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Abstract

Independent Component Analysis (ICA) is a method for solving blind source separation

problems. Because ICA only needs weak assumptions to estimate the unknown sources

from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A

serious disadvantage of the traditional ICA algorithms is that their results often fluctuate and

do not converge to the unique and globally optimal solution at each run. It is because there

are many local optima and permutation ambiguities. We have recently proposed a new ICA

algorithm named the ordering ICA, a simple extension of Fast ICA. The ordering ICA is theo-

retically guaranteed to extract the independent components in the unique order and avoids

the local optima in practice. This paper investigated the usefulness of the ordering ICA in

EEG analysis. Experiments showed that the ordering ICA could give unique solutions for the

signals with large non-Gaussianity, and the ease of parallelization could reduce computation

time.

1 Introduction

Electroencephalography (EEG) is a method of monitoring the electrical activity in the brain

[1]. As EEG is a non-invasive and low-cost method without imposing a heavy burden on sub-

jects, it is widely used for measuring brain activity. On the other hand, EEG has only a limited

number of noisy channels, and its observed results fluctuate according to the subjects and tri-

als. Therefore, EEG needs advanced and robust techniques for extracting the essential compo-

nents from such noisy and limited signals. Independent component analysis (ICA) is a widely

used technique for analyzing EEG signals [2]. One of the most significant advantages of ICA is

its versatility. ICA needs only a simple assumption on the model generating observed signals

(the linear mixture of non-Gaussian sources). Therefore, ICA is suitable for EEG analysis

where an unknown mixture model changes according to the subjects and trials. An ICA-based

analysis tool named EEGLAB has been widely used [3]. One disadvantage of ICA is that it

often generates a different solution at each run for the same dataset, unlike principal compo-

nent analysis (PCA). It reduces the robustness of the analysis. This indeterminateness is caused

by the non-linearity of the objective functions of ICA, which makes ICA have many local

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0276680 October 24, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Matsuda Y, Yamaguchi K (2022) Unique

estimation in EEG analysis by the ordering ICA.

PLoS ONE 17(10): e0276680. https://doi.org/

10.1371/journal.pone.0276680

Editor: Qichun Zhang, University of Bradford,

UNITED KINGDOM

Received: March 19, 2022

Accepted: October 11, 2022

Published: October 24, 2022

Copyright: © 2022 Matsuda, Yamaguchi. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All resulting data and

script files are available from the kaggle database

(https://www.kaggle.com/datasets/

yoshitatsumatsuda/eeg-analysis-data-for-plos-one-

manuscript-2022).

Funding: Yoshitatsu Matsuda. Grant Number

JP21K12036. Japan Society for the Promotion of

Science KAKENHI. https://kaken.nii.ac.jp/grant/

KAKENHI-PROJECT-21K12036/. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-0056-0185
https://doi.org/10.1371/journal.pone.0276680
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276680&domain=pdf&date_stamp=2022-10-24
https://doi.org/10.1371/journal.pone.0276680
https://doi.org/10.1371/journal.pone.0276680
http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets/yoshitatsumatsuda/eeg-analysis-data-for-plos-one-manuscript-2022
https://www.kaggle.com/datasets/yoshitatsumatsuda/eeg-analysis-data-for-plos-one-manuscript-2022
https://www.kaggle.com/datasets/yoshitatsumatsuda/eeg-analysis-data-for-plos-one-manuscript-2022
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K12036/
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K12036/


minima. As non-linearity is essential to ICA, it is difficult for the previous ICA methods to

solve this problem.

Recently, we proposed a new ICA method named the ordering ICA [4]. The ordering ICA

is theoretically guaranteed to find the unique solution of ICA. Though it was much slower

than the previous ICA methods, the paper suggested that parallel processing could accelerate

the ordering ICA. This paper constructs a parallel implementation on multi-core CPUs of the

ordering ICA and applies it to EEG analysis. The experimental results show that our imple-

mentation can extract the essential components more robustly than the previous methods

with modest computation time.

This paper is organized as follows. In Section 2, ICA and the ordering ICA are briefly

explained. In Section 3, the parallel implementation of the ordering ICA is detailed. Section 4

shows the experimental results of our implementation in EEG analysis. Lastly, we conclude

this paper in Section 5.

