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Abstract: Tin disulfide (SnS2) is a promising semiconductor for use in nanoelectronics and optoelec-
tronics. Doping plays an essential role in SnS2 applications, because it can increase the functionality of
SnS2 by tuning its original properties. In this study, the effect of zinc (Zn) doping on the photoelectric
characteristics of SnS2 crystals was explored. The chemical vapor transport method was adopted
to grow pristine and Zn-doped SnS2 crystals. Scanning electron microscopy images indicated that
the grown SnS2 crystals were layered materials. The ratio of the normalized photocurrent of the Zn-
doped specimen to that of the pristine specimen increased with an increasing illumination frequency,
reaching approximately five at 104 Hz. Time-resolved photocurrent measurements revealed that the
Zn-doped specimen had shorter rise and fall times and a higher current amplitude than the pristine
specimen. The photoresponsivity of the specimens increased with an increasing bias voltage or
decreasing laser power. The Zn-doped SnS2 crystals had 7.18 and 3.44 times higher photoresponsivity,
respectively, than the pristine crystals at a bias voltage of 20 V and a laser power of 4 × 10−8 W. The
experimental results of this study indicate that Zn doping markedly enhances the optical response of
SnS2 layered crystals.

Keywords: tin disulfide; zinc doping; photoelectric characteristics; chemical vapor transport method;
layered material; photocurrent; photoresponsivity; optical response

1. Introduction

For more than a decade, research has focused on transition metal dichalcogenides
(TMDCs) [1–10]. TMDCs have the general chemical formula MX2, where M represents a
transition metal atom (group IV, V, VI, or VII) and X represents a chalcogen atom (S, Se, or
Te). Many TMDCs are layered materials [11,12], in which each metal cation plane is between
two chalcogen anion planes, which results in a sandwich-like X–M–X monolayer. These
X–M–X monolayers are internally bonded through covalent bonding and held together
through van der Waals (vdW) interactions. Because of the weak vdW forces, layered
TMDCs can be readily cleaved into structures with few monolayers [13,14] or freestanding
monolayers [15]. Because of their intriguing physical, chemical, and electronic properties,
atomically thin two-dimensional (2D) TMDCs have attracted particular research attention
and are regarded as promising candidates for use in catalysts, energy storage devices,
electronic devices, biosensors and gas sensors, photonics devices, optoelectronic devices,
and piezoelectric devices [6,8,16–19].
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Tin disulfide (SnS2), which is an emerging post-transition metal dichalcogenide, is a
layered material with a similar structure to TMDCs. In a SnS2 crystal, each Sn atom is cova-
lently bonded to six S atoms through octahedral coordination to form S–Sn–S monolayers,
and the monolayers are stacked through vdW forces. SnS2 has several polytypes [20,21],
and two naming systems have been adopted to label these polytypes. Ramsdell’s nota-
tion [22] specifies the number of monolayers in the unit cell, followed by a letter to indicate
the lattice type (T for tetragonal, H for hexagonal, or R for rhombohedral). Mitchell’s
notation [23] specifies the number of S planes within the unit cell, followed by a letter (H or
R) to indicate a hexagonal or rhombohedral symmetry. For example, the simplest possible
polytype of SnS2 is labeled 1T using Ramsdell’s notation and 2H using Mitchell’s notation.
In the present study, we used Mitchell’s system to name the common SnS2 polytypes,
namely 2H and 4H SnS2. These polytypes have identical S–Sn–S monolayers but differ
in terms of the stacking arrangement of the monolayers. The stacking arrangements of
2H and 4H SnS2 are [(AαB)]n and [(AαB)(CβB)]n, respectively, where the Roman letters
represent S ions, and the Greek letters represent Sn ions [21].

SnS2 contains Earth-abundant elements and has environmentally benign characteris-
tics. As a semiconducting material, SnS2 exhibits n-type characteristics [24–27] and has a
sizable indirect bandgap in the range of 2.12–2.35 eV [28–35], which is wider than that of
most TMDCs. The large bandgap benefits electronic applications, because it facilitates the
restraint of source-to-drain tunneling in short-channel field-effect transistors (FETs) in inte-
grated circuits [36–38]. Studies have been conducted on bulk and thin-film SnS2 to identify
their optical absorption [29,39], reflectivity [28], energy band structure [40], photoemis-
sion [41], electronic charge density [42], Raman scattering [43], and dye sensitization [44]
characteristics.

