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TriFusion enables accurate prediction of
miRNA-disease association by a tri-
channel fusion neural network
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The identification ofmiRNA-disease associations is crucial for early disease prevention and treatment.
However, it is still a computational challenge to accurately predict such associations due to improper
information encoding. Previous methods characterize miRNA-disease associations only from single
levels, causing the loss of multi-level association information. In this study, we propose TriFusion, a
powerful and interpretable deep learning framework for miRNA–disease association prediction. It
develops a tri-channel architecture to encode the association features of miRNAs and diseases from
different levels anddesigns a feature fusion encoder to smoothly fuse these features. After training and
testing, TriFusion outperforms other leading methods and offers strong interpretability through its
learned representations. Furthermore, TriFusion is applied to three high-risk sexually associated
cancers (ovarian, breast, and prostate cancers) and exhibits remarkable ability in the identification of
miRNAs associated with the three diseases.

MicroRNAs (miRNAs) are a group of tiny non-coding RNAs that are
typicallymadeupof around20 to 24nucleotides. They are important for cell
function, development, fighting infections, immune responses, and health
issues, including diseases and cancers1,2. Thus, identifying the association
between miRNAs and diseases is crucial to gain a more comprehensive
insight into the intricate mechanisms of disease pathology. The accurate
identification of miRNA-disease associations can be effectively performed
using various biological techniques, including high-throughput RNA
sequencing, quantitative real-time Polymerase Chain Reaction, and inno-
vative multiplexed detection methods. However, these methods are quite
time-intensive and costly. Fortunately, rapid improvements in computing
powerand the creationof databases related tomiRNAsanddiseaseshave led
to the development of computational approaches3. These methods offer a
more efficient way to investigate the connections between miRNAs and
diseases and greatly reduce the reliance on labor-intensive laboratory
work4–6. Recent computational prediction methods mainly fall into two
categories: those based on machine learning and those on deep learning.

Machine learning-based methods typically extract reliable biometric
and association features and apply existing models to predict miRNA-
disease relationships. For example, the RWRMDA7 approach first builds a
network capturing the functional similarities betweenmiRNAs anddiseases
and then employs the random walk with restart algorithm on this network
to detect miRNAs that are likely associated with particular diseases.
EGBMMDA8 is an early computational approach for predicting miRNA-

disease associations by utilizing decision tree learning. It calculates the
probability of associations between miRNAs and diseases via the extreme
gradient boosting method. Zeng9 introduces a model that leverages struc-
tural consistency as a metric to infer associations between miRNAs and
diseases. Zhong et al.10 introduces a sparse penalization model based on
non-negative matrix factorization to predict disease-associated miRNAs.
DF-MDA develops a heterogeneous network incorporating miRNAs, dis-
eases, and other small molecules to infer potential associations by utilizing a
diffusion-basedmethod11. Xu et al.12 designs amethod calledMTDN,which
only requires extracting features through the miRNA-target association
networkbefore inputting them into thepredictionmodel. Theuse of stacked
auto-encoders13–15 has also gradually improved prediction accuracy.
HDMP16 starts from calculating disease semantic similarity and phenotype
similarity, followed by choosing the k most similar neighbors to group
miRNAs and identify themiRNAs that are associated with specific diseases.
To recover missing associations between miRNAs and diseases, Chen17

proposes a new method, NCMCMDA, which adds neighborhood con-
straints to the joint similarity ofmiRNAs anddiseases. ABMDA18 employs a
random sampling technique to generate balanced positive and negative
samples and combinesmultipleweak classifiers to improve the classification
accuracy. Overall, the machine learning methods can effectively predict
miRNA-disease associations basedon thewell-designedassociation features
for small-scale data. However, they are difficult to learn unknownmiRNA-
disease association patterns hidden in large datasets due to their limited
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fitting abilities. Therefore, in recent years, deep learning-based computa-
tional methods have been increasingly utilized by researchers.

In the field of deep learning-based methods, Graph Convolutional
Networks (GCNs) have recently gained wide attention due to their out-
standing ability to learn graph representations. Lou et al.19 propose the
MINIMDAmodel, which improves existingGCNs by explicitly aggregating
information from high-order neighborhoods. Tang et al.20 introduce the
MMGCN model to adaptively learn different feature representations by
integrating multi-source similarity networks with a combination of a GCN
encoder and CNN decoder. Applications like drug repositioning21, drug-
target interaction prediction22,23, and cancer-related gene prediction24 have
benefited from the exceptional performance of GCNs in association pre-
diction tasks25–27. Additionally, the use of transformer architectures to pre-
dict associations within their respective domains has been explored, which
takes advantage of heterogeneous networks’ multi-typed meta-path
instance exploration for feature embedding28–30 and overcomes the limita-
tions of graph models in effectively exploring and learning global
information31–33. MD-former34 employs a transformer-based deep neural
network with specialized encoders to effectively predict miRNA-disease
associations by analyzing their complex features.