2 Background

2.1 Independent component analysis and EEGLAB

Generally, ICA is used for extracting unknown sources from observed signals in an unsuper-

vised manner [5, 6]. ICA assumes the linear mixture model X = A S, where X = (xim) and S =

(sim) (N ×Mmatrices) are the observed signals and the unknown sources, respectively. A =

(aij) (an N×Nmatrix) is the unknown mixing matrix. N andM are the dimension of signals

and the sample size, respectively. ICA extracts the unknown components in A so that the

sources in S are statistically independent as much as possible. ICA is solved as an optimization

problem, where the objective function is based on some higher-order statistics such as kurtosis.

The objective function is derived from an assumption that each source is given independently

according to a non-Gaussian distribution. It has been well known that ICA is quite useful for

analyzing EEG signals from brain activity. EEGLAB is the most widely used tool implemented

in MATLAB [3].

There are many methods of ICA according to the choice of the objective function and the

optimization algorithm. The three representative ICA methods are employed in EEGLAB: the

extended InfoMax [7] (referred to as InfoMax), Fast ICA [8], and JADE [9]. Many other meth-

ods are variations of the above three methods. The third method, JADE, is not applicable to

high-dimensional signals. As the EEG channel is generally more than 60, JADE can not extract

the essential components from EEG signals. Therefore, we focus on InfoMax and Fast ICA

here. InfoMax employs a stochastic gradient algorithm for optimizing one of two hyperbolic

tangent based objective functions depending on the currently estimated source distribution.

Though InfoMax can find essential components robustly, the convergence of InfoMax is slow.

Fast ICA employs Newton-Raphson method in the optimization of kurtosis-based objective

functions. The advantage of Fast ICA is the speed of its convergence. The disadvantage is that

the succeeding components tend to fluctuate more largely. One reason is that the usual

approach of Fast ICA (called the deflation approach) estimates the components one by one

under the orthonormality constraint. The errors accumulated by the successive estimation of

components cause the fluctuations. On the other hand, such accumulated errors do not occur

in InfoMax because InfoMax estimates all the components simultaneously. InfoMax has been

preferred to Fast ICA in EEG analysis because of its robustness.

2.2 Ordering ICA

The ordering ICA is our recently-proposed method [4], which is a variation of the deflation

approach of Fast ICA. In summary, the ordering ICA finds the globally optimal component at
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each deflation step by repeating the Newton-Raphson method with many different initializa-

tions and selecting the best solution from the multiple candidates. Here, we explain the order-

ing ICA in brief. See [4] for the details.

First, we employed a novel objective function in the ordering ICA. Let wi = (wi1, . . ., wiN) be

the i-th row of the separating matrix W, which is expected to be the inverse of the mixing

matrix A. Y = (yim) = WX denotes the estimated sources. The objective function of the i-th

component in the ordering ICA is given as follows:

Fi ¼ Uð
X

m

y4

im=M � 3Þ ð1Þ

where

UðaiÞ ¼ ai � 2logðai=2þ 1Þ: ð2Þ

Note that ai ¼
P

my
4
im=M � 3 is the estimated kurtosis of the i-th row of Y if the row is nor-

malized. Now, the following theorem holds:

Theorem 1We assume that S consists of normalized independent sources and does not
include any uniform Bernoulli variable. We also assume that X is given by an invertible linear
ICA model X = AS in the real domain. Then, all the non-Gaussian sources are extracted in
descending order of Y(κi) if eachFi is globally maximized subject to ∑m yim = 0 and ∑m yim yjm/

M = δij for j� i (the Gram-Schmidt orthonormalization), where κi is the true kurtosis of the i-th
row of S.

In other words, by globally maximizing Fi with respect to wi one by one for each i in the

Gram-Schmidt orthonormalization, the true separating matrix W (and the true mixing matrix

A = W−1) can be estimated uniquely if the assumptions are satisfied. κi can be estimated by αi
in practice.

