas OPG-deficient mice exhibit
excessive bone resorption and severe osteoporosis. The main effect of E2 is the suppression
of RANKL expression in osteoblasts, leading to reduced osteoclast activation [359]. The
stimulated expression of OPG, a natural antagonist of RANKL, supports this process [360].

Although ERα, Erβ, and even the androgen receptor are present in cells of the bone
formation, the antiapoptotic effects of sex steroids might be largely due to the MAPK
signaling cascade with extranuclear activity [357] (Figure 5). This extranuclear mechanism
of action can be modelled by estren, an ANGELS compound (see Section 5.4), which was
shown to reverse E2-deficiency-induced bone loss through an antiapoptotic effect via the
MAPK signaling pathway (Figure 5) [166]. However, this effect required the presence of
the ligand binding domain of ERα and Erβ, suggesting that the non-genomic extranuclear
effects of E2 are mediated by classical ERs, located near the plasma membrane [354].
However, the participation of GPER1 cannot be closed out through the activation of the
MAPK, PI3K, and PKA pathways.

The best cure is the prevention, which—in the case of osteoporosis complication—
includes the reducing of possible injuries (correcting impaired vision and/or hearing,
minimizing fall-risk-inducing drugs (FRIDs), and establishing muscle and balance train-
ing), quitting smoking, and limiting alcohol intake [361]. Administrating adequate intakes
of vitamin D, protein, and calcium as well as regular exercise with weight loss are rec-
ommended not only for prevention, but also for treatment [362,363]. However, in many
cases, we cannot avoid specific medicine prescriptions. According to their mechanism
of action, osteoporotic medications are divided into two categories: bone-resorption in-
hibitors and bone-formation supporters. Besides bisphosphonate—dominating the market
at around 90% [364]—and anabolic agents, estrogen-like compounds are the best-known
bone-resorption inhibitors [363]—approx. 5% of patients were administered it in South Ko-
rea [364]. During premature ovarian insufficiency, oral contraceptives are also in use [365].
However, due to the previously mentioned side-effects (see Section 4), more selective
estrogen compounds such as SERMs are preferable [366]. TMX, as the first SERM, was
extensively used, but nowadays RLX is preferable (see Section 5.1). However, long-term
usage of bisphosphonates and SERMs in PMOP patients might result in serious adverse
effects such as osteonecrosis of the jaw, atrial fibrillation, irregular vaginal bleeding, hot
flushes, and atrophic vaginitis [347]. Moreover, bone-resorption inhibitors cannot reverse
osteoporosis that has already progressed. Thus, further studies are needed to discover new
treatment options. Basic and clinical research on estrogen and bone interaction not only
expands our basic knowledge, but may also have a significant impact on the health of our
aging population [367].

6.3. Role of E2 in Cancer

E2 may promote proliferation [368], and thus, increases the likelihood of developing
cancerous processes in many organs, including the breast, ovaries, and endometrium,
as well as the prostate [369]. Aberrant alternative splicing of ERs is also very common
in cancer [370]. Even hepatocellular carcinoma shows strong gender dependence, with
protective E2 actions [371]. In general, SERMs, acting on ERβ, might be beneficial.
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6.3.1. Breast Cancer

Breast cancer (BC) has three main types: the luminal BC, which is estrogen and/or
progesterone receptor positive; the human epidermal growth factor 2 (HER-2)-positive BC;
and the triple negative BC, which lacks the expression of these receptors [372]. Luminal
BC is the most common type with the best prognosis [373], and it is usually treated with
HRT [374]. In luminal BC, both ERα and ERβ are expressed. ERα acts as an oncogene
and ERβ acts as a tumor suppressor [375]. Thus, the main goal of hormonal therapies is
to suppress ERα activity in breast cancer cells. CYP19 (aromatase) inhibitors inhibit E2
production and lower the level of circulating E2, and thus, reduce ERα activity [376]. Some
but not all estrogen-positive breast cancers express HSP27, an ERβ-associated protein;
however, overexpression of HSP27 was found to be associated with both good and poor
prognosis [377].