Although great efforts have been made in the design of computational
methods and impressive improvements have been achieved in predicting
miRNA-disease associations,most of the existingmethods fail to capture the
complex representations of miRNA-disease associations, leading to unsa-
tisfactory predictions. In fact, the similarity network of miRNAs (diseases)
and the known associations between miRNAs and diseases are the vital
information that determines prediction results. The two kinds of informa-
tion encompass diverse association features related to miRNA-disease
association patterns, which should be captured from multiple manners.
However, previous methods usually encode the association features from
single levels, making it difficult to fully characterize the complete miRNA-
disease associations.

To solve this challenging task, we propose a model, TriFusion, which
implements a tri-channel framework for association features encoding from
three levels. The first channel designs a graph convolution module to encode
the similarity relationshipsbetweeneachmiRNA(disease)and itsneighborsof
different orders basedon themiRNA(disease) similarity network. The second
channel develops a hypergraph convolution module for encoding the high-
level similarity information between two miRNAs (diseases) hidden in their
common neighbors again based on the miRNA (disease) similarity network.
The thirdchannel introduces anmiRNA-disease interactionencodingmodule
tocapture the inherent association informationbetweenmiRNAsanddiseases
based on the knownmiRNA-disease associations. And then, a feature fusion
encoder is implemented foreffectively fusing the tri-channel features (seeFig.1
and the Methods section for details).

TriFusion is tested under HMDD v3.235 and compared with multiple
leading prediction methods. The evaluation results show that TriFusion
clearly outperforms all the other models and demonstrates stronger ability
in discovering new associations. Meanwhile, we conduct case studies on
three high-risk sexually associated cancers (ovarian, breast, and prostate
cancers) based on the HMDD v3.2 database. Remarkably, 100% of the top
30 miRNAs in the predicted miRNA scores by TriFusion are confirmed by
relevant databases, showcasing its outstanding reliability in practical
applications.Throughvisualization,wefind that the learned representations
from the three channels, the fused representations, and the GCN enhanced
representations are all characterizing the miRNA-disease association pat-
terns in different manners, which explains the necessity of feature encoding
from multiple levels.

Results
Overview of TriFusion
The main framework of TriFusion comprises the following four parts. (1)
feature extraction for miRNAs and diseases; (2) encoding high-level
representations for miRNAs and diseases via a tri-channel feature encoder;

(3) fusion of features for miRNAs and diseases via a feature fusion encoder;
and (4) prediction of miRNA-disease associations.

Since similar miRNAs (diseases) often have close associative properties,
we first constructmultiple types of similarity matrices formiRNAs (diseases).
For diseases, both the semantic similarity and Gaussian similarity are used to
measure the similarity of two diseases. The semantic similarity and Gaussian
similarity of two diseases are respectively defined based on their hierarchical
relations and their interactions with miRNAs. For miRNAs, the similarity of
two miRNAs is described by three types: sequence similarity, functional
similarity, andGaussian similarity. Sequence similarity is defined based on the
similarity of their sequences, functional similarity is defined based on the
similarity of their functions, and Gaussian similarity for miRNAs is defined
through their interactions with diseases. The extracted similarity matrices
serve as the original feature matrices for miRNAs and diseases.

To comprehensively learn the association patterns between miRNAs
anddiseases, TriFusion develops a tri-channel feature encoder to encode the
representations of miRNAs and diseases from different levels, including
low-order graph encoding, high-order hypergraph encoding, and miRNA-
disease interaction encoding. The direct relationships of an miRNA (dis-
ease)with its neighboringmiRNAs (diseases) can effectively characterize the
miRNA-disease association patterns. The low-order graph encoding
channel of the tri-channel module is designed to calculate the representa-
tions ofmiRNAs (diseases) bymessage passing betweenmiRNAs (diseases)
and their multi-order neighbors. The high-level relationships between two
miRNAs (diseases) hidden in their common neighbors can also effectively
describe the association patterns. The high-order hypergraph encoding
channel learns the representations by a hypergraph convolution on the
constructed hypergraph of miRNAs (diseases). The relationships between
target miRNAs and diseases contain inherent association information to
measure their association patterns. The miRNA-disease interaction
encoding channel can effectively capture the association representations by
encoding the degrees and neighbor similarities of the nodes in the con-
structed miRNA-disease heterogeneous graph.