Next, the algorithm for maximizing Fi in the Gram-Schmidt orthonormalization is

described. It is easily proved from the convexity of U (αi) that the global maximum ofFi = U (αi)
is one of local maxima and minima of αi. Therefore, we can utilize the deflation approach of

the Fast ICA algorithm on the kurtosis [8]. As it finds a local minimum or a local maximum in

each run by the Newton-Raphson method, we can find the global maximum of Fi without fail

if the starting point of each run is sampled sufficiently densely from the entire space of wi.
Actually, by using Fast ICA to generate many candidates with different random initializations

and selecting the best result with the highest Fi, the global maximum is expected to be found

in most cases. This algorithm estimates W from given X and is called “the ordering ICA”

(Algorithm 1). Though the original ordering ICA [4] can estimate the number of independent

components adaptively, we fix the number of independent components as N in this paper.

Algorithm 1 Ordering ICA
Require: X: whitened observed signals. L, K, �: hyper-parameters.
Ensure: W: separating matrix.
1: Initialize W to the empty matrix
2: i  1
3: while i � N do
4: if i > 1 then
5: E  W⊺W
6: else
7: E  0
8: else if
9: Initialize randomly L different candidates wl

i

10: for all l 2 {1, . . ., L} do
11: ŵ il, Y  FastICA (wl

i, X, E)
12: ail  

P
my

4
m=M � 3
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13: end for
14: p  argmaxl U(αil)
15: Concatenate ŵ⊺

ip to W as the last row
16: i  i + 1
17: end while
18: function FastICA(w, X, E)
19: w  w − E w
20: w w=

ffiffiffiffiffiffiffiffi
w⊺w
p

21: t  0
22: repeat
23: Wprev  w
24: y w⊺ ~X
25: w ~Xðy � y � yÞ⊺=M � 3w
26: w  w−E w
27: w w=

ffiffiffiffiffiffiffiffi
w⊺w
p

28: t  t + 1
29: untill t < K and (||w + wprev|| > � or ||w − wprev|| > �)
30: y w⊺X
31: return w, Y
32: end function
In the ordering ICA, many candidates (the number is denoted by L) improve the robustness

of the results. Because the total computation time is linear to L, the efficiency advantage of Fast

ICA is lost if a naive implementation is employed.

3 Implementation

Here, we describe the parallel implementation of the ordering ICA. The time-consuming part

of ordering ICA is multiple Fast ICA runs with different initializations (the lines 9-13 of Algo-

rithm 1). Because the runs are independent, we can execute the runs in parallel. As the widely

used tool EEGLAB was implemented on MATLAB, we implemented this using Parallel Com-

puting Toolbox of MATLAB. We refer to this implementation as the parallel-ordering ICA.

See the released code (ParallelOrderingICA.m) for the details at https://github.com/

yoshitatsumatsuda/orderingICA/blob/master/ParallelOrderingICA.m.

Notably, this implementation uses a simple convergence condition in the FastICA function.

If we run the FastICA function just once, we need to estimate w with a different initialization if

it fails to converge. The parallel-ordering ICA can skip such a reestimation unless all FastICA

runs fail to converge.

The hyper-parameter L (the number of parallel candidates) is set to be R times as large as

the number of available cores in the given system. The implemented code is given by

L = feature(‘numcores’) � R; in Parallel Computing Toolbox. R is the overhead

rate. The default value of R is set to 1. By using larger R, we can increase the number of candi-

dates L at the cost of computational overhead. If the convergence threshold � is sufficiently

small, a slight difference does not have significant effects on the results. So, we just set � to

10−6. The maximum number K of iterations in each FastICA function is set to 30. K is relatively

small because the convergence failures of some FastICA runs are no problems.

4 Experiments on EEG analysis

To verify the usefulness of the proposed method, we used several public EEG datasets and

investigated the results from the viewpoint of robustness, the computation time, and the rela-

tion between the degree of non-Gaussianity and the success rate of finding a unique solution.
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4.1 Datasets

5SUBJECTS consists of the 10 EEG signals syn{02,05,07,08,10}-s{253,254} downloaded at

https://sccn.ucsd.edu/eeglab/download/STUDY5subjects.zip. They were observed in a

semantic task with five subjects under two conditions. Each signal has 61 channels, namely,

N = 61. The sample sizeM depends on the dataset and is about 160,000-190,000.