Research has been conducted on 2D SnS2 nanosheets and monolayers [26,32,33,38,45,46].
Sun et al. [45] were the first to synthesize SnS2 freestanding monolayers through a liquid ex-
foliation method. Their SnS2 monolayers were able to undergo visible-light water splitting
with a high conversion efficiency of 38.7%. Song et al. [38] fabricated high-performance
top-gated SnS2 monolayer FETs with a carrier mobility of 50 cm2/Vs and an on–off current
ratio exceeding 107. Huang et al. [32] characterized the properties of bulk, few-monolayer,
and single-monolayer SnS2. They revealed that SnS2 has an indirect bandgap over its entire
thickness range from the bulk material to a single monolayer. Ultrathin SnS2 transistors
exhibit an on–off current ratio exceeding 106 and a carrier mobility of up to 230 cm2/Vs.
Gonzalez and Oleynik [46] used the first-principles density functional theory to investigate
the layer-dependent structural, electronic, and vibrational properties of SnS2. They pre-
dicted a strong-layer dependence for the exciton binding energy and Raman intensity of
2D SnS2. Zhou et al. [33] synthesized large, ultrathin, single-crystalline SnS2 nanosheets
with an improved chemical vapor deposition method. Their SnS2 nanosheet-based pho-
totransistors exhibited high responsivities of 261 and 722 A/W in air and high vacuum,
respectively. The aforementioned authors also fabricated a flexible photodetector based on
SnS2 nanosheets, which demonstrated a high responsivity of 34.6 A/W. Thus, numerous
studies have verified the potential of 2D SnS2 for use in nanoelectronics, optoelectronics,
and energy conversion.

Doping plays a key role in research on SnS2, because it can increase the function-
ality of SnS2 by providing routes to tune its native properties [47–56]. For example,
Zhou et al. [47] adopted a solvothermal method to synthesize 2D molybdenum (Mo)-
doped SnS2 nanosheets for sensing nitrogen dioxide (NO2). They revealed that, for SnS2
nanosheets with a 3 at.% Mo doping concentration, the NO2 sensing response at 150 ◦C was
enhanced by approximately 23 times relative to a pristine SnS2 specimen. Bouzid et al. [48]
reported that a SnS2 single crystal with a 2 at.% cobalt doping concentration revealed a
relatively high Curie temperature of approximately 131 K and a large saturation magneti-
zation of approximately 0.65 emu g−1. Fan et al. [51] fabricated photodetectors based on
indium (In)-doped few-monolayer SnS2. Compared with photodetectors based on pristine
SnS2, the responsivity, external quantum efficiency, and normalized detectivity increased
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by up to two orders of magnitude after SnS2 was doped with 1.9 at.% of In. Meng et al. [52]
synthesized aluminum (Al)-doped SnS2 nanosheets with a hydrothermal method. The
response time and responsivity of a sample with a 6 at.% Al doping concentration were 20.4
and 19.2 times shorter and higher, respectively, than those of pristine SnS2. Lin et al. [53]
used the first-principles calculations of the generalized gradient approximation method to
study the magnetic and optical properties of 6.25 at.% chromium (Cr)-doped SnS2. Their
calculation results revealed that, at approximately 1.17 eV, the absorption coefficient of
6.25 at.% Cr-doped SnS2 is 167,400 cm−1, which is considerably higher than that of gallium
arsenide (40,000 cm−1), a commonly used absorption material in solar cells. Liu et al. [54]
introduced sulfur vacancies into SnS2 nanostructures through copper (Cu) doping to im-
prove the photocatalytic efficiency. They reported that the hydrogen generation rate of
SnS2 doped with 5 at.% Cu reached 1.37 mmol h−1 g−1 under visible light, more than six
times higher than that of pristine SnS2 nanoplates. Setayeshmehr et al. [55] synthesized
alkali-metal-doped SnS2 nanostructures with a solvothermal method. Their sodium-doped
SnS2 exhibited a high supercapacitor performance with a high capacitance of 269 Fg−1 at a
current density of 1 Ag−1, approximately four times the specific capacitance of a pristine
SnS2 nanostructure. Kumar et al. [56] studied hydrothermal synthesis zinc (Zn)-doped
SnS2 nanoflakes at a low temperature (160 ◦C). Their experimental results revealed that Zn
doping significantly improved the sensitivity of SnS2 to illumination. In summary, metal-
doped SnS2 has excellent potential for use in sensing, hydrogen energy, energy storage,
spintronic, and optoelectronic applications.

