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Simple Summary: Novel treatment options for cervical cancer are urgently required. Ciclopirox
(CPX), an iron chelator, has shown promising anti-tumorigenic potential in several preclinical tumor
models, including cervical cancer cells. In these cells, CPX can induce apoptosis, a form of cell
death, or senescence, an irreversible cellular growth arrest. These different phenotypic outcomes
may influence therapy response. Here, we show that the decision of cervical cancer cells to induce
apoptosis or senescence is strongly dependent on glucose availability: CPX induces apoptosis under
limited glucose availability, whereas under increased glucose supply, CPX treatment results in
senescence. Further, we link the pro-apoptotic and pro-senescent activities of CPX to its capacity
to block oxidative phosphorylation and to chelate iron, respectively. In addition, we show that the
combined treatment of CPX and glycolysis inhibitors blocks the proliferation of cervical cancer cells
in a synergistic manner. Collectively, we provide novel insights into the anti-proliferative activities of
CPX in cervical cancer cells, elucidate the cellular decision between apoptosis or senescence induction,
and provide a rationale to combine CPX with glycolysis inhibitors.

Abstract: The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer
treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can
induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy
response. The present study aims to gain insights into the determinants which govern the switch
between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, prolif-
eration studies by live-cell imaging and colony formation assays, senescence and apoptosis assays,
and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or
glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of
apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors.
Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is
induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators.
Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer
proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of
cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic
and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator,
respectively, and provide a rationale for combining CPX with glycolysis inhibitors.
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1. Introduction

Approximately 5% of all cancer cases worldwide are attributed to infections with
oncogenic types of human papillomaviruses (HPVs), such as HPV16 or HPV18 [1]. The
most common HPV-induced malignancy is cervical cancer [2], which each year affects
approximately 570,000 females and leads to over 300,000 cancer deaths [1]. Two viral onco-
proteins, E6 and E7, play a crucial role in HPV-induced malignant cell transformation [3,4].
Sustained E6/E7 expression is required for maintaining the proliferation of HPV-positive
tumor cells, and downregulation of E6/E7 typically leads to the rapid induction of senes-
cence [5,6], a cellular state which is classically defined as an irreversible growth arrest [7].
Thus, agents that can block HPV E6/E7 expression are considered to possess potential for
the therapeutic targeting of HPV-positive cancer cells [3].

We recently found that the iron chelator ciclopirox olamine (CPX) efficiently blocks
HPV E6/E7 oncogene expression, and acts anti-proliferative in cervical cancer cells [8].
CPX has been used clinically for decades as a topical antifungal agent for the treatment
of mycoses of the skin, mucosa and nails, exhibiting an excellent pharmacological safety
profile [9,10]. Notably, there has been an increasing interest in CPX to be possibly repur-
posed for cancer therapy [11], as it exerts anti-tumorigenic activities in a broad range of
preclinical tumor models, including colorectal cancer [12,13], pancreatic cancer [14], breast
cancer [15], cervical cancer [8], neuroblastoma [16], and hematologic malignancies [17].
Recently, clinical trials have been initiated employing a parenterally administrable CPX
prodrug in bladder cancer patients [18].

Mechanistically, CPX targets multiple molecular pathways, which can mostly be
attributed to the chelation of intracellular iron. Among others, CPX inhibits the enzymes
ribonucleotide reductase [17] and deoxyhypusine hydroxylase [19], downregulates the cell
cycle regulators cyclin D1 and E [15], and inhibits mTORC1 signaling [8,20]. Furthermore,
potentially adding to their anti-tumorigenic effects, CPX and other iron chelators can inhibit
mitochondrial oxidative phosphorylation (OXPHOS), probably due to decreased activity
and expression of the iron-containing enzymes comprising the mitochondrial respiratory
complexes [21,22].

At the phenotypic level, and in line with previous studies in other tumor mod-
els [11,23], we recently observed that CPX treatment of cervical cancer cells can result
in apoptosis. Moreover, we found that CPX can also induce senescence, dependent on ex-
perimental conditions. Specifically, treatment of cervical cancer cells with CPX for 48–72 h
programs the cells for the induction of senescence, whereas treatment for 72–96 h or longer
determines the cells to undergo apoptosis [8]. This is reminiscent of the response of tumor
cells towards established chemotherapeutic drugs, which also act via the induction of
apoptosis and/or senescence [24], depending on experimental conditions, such as varying
drug concentrations or the treated cell type [25,26]. These different phenotypic responses
of cancer cells could be clinically relevant, as senescent cells have the potential to secrete
factors that can exert pro-tumorigenic effects and increase therapy resistance (SASP: senes-
cence associated secretory phenotype) [25,27]. Thus, it might be preferable to eliminate
tumor cells by apoptosis rather than by inducing senescence. Yet, the knowledge of what
determines whether a therapeutic agent preferably leads to senescence or apoptosis is
surprisingly sparse, and mechanistic insights into these differential phenotypic responses
are urgently required.

The present work aims to decipher determinants which govern the decision between
the induction of senescence or apoptosis in HPV-positive cancer cells. We found that
apoptosis induction by CPX is glucose-dependent and can be counteracted by increasing
glucose availability, an effect which is also shared by other OXPHOS inhibitors. This
indicates that reduced cellular energy supply is a key determinant for apoptosis induction
after CPX treatment. On the other hand, we found that the potential of CPX to induce
senescence is not impaired by increased glucose availability. Moreover, whereas the pro-
senescent activity of CPX is not shared by other tested OXPHOS inhibitors, it is also
observed for other iron chelators, indicating that the senescence-inducing activity of CPX
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is not linked to OXPHOS inhibition but to iron deprivation. Collectively, these findings
provide new insights into the anti-tumorigenic mechanisms of CPX in cervical cancer
cells and, more generally, also yield insights into the mechanisms underlying the decision
between senescence and apoptosis induction in cancer cells.