The three representations learned by the tri-channel encoder describe
themiRNA-disease association patterns from different levels, which should
be carefully fused together to generate a complete representation.To achieve
this, we design a feature fusion encoder that encompasses a biased Trans-
former encoderwith an embedded residual connection, followedby amulti-
layer graph convolution. The final classification is conducted by fusing the
representations of an miRNA and a disease through a Hadamard product
and then deriving an miRNA-disease association probability via a multi-
layer MLP.

Experimental settings
To validate the performance of a method, we conduct 5-fold cross-valida-
tion tests on the HMDD v3.2 database via different manners for various
purposes as follows.

Random zero cross-validation. All known miRNA-disease associa-
tions are considered as positive samples, which are randomly divided into
five non-overlapping subsets. During each iteration of cross-validation, a
subset is chosen as the test set, complemented by an equal number of
randomly selected negative samples. The remaining of all positive and
negative samples serve as the training set. This process, known as random
zero cross-validation, evaluates the capacity of a model to identify
undetected miRNA-disease associations.

Random multi-column zero cross-validation. Given the miRNA-
disease association matrix, the test set is generated by randomly selecting
and zeroing out 1/5 of the columns in this matrix, with the training set
based on the remaining 4/5 columns. In addition, an equivalent number
of randomly selected negative samples is added for balance. This process
aims to test the effectiveness of a model in discovering the associations
between known miRNAs and new diseases.
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Randommulti-row zero cross-validation. Similar to the above, the test
set is generated by randomly selecting and zeroing out 1/5 of the rows in
this matrix, with the training set based on the remaining 4/5 rows. This
process aims to test the effectiveness of a model in discovering the
associations between new miRNAs and known diseases.

State-of-the-art methods including MINIMDA19, MD-former34,
DAEMDA36, AGAEMD37, AMHMDA38, and ELMDA39 are collected to
compare with TriFusion. In this study, six common evaluation metrics are
used to evaluate the performance of a model, namely area under the ROC
Curve (AUC), area under thePRCurve (AUPR),Accuracy (ACC), F1 score,
precision, and recall (see Supplementary Note 1 for detailed definitions of
the metrics).

TriFusion shows the best performance
We compare the performance of TriFusion with the above six leading
miRNA-disease association prediction methods on the same test set under
the three types of cross-validations. According to the evaluation results,
TriFusion achieves great improvements over all the methods across all
the tests.

Random zero cross-validation. The comparison results of Random
ZeroCross-Validation are shown in Fig. 2 (see Supplementary Table 1 for
detailed results). Among the compared methods, ELMDA and
AGAEMDA are machine learning-based models, while the others are
based on deep learning. We find that deep learning methods illustrate
better performance than machine learning models, with both AUC and
AUPR exceeding 94% (see Supplementary Fig. 1). Specifically, MINI-
MDA, which applies improved graph convolution to encode node
information, achieves a very high AUC value of 94.97%, only lower than
that of TriFusion. MD-former, which extracts features from hetero-
geneous graphs through random walks, obtains the second-highest
AUPR value of 94.75%. Among these models, only TriFusion achieves
both AUC and AUPR exceeding 95% (with its AUC and AUPR being
95.41% and 95.25%, respectively). Compared to thesemodels, the relative
increase in AUC and AUPR of TriFusion range from 0.47% to 3.97% and
from 0.53% to 4.30%, respectively.Moreover, the recall of TriFusion even
exceeds 90%, with an improvement of 2.01% over the second best
method. To further illustrate the significance of the improvement, we
select MDformer, the model with the second-best overall performance,

Fig. 1 | Flowchart of the TriFusion model. A The overall framework of the tri-
channel architecture, divided into four sections including feature extraction, tri-
channel feature encoder, feature fusion encoder, and classification. B The detailed
structure of the tri-channel feature encoder, where the three channels respectively
conduct multi-order graph convolutions, hypergraph convolutions, and miRNA-

disease interactions. C The detailed structure of the feature fusion encoder, which
incorporates a biased Transformer encoder in a U-dimensional space and a graph
convolutional network (GCN) to effectively fuse the information from the three
channels.
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and Trifusion, each running 10 times, for an independent samples t-test.
The p-values for the tests based on AUC and AUPR are all smaller than
1e-10, indicating the the significance of the improvement made by Tri-
Fusion (see Supplementary Table 2 for details).

Randommulti-column zero cross-validation. The comparison results
of RandomMulti-ColumnZeroCross-Validation are shown in Fig. 2 (see
Supplementary Table 3 for detailed results). It is observed that most deep
learning models again show much better performance than machine
learning-based methods, with the AUC and AUPR values reaching over
90%. It is worth noting that, compared to other models, the AUC
improvement of TriFusion ranges from 1.02% to 8.92%, and its AUPR
improvement ranges from 1.20% to 8.39%, which demonstrates that
TriFusion can better predict the associations between known miRNAs
and unknown diseases.