On the basis of the aforementioned studies, exploring the properties of metal-doped
SnS2 crystals is warranted. Thus, in this study, pristine and Zn-doped SnS2 crystals
were grown using the chemical vapor transport (CVT) method, and their morphological,
structural, optical, and photoelectric properties were investigated. Our experimental results
reveal that the grown SnS2 crystals formed layered materials, and their optical response
was notably enhanced through Zn doping.

2. Materials and Methods

We adopted the CVT method to grow pristine and Zn-doped SnS2 crystals. An
electronic balance was used to weigh high-purity Sn and S to generate a Sn:S molar ratio of
1:2. In addition, 0.3 g of iodine (I2) was adopted as a transport agent. Sn, S, and I2 were
placed in a quartz ampoule along with the high-purity Zn doping element. The designed
doping concentration was 2%. The quartz ampoule was evacuated to 1–2 × 10−5 Torr
before being sealed and then placed in a three-zone furnace for 300 h. The temperature
at one end of the quartz ampoule was set to 780 ◦C, and the temperature at the other
end was set to 650 ◦C. The temperature gradient was approximately 4.3 ◦C/cm. The raw
materials were initially located at the high-temperature end of the quartz ampoule. To
obtain the optimal crystal quality, the temperatures of the two ends of the quartz ampoule
were reversed once per day.

After the growth of the pristine and Zn-doped SnS2 crystals, a field-emission scanning
electron microscope (S-4800, Hitachi, Tokyo, Japan) was used to characterize the morphol-
ogy of the crystals. The chemical compositions of the specimens were identified using
an energy dispersion X-ray spectroscope attached to the scanning electron microscope
and a field-emission electron probe microanalyzer (JXA-8530F, JEOL, Tokyo, Japan). We
employed a three-dimensional laser Raman microspectroscopy system (Nanofinder 30,
Tokyo Instruments, Tokyo, Japan) equipped with a semiconductor laser with a wavelength
of 488 nm to measure the Raman spectra of the crystals. The crystal images of the specimens
were obtained using a transmission electron microscope (JEM-3010, JEOL, Tokyo, Japan).
A high-resolution X-ray diffractometer (D8 DISCOVER SSS, Bruker, Billerica, MA, USA)
that uses Cu Kα radiation (λ = 1.5418 Å) was adopted to examine the crystal structures of
the specimens.

A 0.25 m monochromator (MKS, Irvine, CA, USA) equipped with a 130 W halogen
lamp was used to produce monochromatic light with a wide photon energy range for
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the absorption, piezoreflectance (PzR), and photoconductivity (PC) measurements. We
employed a mechanical chopper to modulate the continuous light from the monochromator
into alternating incident light with a frequency of 200 Hz. For the PzR measurements,
the measured specimen was attached to a piezoelectric ceramic holder, which was driven
by a high-alternating-current (AC) voltage signal with a frequency of 200 Hz and a peak
amplitude of 800 V to apply alternating stresses to the specimen. A silicon photodetector
(Thorlabs, Newton, NJ, USA) with an amplifier was adopted to detect the intensity of
the reflected light from the specimen’s surface. A dual-phase lock-in amplifier (Ametek,
Berwyn, PA, USA) with the ability to suppress noise signals was used to record the output
signals of the photodetector. For the absorption measurements, the measured specimen
was attached to another holder. The silicon photodetector was placed on the back of the
sample to detect the intensity of the transmitted light. For the PC measurements, a Keithley
2410 sourcemeter (Keithley, Solon, OH, USA) supplied a stable bias voltage of 20 V to the
measured specimen. The photocurrent was recorded using a dual-phase lock-in amplifier
and then divided by the power of the incident light at each wavelength to determine the
photoresponsivity of the measured specimen.