2. Materials and Methods
2.1. Cell Culture and Treatment Conditions

HPV18-positive HeLa (RRID:CVCL_0030) and HPV16-positive SiHa (RRID:CVCL_0032)
cervical cancer cells were obtained from the tumor bank of the German Cancer Research
Center (DKFZ), Heidelberg. Cell lines were authenticated via SNP profiling (Multiplexion
GmbH, Heidelberg, Germany), and tested negative for mycoplasma. HeLa mKate2 and
SiHa mKate2 cells stably express the nuclear limited fluorescent mKate2 protein, and were
generated from the cell lines mentioned above using the NucLight Red Lentivirus Reagent
from Sartorius (Göttingen, Germany) according to the manufacturer’s protocol. All cells
were cultivated at 37 ◦C, 21% O2, and 5% CO2 in DMEM (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) containing 10% fetal bovine serum (Gibco, Thermo Fisher Scientific),
2 mM glutamine, 1 g/L glucose (if not specified otherwise), 100 U/mL penicillin, and 100
µg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA). Stock cultures of mKate2 cells
were additionally kept under selection with 1 µg/mL puromycin (Sigma-Aldrich).

The following drugs were used in the concentrations specified in the text:
Ciclopirox olamine (Santa Cruz Biotechnology, Dallas, TX, USA); antimycin A (Sigma-

Aldrich); rotenone (MP Biomedicals, Santa Ana, CA, USA); metformin (Enzo Life Sciences,
Lörrach, Germany); deferasirox (LKT Laboratories, St. Paul, MN, USA); deferoxamine
mesylate (Sigma-Aldrich); dichloroacetate (Santa Cruz Biotechnology); 2-deoxy-D-glucose
(Sigma-Aldrich); 6-aminonicotinamide (Cayman Chemical, Ann Arbor, MI, USA).

Ethanol (EtOH) was used as solvent control for CPX treatment with a maximum EtOH
concentration of 0.1%, which did not affect cell growth or viability.

2.2. Mass-Spectrometric Proteome Analyses and GSEA Analyses

Mass spectrometry-based proteome analyses were performed in triplicates with SiHa
cells treated with 10 µM CPX, or EtOH as solvent control for 48 h. A detailed description
of sample preparation and quantitative proteome analyses by LC-MS/MS can be found
elsewhere [28]. The proteomics data were deposited to the ProteomeXchange Consortium
via the PRIDE [29] partner repository with the dataset identifier PXD011095. Gene set
enrichment analysis (GSEA) was performed using GSEA v. 4.0.3 and gene sets included
in the Molecular Signatures Database (MSigDB) version 7.0. Average log2FC values of
all detected proteins were used as input for a pre-ranked enrichment analysis with the
following parameters: number of permutations, 1000; enrichment statistic, weighted; max
size, 500; min size, 15; normalization mode, meandiv.

2.3. Protein and RNA Analyses

Protein extraction and immunoblot analyses were performed as previously described [30].
The following primary antibodies were used:

Mouse anti-HPV16 E7 (NM2, gifted by Dr. Martin Müller, DKFZ, Heidelberg, Ger-
many); chicken anti-HPV18 E7 (E7C) [31]; rabbit anti-Caspase 9 (cleaved Asp30) #7237
(Cell Signaling, Boston, MA, USA); mouse anti-COX4 (OXPHOS Complex IV subunit
IV) #A21348 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA); mouse anti-
COX6B1 #393233 (Santa Cruz Biotechnology); mouse anti-Cyclin B1 #05-373 (Upstate,
Sigma-Aldrich); mouse anti-Cyclin D1 #20044 (Santa Cruz Biotechnology); mouse anti-GPI
#365066 (Santa Cruz Biotechnology); mouse anti-HKI #46695 (Santa Cruz Biotechnology);
goat anti-HKII #6521 (Santa Cruz Biotechnology); mouse anti-NDUFS1 #271510 (Santa Cruz
Biotechnology); mouse anti-NDUFS2 #390596 (Santa Cruz Biotechnology); rabbit anti-p21
#397 (Santa Cruz Biotechnology); mouse anti-p53 #126 (Santa Cruz Biotechnology); rabbit
anti-phospho-p53 (Ser15) #9284 (Cell Signaling); mouse anti-p62 #610832 (BD Biosciences,
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Franklin Lakes, NJ, USA); mouse anti-cleaved-PARP (Asp214) #9546 (Cell Signaling);
mouse anti-PFKP #514824 (Santa Cruz Biotechnology); rabbit anti-phospho-RPA32 (Ser33)
#A300-246A (Bethyl Laboratories, Montgomery, TX, USA); mouse anti-β-Actin #47778
(Santa Cruz Biotechnology); mouse anti-Vinculin #73614 (Santa Cruz Biotechnology).

The following secondary antibodies were used: α-chicken IgG-HRP #2428 (Santa Cruz
Biotechnology); α-goat IgG-HRP #2020 (Santa Cruz Biotechnology); α-mouse IgG-HRP
#2005 (Santa Cruz Biotechnology); α-rabbit IgG-HRP #2004 (Santa Cruz Biotechnology).

Immunoblots were visualized using enhanced chemiluminescence (ECL Prime West-
ern Blotting Detection Reagent, Cytiva, Marlborough, MA, USA and WesternBright Sirius
HRP Substrate, Advansta, San Jose, CA, USA) and the Fusion SL Detection System (Vilber
Lourmat, Eberhardzell, Germany). All immunoblot analyses were performed at least three
times with consistent results. Uncropped original blots and quantifications of immunoblots
can be found in Supplementary Figure S1.