SERMs, such as TMX, bind to ERs and competitively inhibit E2 signaling [158]. SERDs,
including fulvestrant, also bind to ERs and induce receptor degradation [378]. Due to the
extremely positive clinical results, new SERMs and SERDs are currently being developed
that may further increase the success of BC therapies [372].

6.3.2. Ovarian Cancer

The importance of estrogen signaling in ovarian cancer (OC) is shown by the fact that
ER-positive cases respond well to endocrine therapies, and that chronic E2 administration
increases its risk [379]. Normal ovarian epithelial cells express mainly Erβ; however, its
expression continuously decreases alongside OC progression [380].

On the contrary, significant ERα expression has been detected in OC, especially in
endometrioid form, where the ratio of ERα-positive cases is over 80% [381,382]. E2 induces
epithelial-to-mesenchymal transition and promotes cell migration through ERα [383]. Based
on the foregoing, selective inhibition of ERα signaling may be a good therapeutic option
for the treatment of ERα-positive OC. Indeed, several in vitro studies indicated that ERα-
positive OC responds well to TMX and fulvestrant treatment, and their effects are mediated
by ERα [384,385]. This is confirmed by clinical data showing that TMX and the CYP19
inhibitor letrozole were successful in the treatment of ERα-positive OC [379].

On the contrary, ERβ activity leads to decreased proliferation and apoptosis induction
in OC [386]. Patients with ERβ-positive OC have better prognosis for survival [387]. Thus,
selective activation of ERβ might be also beneficial. Indeed, a subtype-selective ERβ
agonist [388] as well as two natural compounds with similar efficacy [389] significantly
inhibited human ovarian cancer cell growth in vitro. Phytoestrogens (see Section 5.2) also
have high affinity to ERβ [390]. Therefore, it is not surprising that genistein and daidzein
as well as an ERβ agonist (ERB-041) significantly inhibited ovarian cancer cell migration,
invasion, and proliferation, as well as inducing cell cycle arrest and apoptosis. These
effects were due to the activation of alternative, non-classical pathways, such as PI3K
(see Figure 5).

6.3.3. Endometrial Cancer

E2 signaling is actively involved in the development of endometrial tumors (EC).
Abnormally elevated E2 levels can cause endometrial hyperplasia, which can lead to
endometrioid-type EC [391,392], which is the most prevalent one with the best prognostic
outcome [391]. Traditionally, EC has been treated with surgery followed by radio- and
chemotherapy [393]. However, for patients with metastases as well as those who want
to maintain their fertility, hormonal therapies may be an alternative [394]. Most of the
EC types express ERs (both ERα and ERβ) alongside progesterone receptors [395]. For
hormonal therapies, progestin is the most commonly used, inhibiting the action of the
ER through progesterone receptors [396]. More recently, SERMs, SERDs, and aromatase
inhibitors have been increasingly studied to treat EC.
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6.3.4. Prostate Cancer

Controversially, female hormones (estrogens) have a significant role in male cancer
development. In fact, the concept of “male” and “female” hormones is an oversimplifica-
tion of a complex developmental and biological network of steroid actions that directly
impacts many organs [397]. CYP19 (aromatase) is expressed in many organs and cells;
thus, local production and action of E2 in men is likely physiologically relevant. It seems
to be especially important for epiphyses fusion, normal bone density, as well as healthy
metabolism. Moreover, even in males, E2 may provide significant feedback information at
the pituitary level through ERα.

The first effective treatment against prostate cancer (PC) was androgen deprivation
therapy performed by bilateral orchiectomy or E2 injection [398]. The antitumor effect
of E2 therapy was achieved through reduced production of androgenic hormones via
the negative feedback on the pituitary gland. The direct effects of E2 on prostate cells
have been recognized only in recent years [399]. In the human prostate, ERα is expressed
in stromal cells and in the androgen-independent basal cell layer [400]. Elevated ERα
activity is considered to be carcinogenic. During malignant transformation of the human
prostate cells, the expression of ERα increases and luminal cells also start to express the
receptor [400]. ERα retains its increased activity until the late phase of human PC [401].