To measure the photocurrent of a specimen as a function of the time or illumination
frequency, a 520 nm wavelength laser was used as the excitation source. This laser was
controlled by a function generator (3320A, Keysight, Singapore) to apply on–off light modu-
lation to the measured specimen. In addition, a Keithley 2410 sourcemeter applied a stable
bias voltage of 100 V to the measured specimen. For frequency-dependent photocurrent
measurements, the photocurrent of the measured specimen under alternating illumination
(Iac) was recorded using a dual-phase lock-in amplifier and then divided by the photocur-
rent under steady illumination (Idc) to obtain the normalized photocurrent (Iac/Idc) as a
function of the alternating frequency of illumination. For time-dependent photocurrent
measurements, a data acquisition device with a time resolution of 1 ns was used to collect
photocurrent signals.

To measure the photoresponsivity of the measured specimen as a function of the laser
power or bias voltage, we used a laser with a wavelength of 520 nm as the excitation source.
A Keysight 3320 A function generator was used to modulate the laser light into alternating
light with a frequency of 1 Hz. For laser-power-dependent photoresponsivity measure-
ments, a rotary-vane-type variable attenuator, a neutral density (ND) 1.0 filter, and a ND
2.0 filter were used to adjust the laser power. A Keithley 2410 sourcemeter applied a stable
voltage of 100 V to the measured specimen. The photocurrent was recorded using a dual-
phase lock-in amplifier and divided by the laser power to determine the photoresponsivity
of the measured specimen. For bias-voltage-dependent photoresponsivity measurements,
we set the laser power to 1.29 mW, used a Keithley 2410 sourcemeter to apply a bias voltage
to the measured specimen, and then recorded the induced current using a dual-phase
lock-in amplifier.

3. Results and Discussion

Pristine and Zn-doped SnS2 crystals were grown using the CVT method. The thick-
nesses of the pristine and Zn-doped specimens were approximately 73 µm and 106 µm,
respectively. The chemical compositions of the grown specimens were determined using
an energy dispersive X-ray spectroscope (EDX) and a field-emission electron probe micro-
analyzer (EPMA). The atomic percentages of Sn and S in the pristine SnS2 crystals were
34.08% and 65.92%, respectively, when determined by the EDX, and 33.46% and 66.54%,
respectively, when determined by the EPMA. The atomic percentages of Sn, S, and Zn in
the Zn-doped SnS2 crystals were 34.31%, 65.32%, and 0.36%, respectively, when determined
by the EDX, and 34.55%, 65.13%, and 0.31%, respectively, when determined by the EPMA.
Each value is an average value calculated after multiple measurements; therefore, the sum
of the atomic percentages of Sn, S, and Zn for the Zn-doped specimen is not exactly equal
to 100%. The atomic ratio of Sn to S was approximately the ideal value of 1:2 for both
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specimens; however, the percentage of Zn was less than the expected value of 2% for the
Zn-doped specimen.

Scanning electron microscopy (SEM) was used to observe the surface morphologies of
the pristine and Zn-doped SnS2 crystals [Figure 1a,b]. The SEM images revealed that the
grown SnS2 crystals were composed of multiple layers, and an angle of 120◦ characterized
the edges of the layers. Figure 1c,d display the transmission electron microscopy (TEM)
images of the pristine and Zn-doped SnS2 specimens, respectively. The insets are the
selected area electron diffraction patterns of the corresponding SnS2 crystals. The images
in Figure 1c,d depict a high-quality, single-crystalline hexagonal structure. The lattice
plane spacing d100 of each SnS2 specimen was determined from its TEM image and is listed
in Table 1. The lattice constant a of each SnS2 specimen was then calculated using the
following formula [57]:

1
dhkl

=

√
4
3

(
h2 + hk + k2

a2

)
+

l2

c2 , (1)

and is also listed in Table 1. The calculated lattice constant a of the pristine SnS2 was
3.6812 Å, slightly larger than that reported by Palose et al. (Table 1) [58,59]. Marginal
reductions in d100 and a were observed as Zn atoms were doped into the SnS2 crystals,
possibly because the Zn ions replaced some of the Sn ions. The smaller radius of the Zn ions
compared with that of the Sn ions resulted in smaller d100 and a values for the Zn-doped
SnS2 crystals.
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Figure 1. Scanning electron microscopy images of the (a) pristine and (b) Zn-doped SnS2 specimens.
The measurement scale in each image represents a length of 5 µm (i.e., each division represents 0.5 µm).
Transmission electron microscopy images of the (c) pristine and (d) Zn-doped SnS2 layered crystals
are shown. The insets are the selected area electron diffraction patterns of the SnS2 layered crystals.



Nanomaterials 2022, 12, 1442 6 of 13

Table 1. Lattice parameters of the pristine and Zn-doped SnS2 layered crystals.

Specimen d100 (Å) a (Å) c (Å) References

2H SnS2 3.6470 5.8990 [58,59]
4H SnS2 3.6470 11.811 [58,59]

Pristine SnS2 3.1880 3.6812 11.812 This work
Zn-doped SnS2 3.1658 3.6556 11.812 This work

Raman spectroscopy was used to identify the polytype of the grown SnS2 crystals. The
frequencies of the vibration modes of 2H and 4H SnS2 were reported by Smith et al. [43].
The room-temperature Raman spectra of the pristine and Zn-doped SnS2 layered crystals
are presented in Figure 2a. These spectra indicate that the effect of Zn doping on the
positions of the SnS2 Raman peaks was negligible. The frequency of the intense peaks
(312.2 cm−1) was similar to the frequency of the A1g optic mode of 2H SnS2 (315 cm−1) and
the mixed A1 and E optic mode of 4H SnS2 (313.5 cm−1). Therefore, the polytype of the
grown SnS2 crystals could not be identified by only using these intense peaks. However,
Figure 2a also shows very weak peaks with frequencies of 200 and 214.4 cm−1. Smith et al.
demonstrated that the E optic mode of 4H SnS2 is a doublet with frequencies of 200 and
214 cm−1, whereas the Eg optic mode of 2H SnS2 is a singlet with a frequency of 205 cm−1.
A doublet can be observed in Figure 2a; therefore, the grown crystals were 4H SnS2.
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layered crystals.

Figure 2b presents the X-ray diffraction patterns of the pristine and Zn-doped SnS2
layered crystals. Only the (00l) diffraction peaks of the SnS2 crystals can be observed in
Figure 2b. The intense peak for the pristine specimen at 2θ = 15.00◦ corresponds to the (002)
plane of the 4H SnS2 crystals, and the other weak peaks at 2θ = 30.28◦, 46.20◦, and 63.00◦

correspond to the (004), (006), and (008) planes, respectively. These peaks indicate that the
[001] orientation was strongly preferred by the grown crystals. The grown SnS2 crystals
had a CdI2-like layered structure belonging to the P63mc space group. Their diffraction
patterns matched well with those of the Joint Committee on Powder Diffraction Standards
card No. 89-3198. Bragg’s diffraction formula is expressed as follows:

2dhkl sin θhkl = nλ. (2)

In this study, λ = 1.5418 Å (for the Cu Kα radiation); thus, by using Equation (2),
the lattice constant c (=2d002) of the pristine SnS2 crystals was calculated to be 11.812 Å,
which is consistent with that reported by Palose et al. (Table 1) [58,59]. For the Zn-doped
specimen, Figure 2b shows peaks at 2θ = 15.00◦, 30.37◦, 46.13◦, and 63.12◦, corresponding
to the (002), (004), (006), and (008) planes of the 4H SnS2 crystals, respectively. Therefore,
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Figure 2b reveals that the positions of the (00l) peaks of the Zn-doped SnS2 crystals are
nearly the same as those of the pristine SnS2 crystals. Because the interactions between
the S–Sn–S monolayers were weak vdW forces, the influence of Zn doping on the lattice
constant c of the SnS2 layered crystals was minimal.