RNA extraction and qRT-PCR analyses were performed as described in detail be-
fore [31]. In short, total cellular RNA was extracted using the column-based PureLink RNA
Mini Kit (Invitrogen, Thermo Fisher Scientific) and reverse transcribed into cDNA with the
ProtoScript® II First Strand cDNA Synthesis Kit (NEB, Ipswich, MA, USA) according to
the manufacturers’ instructions, using a mix of random and oligo dT primers. qRT-PCR
analyses were performed with the SYBR Green PCR Master Mix (Applied Biosystems,
Thermo Fisher Scientific) on a 7300 Real-Time PCR System Detector (Applied Biosystems,
Thermo Fisher Scientific). Quantification was performed relative to 18S rRNA as internal
reference, using the comparative Ct (2−∆∆Ct) method [32]. For statistical analysis, values
were transformed logarithmically and fold change values were compared.

The following primer combinations were used for determining mRNA levels:

• 18S rRNA forward: 5’-CATGGCCGTTCTTAGTTGGT-3’ and
18S rRNA reverse: 5’ ATGCCAGAGTCTCGTTCGTT-3’;

• Cyclin B1 forward: 5’-GCCTCTACCTTTGCACTTCCT-3’ and
Cyclin B1 reverse 5’-TGTTGTAGAGTTGGTGTCCATT-3’;

• ID1 forward: 5’-AATCCGAAGTTGGAACCCCC-3’ and
ID1 reverse: 5’-GAACGCATGCCGCCTCG-3’;

• IL1A forward: 5’-AACCAACGGGAAGGTTCTGA-3 and
IL1A reverse: 5‘-AGGCTTGATGATTTCTTCCTCT-3’;

• IL6 forward: 5’-CCACCGGGAACGAAAGAGAA-3‘and
IL6 reverse: 5’- CGAAGGCGCTTGTGGAGAA-3’;

• CDKN1A forward: 5’-GACCATGTGGACCTGTCACT-3’ and
CDKN1A reverse: 5’-GCGGATTAGGGCTTCCTCTT-3’;

• SERPINE1 forward: 5’-GACCGCAACGTGGTTTTCTC-3’ and
SERPINE1 reverse: 5’-GCCATGCCCTTGTCATCAAT-3’.

2.4. Live-Cell Imaging

All live-cell imaging experiments were performed using the IncuCyte® S3 device
(Sartorius) with HeLa mKate2 and SiHa mKate2 cells. Three thousand cells were seeded
per well in a 96-well plate and 48 h later cells were treated as detailed in the text. Every 4 h,
four images per well were acquired at a magnification of 10×. For proliferation analyses,
over 6 days viable cell numbers were determined by counting labelled nuclei using the
IncuCyte® 2019B software. For detection of cell death, the IncuCyte® Cytotox Green Dye
(Sartorius, Cat. No. 4633) was used at a concentration of 100 nM. Over 6 days, the number
of dead cells per well was determined by counting green fluorescent objects and was
normalized to cell confluence to account for different proliferation rates.

2.5. Apoptosis Assays

For detecting apoptosis, TUNEL (terminal deoxynucleotidyltransferase-mediated UTP
end labeling) assays were performed using the In Situ Cell Death Detection Kit (Roche,
Basel, Switzerland), with cells grown on coverslips according to the manufacturer’s instruc-
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tions. At least five images per coverslip were analyzed with a Cell Observer microscope
(Zeiss, Jena, Germany), and the percentage of TUNEL positive cells was determined using
an ImageJ macro (Damir Krunic, Light Microscopy Core Facility, DKFZ, Heidelberg, Ger-
many) in relation to the total cell count determined by DAPI (Cell Signaling Technology)
staining.

Cleaved PARP and cleaved caspase 9 levels were analyzed by immunoblotting.

2.6. Colony Formation and Senescence Assays

For colony formation assays, cells were treated for the indicated time, then split,
re-plated in a drug-free medium, and cultivated for the time periods described in the text.
Colonies were then fixed and stained with formaldehyde-crystal violet. Colony area and,
where applicable, colony count were quantified using an ImageJ macro (Damir Krunic,
Light Microscopy Core Facility, DKFZ) (Supplementary Figure S2).

Senescence assays were performed in parallel to colony formation assays. Cells were
treated, split, and re-plated, and after 4 days of release, cells were stained for SA-β-gal
activity as described by Dimri et al. [33]. Images were acquired using the EVOSxl Core Cell
Imaging System (Invitrogen, Thermo Fisher Scientific) with 20× magnification.

2.7. Combination Index Analyses

Combination index analyses were performed using the CompuSyn software (Com-
boSyn, Inc., Paramus, NJ, USA) according to the Chou–Talalay method, which is based on
the median-effect equation [34]. Proliferation curves of cells treated with the single drugs
or the drug combination (in a constant ratio) were determined as described in 2.4. Combi-
nation indices were calculated using the area under the curve values of the proliferation
curves up to 5 days of treatment. CI < 1, CI = 1, and CI < 1 indicate antagonistic, additive,
and synergistic effects, respectively.

2.8. Statistical Analyses

SigmaPlot version 14.0 (Systat Software Inc., San Jose, CA, USA) was used for statistical
tests. For the comparison of relative mRNA levels after CPX treatment, a one-sample t-test
was performed with a test mean of zero. Shapiro–Wilk normality analysis was performed
with an alpha-value of 0.05. For comparison of TUNEL-positive cell percentages, a two-
sided Student’s t-test was used. Statistical significance was assumed for p-values ≤ 0.05 (*),
≤ 0.01 (**), ≤ 0.001 (***).