Random multi-row zero cross-validation. Performance evaluation is
also conducted by Random Multi-Row Zero Cross-Validation and the
results are shown in Fig. 2 (see Supplementary Table 3 for detailed
results). After comparison, we find that TriFusion consistently per-
forms better than all the other compared methods, with both AUC

and AUPR exceeding 94%. Specifically, its AUC reaches 94.30%, with
its improvement over the other methods ranging from 1.10% to
7.73%, and its AUPR achieves 94.01%, with an improvement ranging
from 1.73% to 7.74%. This indicates that TriFusion shows better
ability in predicting associations between new miRNAs and known
diseases.

Ablation study
To measure the impact of the tri-channel feature encoder, each channel of
the tri-channel feature encoder, and the feature fusion encoder, we conduct
ablation experiments by removing certain encoding modules from the
TriFusion model. Here, ablation studies are carried out in the manner of
removing or altering only one component each time.

Impact of the tri-channel feature encoder. To examine the influence of
this encoder, we directly input the extracted similarity data between
miRNA and disease through a fully connected layer into the feature
fusion encoder, which results in a significant decrease in performance
(Fig. 3). This indicates that the tri-channel approach is able to extract
effective multi-level miRNA-disease association information, which
contributes a lot in accurate association predictions.

Fig. 2 | Comparison of TriFusion with other methods under three types of
validations. This figure displays the values of AUC and AUPR of all the compared
methods under three types of cross-validation conditions: Random Zero Cross-

Validation, Random Multi-Column Zero Cross-Validation, and Random Multi-
Row Zero Cross-Validation.
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Impact of each encoding channel. To further explore the impact of
each channel, we conduct three experiments by respectively removing the
graph convolutionmodule, the hypergraph convolutionmodule, and the
miRNA-disease interaction encoding module. Results show that the
performance of all three experiments clearly declines (see Fig. 3). It is
worth noting that the impact of any channel is much lower than that of
the whole tri-channel feature encoder (see Fig. 3), which indicates that
any two channels among the three can capture most association features,
and the application of all three channels achieves the best feature
representations.

Impact of the feature fusion encoder. The feature fusion encoder
contains two parts: the biased Transformer and GCN. First, we simply
add the three different kinds of features obtained by the tri-channel
encoder and input the features directly into the classification module,
which results in a great decline in performance (see Fig. 3). Next, to
individually test the role of the biased Transformer module, we input the
representations obtained from the tri-channel feature encoder directly
into the GCN part for prediction, again resulting in a great decrease (see
Fig. 3). This indicates that the biased Transformer encoder plays a crucial
role in learning the complete representations ofmiRNAs and diseases. To
further test the contribution of the GCN module, we remove it by
inputting the fused representations directly into the classification mod-
ule, and results show that the performance of TriFusion also
declines (Fig. 3).

Impact of the number of GCN layers. To assess the impact of the
number of GCN layers within the feature fusion encoder on the overall
predictive performance of the model, we carry out experiments with
GCN layers of 2, 4, 6, 8, and 10, respectively. The experimental results, as

shown in Fig. 4, indicate that themodel performs best when the GCNhas
6 layers.

Interpretation of the TriFusion model
Todeeplyunderstand the learningmechanismofTriFusion in capturing the
miRNA-disease association patterns, we try to interpret it in different
manners. Firstly, we extract all the learned representations from the test set
at continuous training stages and visualize their 2-dimensional projections
via the t-SNEtool (Fig. 5). From the visualization, it is evident thatTriFusion
is gradually learning the association patterns and the segmentation of
associations and non-associations is becoming increasingly clear according
to the 2D t-SNE projections of the learned representations. Secondly, to
verify what and how each module of TriFusion is learning, we respectively
visualize the 2-dimensional projections of the representations learned from
the tri-channel feature encoder, each of the three channels, and the feature
fusion encoder. The visualization results show that each module is learning
the miRNA-disease association patterns in different manners. Notably, in
the interaction encoding channel, it seems that the associations and non-
associations are not well classified. However, over 80% of the samples are
arranged near the center, which are well classified.

Case studies
In this section, we conduct case studies on three different types of cancer:
ovarian cancer, breast cancer, and prostate cancer to demonstrate the pre-
diction capability of TriFusion. We used all known positive associations in
HMDDv3.2, a total of 12,446 positive associations, as the positive training
set. From the remaining unknown samples, we randomly selected an equal
number of samples as negative and added them into the training set. After
training, we obtained an 853*591 association prediction matrix, where the
score of (i, j) represents thepredicted association value between sample i and

Fig. 3 | Results of the ablation experiments. This figure illustrates the results of several ablation experiments. This two figures show the performance of TriFusion with
several modules removed.