STERN consists of the 39 EEG datasets S{01-13}-{Ignore,Memorize,Probe} downloaded at

https://sccn.ucsd.edu/eeglab/download/STUDYstern.zip. They were observed in Sternberg

working memory tasks with 13 subjects under three conditions. Each signal has 69-71 chan-

nels, namely, N = 69, N = 70, or N = 71. The sample sizeM is about 70,000-100,000 under

the Ignore condition (I, for short), about 120,000-180,000 under the Memorize one (M),

and about 25,000-35,000 under the Probe one (P).

TUH is a dataset of randomly-selected 98 signals from the TUH EEG Corpus downloaded at

https://isip.piconepress.com/projects/tuh_eeg/ after registration. The corpus consists of

more than 30,000 signals under various conditions, and the number of channels (N) is rela-

tively small (about 30). 100 signals were selected randomly from the corpus (v.1.1.0), and

two unreadable signals were removed. In the selected 98 signals, N is 23-33 andM is about

2,000-1,700,000.

4.2 Investigation of the robustness and the computation time

To verify the robustness and efficiency of the parallel-ordering ICA, we investigated the aver-

aged fluctuations of the solutions over the different runs and the averaged computation time

in 5SUBJECTS and STERN. MATLAB R2022a with Parallel Computing Toolbox was

employed. The implementation of the parallel-ordering ICA (called Ordering ICA) in Section

3 is applied directly to each EEG signal. For comparison, we applied the extended InfoMax of

EEGLAB 2021.1 (called InfoMax) at https://github.com/sccn/eeglab and the Fast ICA using

the kurtosis (FastICA 2.5) at https://research.ics.aalto.fi/ica/fastica/ to the same signals. We did

not apply JADE because N was too large to employ JADE. We conducted experiments on a

32-core server (dual CPU with 16 cores) with 256GB RAM, where each core is an Intel Xeon

2.1GHz processor.

The fluctuation is measured as follows. Each algorithm (Ordering ICA, InfoMax, and Fast

ICA) was applied to each EEG signal from different initializations over 10 runs. The number

of runs is denoted by T = 10. To remove the permutation ambiguities, wi’s were ordered by U

(αi), a degree of non-Gaussianity, in all the solutions. Note that the number of wi’s is often less

than the number of channels N in Fast ICA. It is because the Fast ICA algorithm often fails to

converge if the non-Gaussianity of the signal is low. Now, wi in the p-th run is denoted by wp
i

(p = 1, . . ., 10). To estimate the fluctuations of the results for the different runs, we use the

divergence δ(i, p, q) between wp
i and wq

i , defined as

d i; p; qð Þ ¼ 1 �
wp
i � w

q
i

kwp
i kkw

q
i k

�
�
�
�

�
�
�
�: ð3Þ

Since the positive or negative sign of wi is arbitrary in ICA, the absolute value of the cosine

similarity is employed. δ(i, p, q) takes the minimum 0 if and only if wp
i and wq

i have the same or

opposite directions. When wp
i is orthogonal to wq

i , δ(i, p, q) takes the maximum 1. If wp
i (or wq

i )

does not exist due to non-convergence in Fast ICA, δ(i, p, q) was set to the maximum 1.
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Consequently, the fluctuation of wi over all the runs is evaluated as the average of δ(i, p, q),

defined as

�d ið Þ ¼
PT

p¼1

PT
q>p dði; p; qÞ

TðT � 1Þ=2
: ð4Þ

First, the experimental results on 5SUBJECTS are shown. The number of candidates L in

Ordering ICA was set from 8 to 128 by increments of 8. Using the 32-core server, the overhead

rate R for the 32-core server was set from 0.25 to 4 by increments of 0.25. Fig 1 shows the plot

of �dðiÞ of the 10 signals by InfoMax and Ordering ICA with L = 8, 16, 32, 64, and 128 only. For

L = 8 and L = 16, the Ordering ICA results are not so different from InfoMax. For L = 32, the

fluctuations of the top-ranked 20 components (with relatively large non-Gaussianity) are quite

small. For L = 128, the fluctuations of the top-ranked 40 components are quite small. Fig 2

clearly shows the relations between the number of candidates L and the averaged fluctuation

over the components. The fluctuations are averaged over the four different groups of the com-

ponents: all, the top-ranked 20 ones with large non-Gaussianity, the medium-ranked 20 ones,