3. Results
3.1. CPX Regulates Factors Involved in Oxidative Phosphorylation and Glycolysis

Enzymatic complexes comprising the mitochondrial electron transport chain (ETC) are
known to be iron-dependent, as they require iron atoms for proper conformation, and iron
in the form of hemes and iron-sulfur clusters as electron acceptors and donors [35]. More-
over, iron chelation can decrease the expression of several proteins comprising OXPHOS
complexes [36].

We performed mass spectrometry-based quantitative proteome analyses to assess
the relative changes in protein abundances in HPV16-positive SiHa cervical cancer cells
under CPX treatment. Gene set enrichment analyses (GSEA) revealed that CPX negatively
enriches factors involved in OXPHOS (Figure 1A, left panel and Supplementary Figure
S3A). Concomitantly, an upregulation of glycolysis-related factors was observed (Figure 1A,
right panel and Supplementary Figure S3B), indicating that the CPX-treated cells attempt
to compensate the reduced energy production via OXPHOS with an increase in glycolysis,
in line with the metabolic plasticity of cancer cells [37].
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related factors in cervical cancer cells. (A) Proteome analyses of SiHa cells treated with 10 µM CPX for 48 h. Experiments
were performed in triplicate, and data were analyzed via gene set enrichment analysis (GSEA). Enrichment plots of the
gene sets “GO_glycolytic_process” and “GO_oxidative_phosphorylation” are shown. NES: normalized enrichment score;
FDR: false discovery rate; FWER: family-wise error rate. (B) Immunoblot analyses of HeLa or SiHa cells treated for 24, 48, or
72 h with 10 µM CPX (+) or solvent control EtOH (-), assessing protein levels of exemplary factors involved in OXPHOS or
glycolysis. NDUFS1, NDUFS2: NADH:Ubiquinone oxidoreductase core subunits S1 and S2; COX6B1, COX4: cytochrome c
oxidase subunits 6B1 and 4. HKI and HKII: hexokinase I and II; PFKP: phosphofructokinase; GPI: glucose-6-phosphate
isomerase; β-Actin: representative loading control.

This notion is further supported by immunoblot analyses of HPV18-positive HeLa and
HPV16-positive SiHa cervical cancer cells, which show that CPX treatment accordingly af-
fects the protein levels of exemplary factors involved in OXPHOS or glycolysis (Figure 1B).
Expression levels of the mitochondrial respiratory chain subunits NADH:Ubiquinone
oxidoreductase core subunits S1 and S2 (NDUFS1, NDUFS2; complex I) and cytochrome c
oxidase subunits 6B1 and 4 (COX6B1, COX4; complex IV) are decreased after up to 72 h
treatment with CPX, whereas expression levels of enzymes of the glycolytic pathway, such
as hexokinase I and II (HKI, HKII), phosphofructokinase (PFKP), and glucose-6-phosphate
isomerase (GPI), are increased. In SiHa cells, the upregulation of PFKP is not as pronounced
as in HeLa cells, and GPI is initially downregulated and upregulated only after 72 h. This
indicates, to some degree, a cell type dependent regulation for these factors, possibly due
to metabolic differences between the two cell lines.

3.2. Increased Glucose Availability Protects Cells against CPX-Induced Apoptosis

These findings raise the possibility that the pro-apoptotic effects induced by CPX
in HPV-positive cells [8] could (at least partially) be due to OXPHOS inhibition and
subsequent energy scarcity. This would be consistent with our observation that longer
treatment of cervical cancer cells, which is accompanied by an increasing limitation of
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glucose availability, promotes apoptosis induction by CPX [8]. We therefore investigated
the phenotypic effects of CPX treatment on HeLa or SiHa cells cultivated under varying
glucose concentrations.

In line with our previous results [8], cervical cancer cells cultivated at 1 g/L glucose
die after 72–96 h of CPX treatment, as indicated by increased cytotoxicity assessed in live-
cell imaging analyses. Treating cells with CPX under lower glucose availability (0.33 g/L)
or in the absence of glucose leads to an earlier and more pronounced onset of cell death
(Figure 2A). In contrast, increased levels of glucose (4.5 g/L) efficiently protect cells from
CPX-induced cell death. Collectively, these findings indicate a strong glucose dependency
of the phenotypic response of cervical cancer cells towards CPX, in that limited glucose
availability facilitates and higher glucose availability counteracts CPX-induced cell death,
respectively.

Figure 2. Increased glucose availability protects cells against CPX-induced apoptosis. (A) For the quantification of cell
death, HeLa mKate2 or SiHa mKate2 cells were treated for up to 144 h with 10 µM CPX under the indicated glucose levels in
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the presence of 100 nM IncuCyte® Cytotox Green Reagent. Images were acquired every 4 h and dead cells were quantified
as green counts per well and normalized to the confluence in percent (upper panels). Exemplary images after 120 h of
treatment are shown, viable cells can be identified by red labelled nuclei, dead cells fluoresce green due to Cytotox activation
(lower panels). Scale bars: 400 µm. Glc: glucose. (B) Immunoblot analyses of PARP, cleaved PARP (cl-PARP), and HPV18 or
HPV16 E7 expression levels in HeLa or SiHa cells, respectively, treated with 10 µM CPX or solvent control (EtOH) for 48
or 72 h in the presence of the indicated amounts of glucose. β-Actin: representative loading control. (C) Quantification
of the percentage of TUNEL positive SiHa cells after 72 or 96 h treatment with solvent control or 10 µM CPX under the
indicated glucose levels (left panel). The average of three replicates is shown, error bars represent standard deviations. n.s.:
non-significant; * = p ≤ 0.05; *** = p ≤ 0.001. Representative images of the TUNEL assays (right panel) depict cells after 96 h
CPX treatment. Scale bars: 50 µm.

