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Abstract

Summary: PyIOmica is an open-source Python package focusing on integrating longitudinal multiple omics data-
sets, characterizing and categorizing temporal trends. The package includes multiple bioinformatics tools including
data normalization, annotation, categorization, visualization and enrichment analysis for gene ontology terms and
pathways. Additionally, the package includes an implementation of visibility graphs to visualize time series as
networks.

Availability and implementation: PyIOmica is implemented as a Python package (pyiomica), available for download
and installation through the Python Package Index (https://pypi.python.org/pypi/pyiomica), and can be deployed
using the Python import function following installation. PyIOmica has been tested on Mac OS X, Unix/Linux and
Microsoft Windows. The application is distributed under an MIT license. Source code for each release is also avail-
able for download on Zenodo (https://doi.org/10.5281/zenodo.3548040).

Contact: gmias@msu.edu

Supplementary information: Supplementary data are available at Bioinformatics

1 Introduction

As sequencing costs continue to drop, systems biology based on
large omics datasets is rapidly expanding its scope. In particular,
time series obtained from multi-omics datasets are becoming more
and more affordable (Chen et al., 2012; Garrett-Bakelman et al.,
2019; Price et al., 2017). The analysis of time series can have broad
implications for precision medicine applications, since longitudinal
data capture the dynamically changing collective microscopic behav-
ior of molecular components in the body, reflecting the physiologic-
al state of a patient. There are many bioinformatics tools aiming at
multimodal omics data integration (Pinu et al., 2019). Specifically,
Bioconductor (Gentleman et al., 2004), Galaxy(Afgan et al., 2018),
GenePattern (Reich et al., 2006), Biopython (Cock et al., 2009),
Pathomx (Fitzpatrick et al., 2014), SECIMTools (Kirpich et al.,
2018) and more. Although multiple coding paradigms are used in
bioinformatics, R and Python are essentially the lingua francas for
data science analysis, where the open-source appeal and growing on-
line community support are particularly helpful in developing a
dedicated user base.

Here we introduce PyIOmica, an open source Python package,
for analyzing longitudinal omics datasets, such as transcriptomics,
proteomics, metabolomics etc., which includes multiple tools for
processing multi-modal mapped data, characterizing time series in
terms of periodograms and autocorrelations, categorizing temporal
behavior, visualizing visibility graphs and testing data for gene

ontology and pathway enrichment. PyIOmica includes optimized
new algorithms adapted from MathIOmica (Mias et al., 2016;
which runs on the proprietary Mathematica platform), now made
available as Python open source code for all users, and additionally
expands extensively graphical utilities for visualization of catego-
rized temporal data, and network representation of time series. To
our knowledge, there are no tools with the functionality of
PyIOmica currently available in Python.

2 Materials and methods

2.1 Overview and codebase
PyIOmica provides a complete workflow for time series processing,
illustrated in the Supplementary Figure S1. The modular nature of
PyIOmica allows for smooth integration with any future and exist-
ing Python tools. With PyIOmica, any results can be visualized,
exported and analyzed for gene enrichment by means of a user-
friendly Python interface. PyIOmica’s codebase is a single Python
module containing multiple groups of functions designed for
annotations and enumerations, pre- and post-processing, clustering-
related purposes, visualizations (heatmaps and categorization), nor-
mal and horizontal visibility graphs generation and other core and
utility components. Installation is simply performed using pip in-
stall pyiomica, and package dependencies are automatically
addressed directly from Python package index (PyPI). Function
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documentation is embedded in the module, and is easily accessible
at runtime (and also at https://pyiomica.readthedocs.io). Data struc-
tures and implementation are described in Supplementary Material.

An extensive set of PyIOmica pre-processing functions enables
filtering low-quality signals, tagging missing or low values, normal-
ization, standardization, merging and comparison of the datasets.
The post-processing functions, such as temporal trends categoriza-
tion of power spectrum and spikes, are built on using the SciPy and
scikit-learn Python toolkits. Additional functionality includes gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses for both non-temporal data,
as well as for clusters identified through the automated time series
categorization.

Temporal trends are automatically discovered using periodo-
gram and autocorrelation calculations based on a Lomb-Scargle
transformation algorithm (Mias et al., 2016), which properly
accounts for missing points and/or unevenly sampled data. The
periodogram is used to identify each time series’ underlying domin-
ant frequencies. Autocorrelations are also used to identify how
measured intensities within each time series may depend on previous
measurements, by correlating a time series with delayed versions of
itself. Signals showing statistically significant trends are identified
for downstream analysis. Multiple omics (genes, proteins and
metabolites) that show similar trends in time are identified by clus-
tering, and can be biologically evaluated through pathway and GO
analyses.

2.2 Visibility graphs and visualization
Recent work on characterizing complex events focuses on using net-
work/graph methodology that can capture non-linear behavior
(Lacasa et al., 2008). Time series are transformed into networks that
conserve their topology, and allow the identification of varying tem-
poral structures. We represent each timepoint in a series as a
node. Then, for any timepoint pair with intensities XðtlÞ; Xðt�Þ at
times tl and t� respectively, we can have an edge if for
any other timepoint ta, such that ðtl < ta < t�Þ we have
XðtaÞ < Xðt�Þ þ ðXðtlÞ �Xðt�ÞÞt��ta

t��tl
. Representing the intensities as

bars, this is equivalent to connecting the top of each bar to another
top if there is a direct line-of-sight to that top. The resulting visibility
graph has characteristics that reflect the equivalent time series tem-
poral structure and can be used to identify trends. The shortest path
identifies nodes (i.e. timepoints) that display high intensity, and thus
dominate the global signal profile, are robust to noise, and are likely
drivers of the global temporal behavior. A biological event deviating
from baseline is likely to appear in one or more nodes within the
shortest path.

PyIOmica uses Matplotlib plotting functions to visualize histo-
grams, dendrograms, heatmaps and visibility graphs. Figure 1a
shows example RNA-sequencing gene expression data from a 24-h
time series, clustered into two groups based on autocorrelations.
Subgroups were determined from the gene expression in each auto-
correlation group. The data from Group 1, Subgroup 2 containing
191 genes is visualized in Figure 1b as a visibility graph on a circular
layout. Temporal events are detected and indicated with solid blue
lines encompassing groups of points, or communities. Additional
examples are provided in the PyIOmica documentation
(Supplementary Material, using data that are provided with the
PyIOmica Zenodo software release (under docs/examples)).

3 Conclusion

The open source PyIOmica Python package characterizes time series
from multiple omics and categorizes temporal trends with a stream-
lined automated pipeline based on spectral analysis. PyIOmica also
offers broad bioinformatics functionality, including clustering,

visualization and enrichment, and extends previous developments
(Mias et al., 2016) to an open-source, community-accessible plat-

form for data science. We anticipate future versions of PyIOmica to
utilize its codebase flexibility to expand its bioinformatics tools for

genomic as well as differential omics analyses, and graph construc-
tion and characterization.
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(a) (b)

Fig. 1. Example PyIOmica data visualization. (a) Dendrogram with heatmap of

automatically categorized longitudinal gene expression data. Autocorrelations are

used to identify temporal trends in the data. Subgroups are determined based on

similar collective behavior over time. (b) Visibility graph of median signal intensity

from group G1S2 from (a)
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