Fig 1. Fluctuation of solutions of ICA in EEG analysis by InfoMax and Ordering ICA with L = 8, 16, 32, 64, and 128 for 5SUBJECTS. Each point

(denoted by ‘+’) corresponds to the degree of fluctuations measured as �dðiÞ in each EEG signal. The horizontal index is sorted by the rank of non-

Gaussianity of the estimated components. The solid curve shows the average of the fluctuations over the 10 EEG signals for each index.

https://doi.org/10.1371/journal.pone.0276680.g001
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and the rest ones with small non-Gaussianity. The averaged fluctuation of Ordering ICA is

smaller than that of Fast ICA and InfoMax around L = 16 in every group of components.

Regarding the top-ranked 20 components, the averaged fluctuation of Ordering ICA is near 0

around L = 32. Regarding the medium-ranked components, it is near 0 around L = 64. Though

the averaged fluctuation over the rest components does not converge to 0, it decreases as L
increases. Fig 3 shows the relation between the computation time of Ordering ICA and the

number of candidates L in comparison with Fast ICA and InfoMax. Though the computation

time is approximately linear to L, it is slightly shorter if L is a multiple of the number of cores

32. It shows that an integral overhead rate R is efficient. It also shows that the computation

time of Ordering ICA is shorter than that of InfoMax if L is less than 64. Even for L = 128, the

computation time of Ordering ICA is shorter than the double of that of InfoMax.

Next, the experimental results on STERN are shown. The number of candidates L in Order-

ing ICA was set to 8, 16, 32, 64, or 128 only. The intermediate settings (e.g. L = 24 and L = 40)

were not carried out to save experimental resources. Except for this saving, the experimental

results are shown similarly to 5SUBJECTS. If no corresponding channel exists for N< 71, the

Fig 2. Relation between the number of candidates and the averaged fluctuation over the components for 5SUBJECTS. The solid curve shows the

averaged fluctuation over a group of components (all, with large non-Gaussianity (the first-20th ranks), with medium non-Gaussianity (the 21st-40th

ranks), with small non-Gaussianity (the rests)). For comparison, the averaged fluctuations of Fast ICA and InfoMax are also shown by the horizontal

lines.

https://doi.org/10.1371/journal.pone.0276680.g002
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average was calculated over only the existing data. Fig 4 shows the plot of �dðiÞ of the 39 signals

by InfoMax and Ordering ICA with L = 8, 16, 32, 64, and 128. Fig 5 shows the relations

between the number of candidates L(= 8, 16, 32, 64, 128) and the averaged fluctuation over the

components. Note that intermediate numbers of candidates (e.g. L = 24) were omitted as

opposed to Fig 2. They show that the results of Ordering ICA in STERN are slightly inferior to

those in 5SUBJECTS probably because the estimation of the components in STERN is harder

than that in 5SUBJECT. The signals of STERN have more channels than those of 5SUBJECTS

and the sample size of STERN varies widely. Nevertheless, Ordering ICA is superior to Info-

Max around L = 64. For L = 128, the fluctuation of the top-ranked 20 components and that of

the medium-ranked components are near 0. Fig 6 shows the computation time of InfoMax

and Ordering ICA (L = 128) under STERN’s three conditions (I, M, and P). The sample sizeM
is around 100,000 for the condition I, around 150,000 for M, and around 30,000 for P. It shows

that the computation time of Ordering ICA with L = 128 is at most twice as long as that of

InfoMax irrespective of the sample size.

In summary, the ordering ICA algorithm with L = 64 is always superior to the widely used

InfoMax algorithm from the viewpoint of robustness (measured by the averaged fluctuation).

In addition, the computation time of the parallel-ordering ICA algorithm with even L = 128 is

at most twice as long as that of InfoMax when a 32-core server can be utilized. Though the

computation time is roughly linear to L, we can reduce the linear factor by using more cores.