To verify that this glucose-dependent form of CPX-induced cell death is apoptosis, we
performed immunoblot analyses of the apoptosis marker cl-(cleaved-)PARP (poly(ADP-
ribose)polymerase). We observed a strong accumulation of cl-PARP in cervical cancer
cells after 72 h of CPX treatment under lower glucose concentrations (0 to 1 g/L), but not
under higher glucose concentrations (4.5 g/L) (Figure 2B). Moreover, the CPX-induced
downregulation of the HPV oncoprotein E7 is counteracted by an increased glucose supply,
which has similarly been observed for hypoxia- or metformin-induced repression of the
HPV oncogenes [28,30].

As an additional method for apoptosis detection, we performed TUNEL (terminal
deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) analyses [38] of
CPX-treated SiHa cells. In line with the results of the cytotoxicity assays and the changes
of cl-PARP expression, the substantial decrease in TUNEL-positive cells also demon-
strates the protective effect of increased glucose availability against CPX-induced apoptosis
(Figure 2C).

3.3. Increased Glucose Availability Favors Induction of a Senescent Phenotype under CPX
Treatment

As shown above, CPX-treated cervical cancer cells are protected from apoptosis under
increased glucose availability (4.5 g/L). Yet, we found that these cells are still inhibited in
their proliferation capacity in colony formation assays (CFAs) (Figure 3A, upper panels)
when compared with untreated cells (Figure 3A, lower panels).

Notably, long-term CPX treatment under higher glucose availability (72–96 h, 4.5 g/L)
leads to typical morphological characteristics of senescence in HPV-positive cancer cells,
such as enlargement, flattening, and cytoplasmic extensions [31] (Figure 3B). Since senes-
cence is an irreversible growth arrest, this explains the observed reduction of colony
formation capacity in the absence of apoptotic markers. The induction of senescence under
these experimental conditions is further corroborated by positive staining of the cells for
the well-established senescence marker senescence-associated β-galactosidase (SA-β-gal)
(Figure 3B). Cells cultivated under lower glucose concentrations (1.0 g/L, 0.33 g/L) or in
the absence of glucose also undergo senescence after CPX treatment for 72 h, however,
under prolonged treatment (96 h) they increasingly die, as indicated by the reduced number
of surviving cells visible in the senescence assays. CPX treatment for shorter periods (24
or 48 h) leads to less efficient senescence induction and to increased clonal survival when
compared with more prolonged treatment (72 or 96 h) (Supplementary Figure S4).
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Figure 3. Increased glucose availability favors development of a senescent phenotype under long-term CPX treatment.
(A) Colony formation assays (CFAs) of HeLa and SiHa cells treated with 10 µM CPX or EtOH as solvent control for 72
or 96 h under the indicated glucose concentrations. Subsequently, cells were grown in CPX-free medium under 1 g/L
glucose for 12 days, fixed and stained. (B) Senescence assays of HeLa and SiHa cells treated with 10 µM CPX or EtOH as
solvent control for 72 or 96 h under the indicated glucose concentrations. Subsequently, cells were cultivated for 4 days in
CPX-free medium before SA-β-gal assays were performed. Scale bars: 200 µm. (C) Immunoblot analysis of HeLa and SiHa
cells treated for 24, 48, or 72 h with 10 µM CPX (+) or solvent control (-), analyzing protein levels of PARP and cl-PARP,
cleaved caspase 9 (cl. Casp. 9), total p53, p53 phosphorylated at serine 15, RPA32 phosphorylated at serine 33, and p21
upon cultivation under 1 g/L or 4.5 g/L glucose. Vinculin: representative loading control.
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These results suggest that glucose availability is a decisive factor in determining
whether CPX-treated cells enter a senescent or apoptotic state. To investigate this phe-
nomenon in further detail, we compared the expression of factors linked to senescence
and/or apoptosis in cervical cancer cells cultivated under 1 g/L or 4.5 g/L glucose
(Figure 3C). In line with the results described above, apoptosis markers such as cleaved
caspase 9 and cl-PARP, are induced by CPX under 1 g/L, but not under 4.5 g/L glucose.
Total p53 levels are reduced by CPX under 1 g/L, but not under 4.5 g/L glucose. In
contrast, phosphorylated p53 (Ser15) and RPA32 (Ser33), two markers indicating DNA
damage [39,40], are upregulated under both 1 g/L and 4.5 g/L glucose, in line with find-
ings that CPX possesses genotoxic potential [41]. Interestingly, p21, which is regarded as
a key factor for senescence induction [7], is repressed after 48 h treatment under 1 g/L
glucose, while increased glucose levels (4.5 g/L) counteract this downregulation (Figure
3C). This may hint at a role for p21 in determining the switch towards senescence under
CPX treatment. In contrast to p21, downregulation of p62 (SQSTM1), which is regarded
as crucial step for SASP development [42], occurs under both tested glucose conditions,
similarly to inhibition of the cell cycle regulator Cyclin D1, whereas effects on Cyclin B1
expression are less pronounced (Supplementary Figure S5). Investigations at the mRNA
level indicate that the expression of selected senescence-associated genes is shifted by
CPX treatment into a pro-senescent direction under both examined glucose concentrations
(Supplementary Figure S6). Expression of genes coding for key SASP components such as
IL1A and IL6 [43] is upregulated, as is the expression of the pro-senescent [44,45] CDKN1A
(p21) and SERPINE1 (PAI-1) genes. In contrast, the anti-senescent [46,47] genes ID1 and
CCNB1 (Cyclin B1) are downregulated upon CPX treatment.