The absorption spectra of the pristine and Zn-doped SnS2 crystals were measured at
room temperature to determine the optical bandgap. The optical absorption behavior of an
indirect-bandgap semiconductor near the band edge can be expressed as follows [60–62]:

α(Eph) ∝ [Eph − (Eg ± }Ω)]2, (3)

where α is the absorption coefficient, Eph is the energy of the incident photon, Eg is the
bandgap energy, and h̄Ω is the energy of a phonon being emitted (+h̄Ω) or absorbed (−h̄Ω).
The absorbance A of a specimen is proportional to the absorption coefficient α, and in
most situations, the energy of the phonon (h̄Ω) can be disregarded. Therefore, by using
the Tauc plot (Figure 3a) [63], we obtained the bandgap by extrapolating the linear part
of the A1/2 versus Eph curve at A1/2 = 0. The bandgap of the pristine SnS2 was 2.22 eV,
which is consistent with that reported by Huang et al. for 4H SnS2 [32]. The bandgap of the
Zn-doped SnS2 crystals was 2.30 eV. The uncertainty of these values was approximately
0.01 eV. As SnS2 was doped with Zn atoms, the bandgap of the SnS2 crystals increased.
This increase might have resulted from the reduction in the lattice parameters d100 and a.
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PC and PzR spectra can also be used to determine the bandgap. Figure 3b presents the
PC spectra of the SnS2 crystals. The bandgaps of the pristine and Zn-doped SnS2 crystals
were determined to be 2.22 and 2.30 eV, respectively, with an uncertainty of 0.01 eV. These
values are the same as those indicated by the absorption spectra. Figure 3c depicts the PzR
spectra of the SnS2 crystals. The bandgaps of the pristine and Zn-doped SnS2 crystals were
determined to be 2.29 and 2.39 eV, respectively, with an uncertainty of 0.01 eV. These values
are marginally higher than those indicated by the absorption and PC spectra.

Understanding the optical responsive properties of SnS2 layered crystals is essential
when using them in optoelectronic devices. To investigate the dependency of photocurrents
on the alternating frequency f of illumination, let ti and td be the durations of the light and
dark periods, respectively. For symmetric square light waves, ti = td = t0 = 1/(2f ). Let τ
be the lifetime of carriers; if t0 � τ, during a light interval, the photocurrent I increases
with time as a function of I(t) = Idc(1 − e−t/τ) and finally reaches the steady-state value Idc.
During a dark interval, in contrast, the photocurrent I decreases with time as a function of
I(t) = Idce−t/τ and eventually vanishes. However, if t0 < τ, the photocurrent cannot reach
the steady-state value during a light interval, nor can it reach 0 during a dark interval. After
many light–dark cycles, the time average of the photocurrent becomes Idc/2. Let Iac be the
AC component of the photocurrent. The following equation is obtained:

Idc
2

− Iac

2
=

(
Idc
2

+
Iac

2

)
e−t0/τ . (4)
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Therefore, by rearranging, the following equation is obtained [64]:

Iac

Idc
=

1 − e−t0/τ

1 + e−t0/τ
= tanh

(
t0

2τ

)
= tanh

(
1

4 f τ

)
. (5)

A material can have more than one carrier-depleting process. If two processes are
dominant, Equation (5) can be modified as follows:

Iac

Idc
= c1tanh

(
1

4 f τ1

)
+ c2tanh

(
1

4 f τ2

)
. (6)

In Equation (6), c1 and c2 are the proportional coefficients, and τ1 and τ2 are the carrier
lifetimes for long-lifetime and short-lifetime decay processes, respectively.

Figure 4 illustrates the normalized photocurrent (Iac/Idc) of the pristine and Zn-doped
SnS2 layered crystals as a function of the alternating frequency of illumination. The
normalized photocurrent of the Zn-doped SnS2 crystals decreased more slowly than that of
the pristine SnS2 crystals as the frequency increased. Therefore, the ratio of the normalized
photocurrent of the Zn-doped SnS2 crystals to that of the pristine SnS2 crystals increased
with an increasing alternating frequency, reaching 4.93 at 104 Hz. When operated at a high
alternating frequency, the optical response of the Zn-doped SnS2 crystals was superior to
that of the pristine SnS2 crystals.
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Figure 4. Normalized photocurrent of the pristine and Zn-doped SnS2 layered crystals as a function
of the alternating frequency of illumination.