Fig. 4 | Results of the ablation experiments. This two figures show the AUC and AUPR values for different numbers of GCN layers within the feature fusion encoder.

https://doi.org/10.1038/s42003-024-06734-0 Article

Communications Biology |          (2024) 7:1067 5

www.nature.com/commsbio


sample j.We then index thek-th columncorresponding to the target disease,
remove all known positive association points in the k-th column, and select
the top 50 points with the highest scores from the remaining points. After
that, we screen the top 50 predicted miRNAs and verify these prediction
associations based on two other miRNA–disease association datasets,
dbDEMC40 and HMDDv4.041 (Fig. 6).

Ovarian cancer poses a serious risk to women’s health. However, its
early detection is quite difficult because there are currently no clear early
symptoms and screening methods that are proved effective. Fortunately, in
ovarian cancer patients, the presence of miR-148b is as high as 92.21%,
which makes it a key indicator for detecting the disease early42. In this case,
all the top 50 miRNAs associated with ovarian cancer predicted by TriFu-
sion are confirmed in the dbDEMC database, with the detailed verification
of the remaining miRNAs listed in Supplementary Table 4.

Breast cancer is among the most common cancers in women,
accounting for approximately 25% of all cancer cases in females and pre-
senting a significant threat to life. Recent studies indicate that in patients
with breast cancer, the levels of certain miRNAs such as hsa-miR-126 and
hsa-miR-10b are reduced in their tissues43. This provides a newmethod for
the early detection of this type of cancer. In this case, except for hsa-miR-
181a-1 and hsa-miR-153-1, which lack supporting data, the datasets have
validated all of the top 50 miRNAs associated with breast cancer predicted
by TriFusion. For specific verification details, refer to Supplementary
Table 5.

Prostate cancer is a leading typeof cancerand the secondprimary cause
of cancer-related deaths in men. It is especially prevalent in those over
seventy, ranking as the third most common urological tumor. Current
studies highlight a clear link between the serummiRNAexpression patterns
in prostate cancer and the tumor’s severity. Notably, changes include var-
iations in 156miRNAs,miR-16 andmiR-141 levels are decreased inpatients
with prostatic hyperplasia and throughout various prostate cancer stages,
whereasmiR-34 levels are found to increase under the same conditions44. In
this case, all the top 50 miRNAs predicted to be associated with prostate

cancer by TriFusion, except for hsa-miR-181a-1, hsa-miR-138-1, and hsa-
miR-337, which have no supporting data, are again confirmed in the
datasets. Specific verification can be found in Supplementary Table 6.

In summary, it is clear that TriFusion demonstrates excellent perfor-
mance in the above case studies. Specifically, the top 30 predicted miRNAs
associated with the three diseases are all validated, and it achieves a pre-
diction accuracy of 96.7% for the top 50 miRNAs. These findings highlight
the effectiveness ofTriFusion inpredictingmiRNA-disease associations and
its great potential in identifying new biomarkers and therapeutic targets.

Discussion
The identification ofmiRNA-disease associations is critical for early disease
prevention and treatment. However, in previous models predicting
miRNA-disease associations, researchers only encode the association fea-
tures from single levels that are not capable of fully extracting the miRNA-
disease association information. In this study, we propose TriFusion, a
model that extracts features from different levels through a tri-channel
feature encoder and carefully fuses them by a feature fusion encoder. After
training and testing, it performs much better than six leading methods in
terms of AUC and AUPR. Moreover, we find that the learned representa-
tions of TriFusion from its different modules are all fitting the miRNA-
disease association patterns in different manners, which again explains the
necessity of feature encoding from multiple levels and demonstrates its
strong interpretability. We also apply TriFusion to three high-risk sexually
associated cancers including ovarian, breast, and prostate cancers.
Remarkably, 100% of the top 30 miRNAs and most of the top 50 miRNAs
predicted by TriFusion are confirmed by relevant studies, showcasing its
outstanding reliability in practical applications.

The strong predictive capability of TriFusion can be attributed to its
two main factors. (1) To fully describe the association patterns between
miRNAs and diseases, TriFusion develops a tri-channel architecture to
encode the representations of miRNAs and diseases from three different
levels, including low-order graph features, high-order hypergraph features,

Fig. 5 | Interpretation experiments of TriFusion. A The three figures illustrate the
TriFusion training process, with blue points indicating positive samples and red
points indicating negative samples. B The four figures display the visualization
results of the learned representations from each of the three channels in the tri-

channel feature encoder as well as the Transformer module in the feature fusion
encoder, where green points represent positive samples and orange points represent
negative samples.
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and miRNA-disease interaction features. Through t-SNE visualizations, we
find that the three representations from the three channels are all char-
acterizing the miRNA-disease association patterns with different manners.
And the ablation experiments also confirm that removal of each channel
causes clear decline of its performance. Therefore, it is necessary to perform
feature encoding from different levels. (2) Ablation experiments show that
simply adding these three types of features together results in a significant
decline in performance. Therefore, feature fusion is another important task.
To carefully fuse the learned representations from the three different
channels, TriFusion designs a feature fusion encoder to generate a complete
representation, which can accurately characterize miRNA-disease associa-
tion patterns.