Fig 3. Computation time of Ordering ICA for 5SUBJECTS. The solid curve shows the averaged total computation time over all the signals by the

number of candidates L. For comparison, the horizontal lines show the averaged computation time of Fast ICA and InfoMax.

https://doi.org/10.1371/journal.pone.0276680.g003
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These results verify the usefulness of the proposed parallel implementation of the parallel-

ordering ICA in EEG analysis.

4.3 Relation between non-Gaussianity and success rate of finding unique

solution

As shown in the preceding section, the parallel-ordering ICA algorithm can find a unique solu-

tion in many cases for the components with large non-Gaussianity. However, it is not guaran-

teed to succeed in all cases because it is a randomized algorithm. Here, the success rate is

evaluated empirically. We also discuss the failure rate of the parallel ordering ICA algorithm

and the appropriate choice of the number of candidates L. In addition to 5SUBJECTS and

STERN, TUH is employed as a dataset to verify the versatility for various EEG signals.

The success rate of finding the unique solution of a component was empirically evaluated

as follows. Ordering ICA with the largest number of candidates (L = Lmax) is carried out for

each EEG signal in a single run. Let wk
i be the k-th candidate of the i-th components. The esti-

mated i-th components wk̂
i (selected from all the candidates wk

i (k = 1, � � �, Lmax)) is assumed

Fig 4. Fluctuation of solutions of ICA in EEG analysis by InfoMax and Ordering ICA with L = 8, 16, 32, 64, and 128 for STERN. The points

(denoted by ‘+’) and the curves are displayed in the same way as in Fig 1 for the 39 EEG signals of STERN.

https://doi.org/10.1371/journal.pone.0276680.g004
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to be the globally optimal and unique solution. The success rate can be evaluated as the rate of

candidates sufficiently near the unique solution wk̂
i . The set of such candidates is defined as

X ¼ fwk
i j dði; k; k̂Þ < �g; ð5Þ

where dði; k; k̂Þ is the divergence between wk
i and wk̂

i defined by Eq 3. Then, the success rate μi
of the i-th component is evaluated as

�mi ¼
#X
Lmax

; ð6Þ

where X is the size of the set X. In this paper, Lmax and � were set to 1000 and 0.001, respec-

tively. Note that the minimum of �mi is 1/Lmax. If every candidate of a component diverges, the

component is neglected in the following analysis.

Fig 7 shows the averaged success rate of each component (sorted by non-Gaussianity) for

5SUBJECTS, STERN, and TUH. Here, TUH is higher than 5SUBJECTS and STERN, and

5SUBJECTS is slightly higher than STERN. The difficulty of analyzing each dataset is probably

Fig 5. Relation between the number of candidates and the averaged fluctuation over the components for STERN. The curves and the horizontal

lines are displayed in the same way as in Fig 2.

https://doi.org/10.1371/journal.pone.0276680.g005
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proportional to the number of channels. It shows that TUH is easier to solve than 5SUBJECTS

and STERN. Fig 7 also shows that the success rate decreases as the non-Gaussianity decreases

for the upper-ranked components. On the other hand, the success rate tends to increase as the

non-Gaussianity decreases for the lower-ranked components. It is probably because the degree

of freedom in the deflation approach is lower for the lower-ranked components. For example,

the solution of the last component is necessarily unique (namely, �m i ¼ 1) in a single run.

Fig 8 shows the relation between the non-Gaussianity (measured by log10 U (αi) of Eq 2)

and the success rate (measured by log
10

�mi) for all the upper-ranked components of the three

datasets: 5SUBJECTS (the upper-ranked 40 components), STERN (the upper-ranked 40 com-

ponents), and TUH (the upper-ranked 15 components). It shows that the relation between

log10 Y(αi) and log
10

�mi is approximately linear. The worst success rate is estimated by

m̂ i ’ 0:12UðaiÞ
0:21 ð7Þ

Fig 6. Comparison of computation time of InfoMax and Ordering ICA (L = 128). Each point (denoted by ‘+’) shows the averaged computation time

over the runs in each signal of STERN. The results are shown under STERN’s three different experimental conditions (I, M, P). The bar shows the

computation time averaged over the 13 signals of each condition.