3.4. The Glucose-Dependent Apoptosis Induction through CPX Is Shared by Other
OXPHOS Inhibitors

To explore if this glucose dependency of apoptosis induction is linked to the ability
of CPX to interfere with OXPHOS, we compared the effects of CPX with those of well-
characterized inhibitors of OXPHOS, namely rotenone (complex I inhibitor), antimycin A
(complex III inhibitor), and metformin (complex I inhibitor).

We found that the three latter compounds also induce apoptosis in cervical cancer
cells, as indicated by increased PARP cleavage and enhanced cytotoxicity in live-cell
imaging analyses. Both rotenone and metformin treatment lead to a robust increase in
PARP cleavage after 72 h under 1 g/L glucose (Figure 4A, left panels). As observed for
CPX (Figure 2B), this effect is again strongly counteracted for both drugs by supplying the
cells with 4.5 g/L glucose (Figure 4A, right panels). Antimycin A also leads to increased
cl-PARP amounts in HeLa cells at 1 g/L glucose. This, however, is not detectable in SiHa
cells, possibly due to the fact that antimycin A can lead to a substantial downregulation of
total PARP amounts (Figure 4A). Similar to CPX (Figure 2A), all three OXPHOS inhibitors
induce cell death under 1 g/L glucose, as visualized by cytotoxicity assays (Figure 4B).
This response of cervical cancer cells towards the OXPHOS inhibitors is further facilitated
under decreased glucose availability (0.33 g/L) or in the absence of glucose. In contrast,
increased glucose availability (4.5 g/L) efficiently blocks the induction of cell death.
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Figure 4. OXPHOS inhibitors induce glucose-dependent apoptosis in cervical cancer cells. (A) Immunoblot analyses of
PARP and cl-PARP levels in HeLa or SiHa cells after 48 or 72 h of treatment with the indicated OXPHOS inhibitors under 1
g/L or 4.5 g/L glucose. The following drug concentrations were used: 10 µM CPX; 5 nM (HeLa)/ 10 nM (SiHa) antimycin A;
20 nM rotenone; 2.5 mM (HeLa)/ 7.5 mM (SiHa) metformin. β-Actin: loading control. (B) HeLa mKate2 (upper panels) or
SiHa mKate2 (lower panels) cells were treated for 144 h with OXPHOS inhibitors under the indicated glucose concentrations
in the presence of 100 nM IncuCyte® Cytotox Green Reagent. Green counts indicating dead cells were quantified every 4 h
by live-cell imaging, and normalized to cell confluence. The following drug concentrations were used: 10 nM antimycin A;
20 nM rotenone; 2.5 mM (HeLa)/ 5 mM (SiHa) metformin.

3.5. The Pro-Senescent Activity of CPX Is Shared by Other Iron Chelators, but Not by Other
OXPHOS Inhibitors

Interestingly, whereas under CPX-treatment many cells exhibit typical morphological
signs of senescence and stain positive for SA-β-gal, after treatment with rotenone, antimycin
A, or metformin only few cells stain SA-β-gal positive under 1 g/L glucose and no SA-β-gal
positive cells are observed under 4.5 g/L glucose (Figure 5A). Thus, in contrast to CPX,
all other tested OXPHOS inhibitors only weakly induce senescence in cervical cancer cells
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under limited glucose supply and completely lack pro-senescent activity under higher
glucose availability.

Figure 5. The capacity of CPX to induce senescence under increased glucose availability is not shared by other OXPHOS
inhibitors. (A) Senescence assays of HeLa or SiHa cells treated with the indicated OXPHOS inhibitors for 72 h under 1 g/L
or 4.5 g/L glucose. Before SA-β-gal assays were performed, cells were released in drug-free medium (1 g/L glucose) for 4
days. The following drug concentrations were used: 10 µM CPX; 2 nM (HeLa)/ 5 nM (SiHa) antimycin A; 20 nM rotenone;
2.5 mM (HeLa)/ 7.5 mM (SiHa) metformin. Scale bar: 200 µm. (B) Concomitant CFAs to (A), cells were released in drug-free
medium (1 g/L glucose) for 11 days before fixing and staining colonies.

The lack of senescence induction in cervical cancer cells by the OXPHOS inhibitors
antimycin A, rotenone, or metformin in the presence of increased glucose availability is
further corroborated by the CFAs performed in parallel. As senescence is an irreversible
growth arrest, cells which become senescent should no longer be able to form colonies upon
release from treatment. After treatment for 72 h under 4.5 g/L glucose and subsequent
drug release, we found that only CPX treatment, but not treatment with either antimycin A,
rotenone, or metformin, strongly blocks the colony formation potential of cervical cancer
cells (Figure 5B).

These findings raise the question whether the difference in senescence regulation
between CPX and the other tested OXPHOS inhibitors is linked to the iron-chelating
properties which are unique to CPX. We therefore comparatively analyzed CPX and
two iron chelators which are structurally unrelated to CPX, deferasirox (DFX) and de-
feroxamine (DFO). As seen for CPX as well as for rotenone, antimycin A, and met-
formin (Figures 4 and 5), DFO and DFX induce apoptosis in a glucose-dependent manner
(Figure 6A–C). This effect is again efficiently counteracted by increasing glucose availability,
as indicated by decreased PARP cleavage (Figure 6A) and decreased cytotoxicity at 4.5 g/L
glucose (Figure 6B). Notably, however, similar to CPX—and in strong contrast to rotenone,
antimycin A, or metformin (Figure 5)—both DFO and DFX also induce senescence in
cervical cancer cells under 4.5 g/L glucose, as indicated by positive staining for SA-β-gal
activity and inhibition of cellular proliferation in colony formation assays upon drug re-
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lease (Figure 6C). Collectively, these results indicate that senescence induction by CPX, in
contrast to apoptosis induction, is not due to its capacity to inhibit OXPHOS, but is linked
to its iron-chelating activity.