In the healthy human prostate, androgen-dependent luminal cells express ERβ [402].
In most PC types, the expression of ERβ is reduced or totally absent [403,404]. There
is increasing evidence of the tumor-suppressor effect of ERβ activity inhibiting PC pro-
gression [405]. ERβ is also able to inhibit ERα signaling and induce apoptosis in PC
cells [406]. However, ERβ may have some tumorigenic effect, supported by evidence
about the overexpression of the receptor in metastatic PC cells in bone marrow and lymph
nodes [402].

The role of the GPER1 in PC is still unclear. Expression of GPER1 has been shown
in PC cells, and there is evidence of both its tumorigenic and tumor-suppressor effects.
Clarifying its exact role requires further investigation [401].

Diethylstilbestrol (DES), a synthetic, non-steroidal estrogen, was commonly used as
an estrogen therapy—among others—to treat castration-resistant PC (CRPC). Although
DES has no beneficial effects in the early stage, it was beneficial in progressed metastatic
CRPC [401]. Because the oral E2 therapies have highly toxic side effects, current clinical
trials focused on transdermal administration of low-dose estrogens with positive out-
comes [401,407,408]. Alternatively, SERMs and phytoestrogens may be also used in PC
treatment. For example, toremifene, a second-generation SERM (see Section 5.1), reduced
the five-year recurrence of bone metastatic PC [409]. According to in vitro results, RLX
could be another promising SERM in PC therapies [410]. Natural phytoestrogens selec-
tively bind to ERβ and induce anti-androgenic and protective effects in prostate epithelial
cells [399,411]. It is also worth mentioning that in countries where the diet contains high
phytoestrogen intake, the occurrence of prostate cancer is very low [412].

6.4. General Health Benefit: Antiviral Effect

Repurposing previously approved medications for new indications by taking advan-
tage of off-target effects has gained traction, particularly in areas of medicine that do not
offer large profits to pharmaceutical firms [413].

Before the COVID-19 pandemic, infectious disease discovery research had been de-
clining among large pharmaceutical companies; therefore, at the time of the outbreak, the
potential payoff of repurposing became attractive. As the SERM clomiphene was shown
to have antiviral effects against the Ebola virus by interfering with virus entry into the
target cell [414], the hypothesis arose that it might also be effective against COVID-19
infection [415].
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7. Discussion

E2 is one of the most important female sex hormones and plays an important role in
several tissues and organs not only in females, but also in males. E2 can affect reproduction
and parturition through highly complex, non-classical signaling pathways in addition to
the classical one, having both central (negative feedback on GnRH neurons and LH/FSH)
and peripheral actions (direct effects in ovaries and uterus). The menopausal E2 depletion
highlighted its role in thermoregulation, mood changes, memory deterioration, migraine,
metabolic and cardiovascular changes, skin and hair aging, muscle degradation, and osteo-
porosis, and HRT was introduced. The side-effects of HRT showed the cancerogenic effect
of E2 in the breast, ovarium, and endometrium, which called attention to the non-classical
mechanism of action and alternative therapies. Mapping the non-classical effects helped to
understand the role of E2 in terms of neuroprotection (anti-inflammatory and anti-apoptotic
effects and the increasing of spike density), the cardiovascular system (vasodilatation), and
osteoporosis (the increasing of bone mineral density, the inhibition of osteoclasts, and the
modulation of osteoblasts, see Figure 11).

New, more selective modulators open the possibility of more effective interventions
with less side-effects. Therefore, we might expect an increase in the indications of HRT
even to men (e.g., for hypogonadism [180] or as a neuroprotective agent). However, we are
still far from our ultimate goal.
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