https://doi.org/10.1371/journal.pone.0276680.g006
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using the worst fitting line for STERN. If the preceding components are estimated global opti-

mally and uniquely, the failure rate neachi in each i-th component is estimated by

neachi ¼ ð1 � miÞ
L
: ð8Þ

Then, the total failure rate ntotali of failing to find a unique solution is given by the following

recurrence relation:

ntotali ¼ ntotali� 1
þ ð1 � ntotali� 1

Þneachi ; ð9Þ

where ntotal
0
¼ 0. Therefore, we can approximately evaluate the failure rate of the upper-ranked

component by the non-Gaussianity Y(αi).
Fig 9 plots all the components of all datasets with the non-Gaussianity on the X-axis and

the success rate on the Y-axis. It also displays the histograms of each axis. It shows that there

Fig 7. Averaged success rate for 5SUBJECTS, STERN, and TUH. The horizontal index is sorted by the rank of non-Gaussianity of the estimated

components. The solid curves show the averages of success rates of finding a unique solution over the signals of each dataset.

https://doi.org/10.1371/journal.pone.0276680.g007
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are some bounds. For log10 U (αi)>1 (namely, U (αi)>10), �mi > 10� 1:5 holds in almost all cases.

Therefore, the failure rate neachi of the components with U (αi)>10 is bounded from above by (1

−10−1.5)L’ 10−0.0139L. For example, neachi < 0:0164 for L = 128. If we employ a larger L (for

example, L = 256), neachi can be reduced sufficiently (neachi < 3� 10� 4). The total failure rate also

can be reduced (ntotali < i� 3� 10� 4) if U (αi)>10 holds in the top-ranked i components.

Because the number of components with U (αi)>10 and the total number of components are

1096 and 5713 in the three datasets, the top 20 percent of the components with large non-

Gaussianity are expected to be estimated uniquely for L = 256. On the other hand, some com-

ponents have �mi < 10� 1:5 if log10 U (αi)<1. Finding a unique solution for such components is

often difficult. For example, the evaluated �mi was often the smallest value of 1/1000. It shows

that Ordering ICA failed to find a unique solution even for L = 1000 in such cases. Because the

number of the components with �mi < 10� 1:5 is 392 in the three datasets, they are expected to

Fig 8. Relation between non-Gaussianity and success rate in upper-ranked components for 5SUBJECTS (upper 40), STERN (upper 40), and TUH

(upper 15). Each cross corresponds to ðlog
10
UðaiÞ; log10

�m iÞ of a component. The solid line shows the estimated linear regression model

log
10
mi ¼ b̂1 þ b̂2log10

UðaiÞ. ðb̂1; b̂2Þ was estimated as (−0.70, 0.20) for 5SUBJECTS, (−0.91, 0.12) for STERN, and (−0.73, 0.18) for TUH.

https://doi.org/10.1371/journal.pone.0276680.g008
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be less than 10 percent of all components. Nevertheless, it should be noted that the total failure

rate ntotali can be drastically high if the estimation of a preceding component fails.

In summary, it was observed that there was a linear regression model between the logarithm

of the non-Gaussianity and that of the success rate. We can estimate the failure rate of finding

a unique solution by the model. In addition, the failure rate was low enough to find a unique

solution almost certainly by Ordering ICA with an available number of candidates (for exam-

ple, L = 256) if the non-Gaussianity is relatively large (U (αi)>10).

5 Conclusion

This paper proposed the parallel-ordering ICA algorithm. The experimental results on stan-

dard EEG datasets verified that our proposed implementation is superior to the widely-used

InfoMax of EEGLAB in both stability and efficiency.

Fig 9. Relation between non-Gaussianity and success rate of all components in all datasets. Each cross in (a) corresponds to ðlog
10
UðaiÞ; log10

�m iÞ of

a component. (b) and (c) are the histograms of the X-axis and the Y-axis.

https://doi.org/10.1371/journal.pone.0276680.g009
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We plan to investigate the usefulness of the parallel-ordering ICA algorithm in practical

EEG analysis. In addition, we are planning to accelerate the parallel computation by GPUs and

distributed systems. Especially, the utilization of the distributed systems may be promising

because the parallelization of the ordering ICA is quite simple.
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