In fact, we still have a long way to go to completely solve this chal-
lenging problem. To date, only the association network between miRNAs
and diseases is taken into consideration for miRNA-disease association
prediction. In practice, other types of data, including targeted drugs and
target genes, can also be applied to systematically solve this problem. In
addition, existingmethods fail to predict association types betweenmiRNAs
and diseases, such as whether these associations lead to an increase or
decrease in miRNA levels. Moreover, due to the fact that these associations
are inherently time-dependent, introducing a temporal dimension to the
associations can lead to a deeper understanding of the issues. The above
three points may be the future directions for miRNA-disease association
predictions.

To assist researchers in exploring potential associations, we designed a
Python program based on all the association edges from HMDDv3.2. By

entering the name of a disease, the program directly outputs the most likely
associated diseases. We released user-friendly software for TriFusion and
hope that it can contribute to the understanding of miRNA-disease asso-
ciations as well as early disease prevention and treatment.

Methods
Data preparation
The Human MicroRNA Disease Database-HMDD (http://www.cuilab.cn/
hmdd) offers valuable insights into the associations between microRNAs
and human diseases, with all relationships validated by experiments or
supportedby referenced sources. In this study, we downloadedHMDDv3.2
from this database to train and evaluate the performance of TriFusion and
othermethods. After preprocessing, it contains 12,446 associations between
853 miRNAs and 591 diseases. All the known associations are considered
positive samples, with the remaining unknown/unassociated as negative. To
achieve a more comprehensive training, the positive and negative samples
are balanced by randomly selecting an equal number of negative samples to
match the positive ones.

Feature extraction
In this study, the information fromdisease similarity andmiRNA similarity
is extracted as features for MD association learning and prediction. Both
semantic similarity and Gaussian similarity are used to measure the simi-
larity between two diseases, and the similarity between two miRNAs is
described by three types of similarities including sequence similarity,
functional similarity, and GIP similarity.

Fig. 6 | Validation results for the top 50 miRNAs associated with three types of cancers (Ovarian cancer, Breast cancer, and Prostate cancer) predicted by TriFusion.
Green lines indicate that the corresponding associations have been validated, while red lines denote the associations have not yet been validated.

https://doi.org/10.1038/s42003-024-06734-0 Article

Communications Biology |          (2024) 7:1067 7

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
www.nature.com/commsbio


Disease similarity. According to MeSH (http://www.ncbi.nlm.nih.gov/
mesh), there are two common methods to calculate the similarity of
two diseases based on their hierarchical relations34. Therefore, two
similarity matrices DSS1 2 R591× 591 and DSS2 2 R591× 591 are generated
accordingly (see Supplementary Note 2 for detailed calculations). Then,
the average matrix DSS of DSS1 and DSS2 is calculated to measure the
semantic similarity between diseases. The Gaussian Interaction Profile
(GIP) is another metric used to measure the association degree between
miRNAs and diseases. According to Van Laarhoven et al.45, two binary
vectors IP(di) and IP(dj) can first be defined to describe the interaction
profile of two diseases di and dj, based on which the Gaussian similarity
matrix DGS 2 R591× 591 is calculated (see Supplementary Note 2 for
details).

miRNA similarity. All miRNA sequences matching the dataset were first
downloaded from themiRBase database (https://mirbase.org/), and then the
sequence similarity matrix MSS 2 R853× 853 is generated by using the
Needleman-Wunsch algorithm34 (see Supplementary Note 3 for details).
miRNA functional similarity is another reliable representation of miRNAs
and is widely used in multiple fields. MiRNAs with similar functions are
typically associatedwith similar diseases. Based on the information provided
by Wang et al.46 in the MISIM database (https://www.cuilab.cn/), the
miRNA functional similarity matrix is calculated for this study, denoted as
MFS 2 R853× 853 (see Supplementary Note 3 for details). Similar to the
Gaussian similarity with diseases, we also define two binary vectors IP(mi)
and IP(mj) to describe the interaction spectrumbetweenmiRNAsmi andmj,
and then calculate the Gaussian similarity matrix for miRNAs, denoted as
MGS 2 R853× 853 (see Supplementary Note 3 for details).