Figure 6. Iron chelators induce apoptosis in a glucose-dependent manner and act pro-senescent under increased glucose
availability. (A) Immunoblot analyses of PARP and cl-PARP levels in HeLa or SiHa cells, treated with the indicated iron
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chelators under 1 g/L or 4.5 g/L glucose for 48 or 72 h. β-Actin: representative loading control. (B) Cytotoxicity assays of
HeLa mKate2 or SiHa mKate2 cells treated with deferasirox (DFX) or deferoxamine (DFO) over the course of 144 h under
the indicated glucose concentrations. Green object count indicating the number of dead cells was assessed every 4 h and
normalized to cell confluence. (C) CFAs and concomitant senescence assays of HeLa or SiHa cells treated with the indicated
iron chelators for 72 h under 1 g/L or 4.5 g/L glucose. After treatment, cells were split and cultured in drug-free medium
(containing 1 g/L glucose) for further 4 days (senescence assays) or 13 days (CFAs). Scale bars: 200 µm. In Figure 6A–C, the
following drug concentrations were used: 10 µM CPX; 50 µM DFX; 100 µM DFO.

3.6. CPX Synergizes with Glycolysis Inhibitors

In view of our data indicating that the pro-apoptotic effect of CPX is related to its
activity as an OXPHOS inhibitor, we hypothesized that CPX may synergize with glycolysis
inhibitors, which could enable a significant dose reduction of both drugs.

The drug dichloroacetate (DCA) inhibits the enzyme pyruvate dehydrogenase kinase
1 (PDK1) and induces a shift of pyruvate metabolism from glycolysis towards OXPHOS,
resulting in a reversal of the Warburg effect [48]. Notably, whereas low doses of either
CPX or DCA do not have appreciable effects on PARP cleavage or E7 protein levels, the
same doses applied in combination induce PARP cleavage, indicating apoptosis induction,
and lead to E7 downregulation in HeLa cells (Figure 7A). The functional cooperativity
of the two agents is further confirmed in live-cell imaging analyses, where low doses of
both drugs in combination were sufficient to strongly inhibit proliferation, in contrast to
the application of the same doses as single treatments (Figure 7B). Quantification of these
effects with the Chou–Talalay method [34] indicates that the combination of CPX with DCA
is synergistic (combination index, CI < 1) over a broad concentration range (Figure 7C,
upper left panel).

We extended these analyses to further combinations of CPX with either other glycolysis
inhibitors (2-deoxy-D-glucose, 2-DG; 6-aminonicotinamide, 6-AN) or OXPHOS inhibitors
(antimycin A; rotenone; metformin) in HeLa and SiHa cells. Consistent with CPX acting
as an OXPHOS inhibitor, CPX synergizes not only with DCA but also with the glycolysis
inhibitors 2-DG and 6-AN (CI < 1). In contrast, combinations of CPX with the OXPHOS
inhibitors antimycin A, rotenone, and metformin act at most additively (CI around 1)
(Figure 7C).

Figure 7. Cont.
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Figure 7. CPX acts synergistically with glycolysis inhibitors. (A) Immunoblot analyses of PARP, cl-PARP, and HPV18 E7
levels in HeLa cells after 48 h treatment with CPX and DCA as indicated. β-Actin: loading control. (B) Growth curves of
HeLa mKate2 cells treated with the indicated doses of CPX and DCA. Red object count indicating viable cells was assessed
every 4 h over a period of 144 h using the IncuCyte® S3 live-cell imaging system. (C) HeLa mKate2 or SiHa mKate2 cells
were treated with varying doses of CPX and the indicated OXPHOS or glycolysis inhibitors with a constant drug ratio
over the course of 5 days. Every 4 h, viable cell count was assessed. Fraction affected (Fa) vs. combination index (CI) plots
were created with the CompuSyn software, based on viable cell count. Data from one representative experiment each are
illustrated. All experiments depicted in Figure 7 were performed under a concentration of 1 g/L glucose.

4. Discussion

Despite the availability of potent prophylactic vaccines protecting against infections
with the majority of oncogenic HPV types, cervical cancer is expected to remain a ma-
jor health burden in the upcoming years, especially in developing countries, and novel
treatment options are urgently required [1,3]. CPX has been shown to possess promising
anticancer potential in several preclinical cancer models [11]. We recently found that CPX
blocks expression of the HPV oncogenes and can induce senescence or apoptosis in cervical
cancer cells [8]. In the present work, we show that the decision of cervical cancer cells
between these different phenotypic outcomes is critically dependent on glucose availabil-
ity and is linked to the capacity of CPX to act both as an OXPHOS inhibitor and iron
chelator. Moreover, we provide a rationale to combine CPX with glycolysis inhibitors to
synergistically block the proliferation of cervical cancer cells.

Proteome analyses of HPV16-positive SiHa cervical cancer cells reveal that CPX
downregulates factors involved in OXPHOS, in line with its iron-chelating potential [35],
and stimulates factors involved in glycolysis. These findings are also supported by a recent
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study showing that CPX inhibits mitochondrial respiration and promotes the glycolysis
rate in colorectal cancer cells [22]. Due to OXPHOS inhibition, CPX-treated cells may react
particularly sensitive to glucose scarcity. Indeed, the induction of apoptosis in cervical
cancer cells by CPX is strongly glucose-dependent, in that the pro-apoptotic activity of
CPX is facilitated by limiting glucose availability and blocked by increasing glucose supply.
Moreover, we show that the OXPHOS inhibitors antimycin A, rotenone, and metformin,
which do not chelate iron, show the same glucose-dependent apoptosis induction in cervical
cancer cells, supporting the notion that the pro-apoptotic function of CPX is due to its
capacity to block OXPHOS.