The TriFusion framework
Tri-channel feature encoding of miRNA and disease. A tri-channel
feature encoder is developed to capture three types of representations of
miRNAs and diseases that encompass low-order graph encoding, high-
order hypergraph encoding, and miRNA-disease interaction encoding.

Low-order graph encoding via graph convolution. AnmiRNA (disease)
association graph is first constructed with nodes representing miRNAs
(diseases) and edges denoting close relationships between two nodes. In this
study, the top Kmost similar miRNAs (diseases) for each miRNA (disease)
are defined as the neighbors of the miRNA (disease) and are connected byK
edges (K is set to 40 in this study). In this section, the similarities between two
miRNAs and two diseases are respectively measured by MS = (MSS+
MGS)/2 andDS = (DSS+DGS)/2,whichalso serveas the featurematrices for
miRNAs and diseases. Then, the two corresponding adjacency matrices are
respectively generated for miRNA and disease associations, denoted as Gm,
and Gd, and the multi-order graph convolution is applied by the following
formula.

Hi
ðlþ1Þ ¼ RELU ðD�1

2GaD
�1

2ÞiHðlÞWi
ðlÞ

h i

Hðlþ1Þ ¼ PN
i¼1 λiHi

ðlþ1Þ

where Ga represents the miRNA or disease adjacency matrix with a =m or
a = d, D is the degree matrix of Ga, (D

−1/2GaD
−1/2)i denotes matrix D−1/

2GaD
−1/2 multiplied by itself i times, which is the normalized adjacency

matrix at the i-th order,Hi
(l+1) is the feature matrix for the (l+ 1)-th layer at

the i-th order,H(l) is the combined featurematrix for the l-th layer,Wi
(l) is the

l-th trainable parameter matrix at the i-th order, N is a hyperparameter
representing the largest neighbor order (N = 3 is set in this study), λi is
another hyperparameter indicating theweight assigned to the featurematrix
of the i-th order (λ1 = λ2 =… = λN = 1/N is set in this study).

Through the graph convolutional network, the two featurematrices for
miRNA and disease are respectively obtained asMF1 andDF1.Meanwhile,
the two original feature matricesMS and DS are embedded by an MLP to
generate another two feature matricesMF2 and DF2. Finally, the encoded

features for miRNAs and diseases are calculated as follows.

GF ¼ MF
DF

� � 2 RðNmþNd Þ× h

MF ¼ MF1þMF2
2 ;DF ¼ DF1þDF2

2

whereNm andNd respectively denote the number of miRNAs and diseases,
and h refers to the dimension of the hidden features.

High-order hypergraph encoding via hypergraph convolution. As the
Gaussian similarity contains important high-level relationships among
miRNAs (diseases), we utilize it to obtain high-level representations of
miRNAs (diseases) by applying the hypergraph convolution. First of all, a
graph Gm (Gd) is constructed for miRNAs (diseases) with nodes repre-
senting miRNAs (diseases), and an edge is connected between any two
nodes if their Gaussian similarity is larger than sg (sg is set to 0 in this study).
Then, a hypergraphHGm (HGd) is built for miRNAs (diseases) with nodes
denotingmiRNAs (diseases) and each hyperedge consisting of the neighbor
set of a node in Gm (Gd). Taking HGm as an example, HGm = {Vm, Em},
where Vm represents all the nodes (miRNAs) in Gm, and Em is the set of
hyperedges, manually set to match the number of nodes, and the i-th
hyperedge ei = {vj| vj is a neighbor of vi in Gm} represents the set of the
neighbors of the i-th node in Gm. The corresponding incidence matrix Ym
(Yd) is obtained with rows representing the nodes in Vm (Vd) and columns
denoting the hyperedges in Em (Ed).Ym(i, j)=1 if the i-th node is included in
the j-th hyperedge and Ym(i, j) = 0 otherwise. The feature matrix MHF of
miRNA is constructed by concatenating (MSS+MFS)/2 and MGS, while
DHF is constructed by concatenatingDSS andDGS for disease. Basedon the
hypergraphs of miRNA and disease, the hypergraph convolution is applied
as follows.

Hðlþ1Þ ¼ σ D�1
2YWB�1YTD�1

2HðlÞPðlÞ
h i

whereD is the node degreematrix,B is the hyperedge degreematrix,Y is the
incidence matrix of miRNA or disease, W is hyperedge weight matrix,
HðlÞ 2 RN × 2N is the feature matrix for the l-th layer, P(l) is the l-th trainable
parameter matrix and σ is the activation function.

By applying a 2-layer hypergraph convolution, featurematricesMHF1
and DHF1 of miRNA and disease are generated. At the same time, feature
matrices MHF and DHF are embedded by an MLP to MHF2 and DHF2.
Finally, the high-level encoded features for miRNAs and diseases are
represented as follows.