Compared to cancer therapies using single agents, rational combinations of two or
more drugs can be advantageous, as they may allow a reduction of the respective doses
of the single drugs, leading to reduced side effects and a decreased risk of emerging
drug resistance. In view of our data indicating that CPX-induced apoptosis in cervical
cancer cells is linked to OXPHOS inhibition, we reasoned that concomitant targeting of
glycolysis could cooperatively lead to even more pronounced anti-proliferative effects.
Indeed, we found that combination treatments of CPX with different glycolysis inhibitors
exhibit strong synergistic effects. This result is also interesting under the aspect that the
systemic administration of iron chelators in the clinic is restricted due to dose-dependent
severe side effects, such as gastrointestinal toxicity, which also has been observed for high
CPX doses in a phase 1 study in patients with hematologic malignancies [49]. Similarly,
the use of glycolysis inhibitors is restricted by dose-dependent toxicities, e.g., due to
neuropathy [50,51]. The synergistic anti-proliferative effects, as observed in our study,
indicate that a rational combination of CPX with a glycolysis inhibitor could allow a
marked dose reduction of both drugs. Moreover, under therapeutic aspects it is noteworthy
that CPX, in contrast to many other iron chelators, can be applied topically. This route of
administration may circumvent side effects associated with the systemic application of iron
chelators and could be particularly interesting in the context of HPV-linked (pre-) neoplastic
lesions, which are typically located in the mucosa or skin [52,53] and are accessible for
topical treatment.

Interestingly, in contrast to its pro-apoptotic activity, the pro-senescent activity of CPX
is not shared by antimycin A, rotenone, or metformin, indicating that senescence induction
by CPX is not due to OXPHOS inhibition. In line, CPX also efficiently induces senescence
under increased glucose availability. Rather, we found that the pro-senescent activity of
CPX is shared by other, structurally unrelated iron chelators, indicating that senescence
induction by CPX is mediated by iron deprivation. This is further corroborated by our
previous observation that CPX-induced senescence in cervical cancer cells is efficiently
counteracted by supplementing iron [8].

Interestingly, HPV oncogene expression is not only strongly downregulated by CPX [8],
but also by the OXPHOS inhibitor metformin [30] and by chronic hypoxia [28]. In all these
cases, E6/E7 repression is efficiently counteracted by increasing glucose supply, indicating
that the HPV oncogene expression is very vulnerable to energy depletion. This also
holds true for treating HPV-positive cancer cells with glycolysis inhibitors, such as 2-DG,
which also effectively represses viral E6/E7 expression [54]. It is well known that the HPV
oncogenes can modulate the apoptosis and senescence response of cervical cancer cells [3].
However, it seems unlikely that the downregulation of E6/E7 is essential for CPX-induced
senescence or apoptosis, since HPV-negative cells can also show the same phenotypes
under CPX treatment [8,11]. In addition, apoptosis and senescence induction in response
to E6/E7 inhibition are closely linked to the reconstitution of p53 through evasion from
E6-mediated p53 degradation [55], however, both CPX-induced apoptosis and senescence
appear to be independent of p53 and can be observed in loss-of-function p53 mutant
cells [8,15].

Collectively, the findings of this study unravel the shift between senescence and
apoptosis induction in CPX-treated cervical cancer cells. Besides providing biological
insights into this regulation, these results could also be of therapeutic relevance for the
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current considerations to repurpose CPX for cancer treatment [11]. Similar to the clearance
of apoptotic cancer cells [56], the induction of senescence in tumor cells, in principle, could
be of therapeutic benefit by irreversibly blocking the growth of cancer cells [24]. However,
senescence can be a double-edged sword under therapeutic aspects. Senescent cancer
cells remain biologically active and secrete SASP factors which differ in their composition
dependent on the cell type and the pro-senescent stimulus. Notably, these SASP factors
can counteract or promote tumor progression in a non-cell-autonomous manner [57].
In the latter therapeutically non-favorable case, senescent cancer cells can lead to the
suppression of antitumor immunity [58], provide non-senescent cancer cells with enhanced
invasion [59] and metastasis [57] capacities, and lead to increased resistance towards
chemotherapy [60,61]. It thus will be particularly interesting in future studies to investigate
the possible influence of the CPX-induced SASP on the growth behavior and therapy
resistance of proliferating cervical cancer cells.

5. Conclusions

In the present work, we provide novel insights into the phenotypic responses of
cervical cancer cells towards CPX, which is currently under discussion to be repurposed
as an anticancer drug. We show that CPX can block the growth of cervical cancer cells
through two different anti-proliferative mechanisms, namely the induction of senescence
and apoptosis. The switch between these phenotypic responses of cervical cancer cells is
dependent on glucose availability. When glucose supply is limited, CPX induces apoptosis,
an effect which is linked to its activity as an OXPHOS inhibitor. However, at increased
glucose availability, CPX induces cellular senescence, an effect which is linked to its
activity as an iron chelator. This bifunctionality of CPX to induce either senescence or
apoptosis could influence the therapeutic outcome of CPX treatment. Moreover, we
provide a rationale to therapeutically apply CPX together with glycolysis inhibitors, since
this combination leads to synergistic pro-apoptotic effects in cervical cancer cells.
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