HGF ¼ MF
DF

� � 2 RðNmþNd Þ× h

MF ¼ MHF1þMHF2
2 ;DF ¼ DHF1þDHF2

2

miRNA-disease interaction encoding. Feature encoding of miRNAs
(diseases) by utilizing miRNA-disease interaction information helps obtain
inherent representations ofmiRNAs (diseases), contributing to the accurate
identification ofmiRNA-disease associations. To effectively characterize the
miRNA-disease interactions, a heterogeneous graph Gmd is constructed
with nodes representing all themiRNAs and diseases and edges denoting all
the positive and negative associations between miRNA and disease in the
training set. In this channel, the model is driven to capture association
patterns according to thenumberof associations and theneighbor similarity
of a node (an miRNA or a disease) in the heterogeneous graph. Therefore,
the node degree encoding and the neighbor similarity encoding are applied
in this channel.

It is considered that different attentions should be allocated to nodes
with different numbers of associations in the heterogeneous graph. And
therefore, a nodedegree-based encodingmodule is conductedby calculating
the degrees of all nodes in Gmd and generate a vector vd 2 Rð853þ591Þ × 1,
which is then embedded into a feature matrix DeF 2 Rð853þ591Þ× h=2

via an MLP.
In terms of neighbor similarity encoding, we first extract all the disease

(miRNA) neighbors of each miRNA (disease) in the heterogeneous graph
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Gmd, and then calculate the average similarity of the disease (miRNA)
neighbors according to the similarity matrix DS (MS). Suppose that an
miRNA mi has three disease neighbors dj, dk, and dl, then the neighbor
similarityS(mi) of the nodemi is defined as the average similarity of the three
diseases based on the similarity matrix DS as follows.

SðmiÞ ¼
DSðdj; dkÞ þ DSðdj; dlÞ þ DSðdk; dlÞ

3

Therefore, a vector vs 2 Rð853þ591Þ× 1 is obtained after completing the
computation of all the miRNAs and diseases, which is also projected to
another feature matrixNeF 2 Rð853þ591Þ× h=2 via anMLP. Finally, the high-
level encoded miRNA-disease interaction features are generated by con-
catenating DeF and NeF into HeF 2 Rð853þ591Þ× h.

Fusion of the tri-channel features. A feature fusion encoder is devel-
oped to effectively fuse the three featuresGF,HGF, andHeF by employing
a biased TransFormer encoder and an embedded residual connection as
follows.

Ffusion ¼ TransFormerðFÞðmÞ þ U

F ¼ GF þHGF þ HeF

U ¼ F � sigmoidðF �WFÞ
TransFormerðFÞðmÞ ¼ concatðhead1; . . . ; headmÞ

headi ¼ softmax QiKi
Tffiffi

d
p þ bi

� �
Vi

Qi ¼ F ×Wq
i

Ki ¼ F ×Wk
i

Vi ¼ F ×Wv
i

8><
>:

whereWF,Wq
i,Wk

i,Wv
i, and bi represent learnable parametermatrices, d is

the dimension of Qi, and⊗ denotes the Hadamard product.
The fused features Ffusion of miRNAs and diseases serve as the node

representations in the heterogeneous graph Gmd and a 6-layer graph con-
volution is performed to complete the encoding of allmiRNAs and diseases.

Classification of the miRNA-disease associations. In this study, the
miRNA-disease association prediction task is formulated into an
edge classification problem in the heterogeneous graph Gmd with each
edge (mi, dj) described by a vector eij = Hadamard product [Ffusion(mi),
Ffusion(dj)] and a multi-layer MLP is applied to complete the edge
classification.

Statistics and reproducibility
All the experiments, including validation experiments, ablation experi-
ments, interpretation experiments, and case studywere conducted based on
the HMDDv3.2 dataset, which includes 853 microRNAs and 591 diseases,
with a total of 12,446 validated positive associations. We compared our
results with another state-of-the-art model (MDformer) using a t-test with
n = 10 five-fold random cross-validations, obtaining a p-value < 0.01, as
detailed in Supplementary Table 2. The code for reproducibility is available
at https://doi.org/10.5281/zenodo.1309240147 and the source data for the
figures can be found in the Supplementary Data 1 file.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All samples were obtained fromHMDDv3.2 (http://www.cuilab.cn/hmdd).
The similarity data for microRNA and diseases are available at https://doi.
org/10.5281/zenodo.1309240147. In addition, the numerical data used to
generate the main figures can be found in the Supplementary Data 1 file.

Code availability
Trifusion is implemented by Python using the PyTorch framework. All
supporting source codes can be downloaded from https://doi.org/10.5281/
zenodo.1309240147.
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