The frequency-dependent behavior of the photocurrent shown in Figure 4 can be
fitted by Equation (6). The obtained values of the fitting parameters are listed in Table 2.
For the pristine SnS2 crystals, 70% and 30% of the photocurrent can be attributed to long-
and short-lifetime carriers, respectively. The proportion of the photocurrent attributed to
short-lifetime carriers was higher for the Zn-doped SnS2 crystals than for the pristine SnS2
crystals, possibly because of the additional trap states produced by the Zn atoms, which
can induce short-lifetime decay processes.

Table 2. Obtained values for the fitting parameters used in Equation (6) for the pristine and Zn-doped
SnS2 layered crystals.

Specimen c1 τ1 (ms) c2 τ2 (ms)

Pristine SnS2 0.70 4.96 0.30 0.119
Zn-doped SnS2 0.55 1.40 0.45 0.023
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Figure 5a,b illustrate the time-dependent photocurrents of the pristine and Zn-doped
SnS2 specimens and indicate how the photocurrent of each specimen changed over time
under an alternating illumination frequency of 1000 Hz. The photocurrents of the specimens
exhibited similar behaviors under other illumination frequencies. Table 3 lists the rise time
trise (from 10% to 90% of the maximum photocurrent) and fall time tfall (from 90% to 10% of
the maximum photocurrent) for each specimen under different illumination frequencies.
The rise and fall times of the Zn-doped SnS2 crystals were shorter than those of the pristine
SnS2 crystals under all illumination frequencies. The current amplitude, which was defined
as the difference between the maximum and minimum photocurrents in a rising–falling
cycle, of each specimen under different illumination frequencies is listed in Table 4. Under
all illumination frequencies, the current amplitude of the Zn-doped SnS2 crystals was
higher than that of the pristine SnS2 crystals. According to the data listed in Tables 3 and 4,
Zn doping enhanced the response of the grown SnS2 crystals to light.
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Figure 5. Photocurrents of the (a) pristine and (b) Zn-doped SnfS2 layered crystals as a function of
time under an illumination frequency of 1000 Hz.

Table 3. Rise time trise and fall time tfall of the pristine and Zn-doped SnS2 layered crystals under
different illumination frequencies.

Frequency (Hz)

1 100 500 1000

Specimen trise (ms) tfall (ms) trise (ms) tfall (ms) trise (ms) tfall (ms) trise (ms) tfall (ms)

Pristine SnS2 0.96 2.03 0.88 1.12 0.83 0.98 0.81 0.94
Zn-doped SnS2 0.31 0.25 0.45 0.23 0.22 0.21 0.21 0.19

Table 4. Current amplitudes of the pristine and Zn-doped SnS2 layered crystals under different
illumination frequencies.

Frequency (Hz)

1 100 500 1000

Specimen Current Amplitude (µA)

Pristine SnS2 0.030 0.028 0.025 0.023
Zn-doped SnS2 0.110 0.100 0.090 0.080

Figure 6a illustrates the photoresponsivity of each specimen as a function of the bias
voltage. As the applied bias voltage increased, the photoresponsivity of each specimen
gradually increased. The photoresponsivity of the Zn-doped SnS2 crystals was higher
than that of the pristine SnS2 crystals at all bias voltages. At a bias voltage of 20 V, the
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photoresponsivity of the Zn-doped SnS2 crystals reached a maximum value of 30 µA/W,
which was 7.18 times higher than that of the pristine SnS2 crystals, namely 4.18 µA/W.
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Figure 6b depicts how the photoresponsivity of each specimen varied with the incident
laser power. As the laser power gradually decreased from an order of 10−3 W to an order of
10−8 W, the photoresponsivity of each specimen steadily increased. This increase reached
three orders of magnitude. For a given incident laser power, the photoresponsivity of the
Zn-doped SnS2 crystals was higher than that of the pristine SnS2 crystals. At a laser power
of 4 × 10−8 W, the photoresponsivity of the Zn-doped SnS2 crystals reached a maximum
value of 8.04 mA/W, which was 3.44 times higher than that of the pristine SnS2 crystals,
namely 2.34 mA/W.

4. Conclusions

In conclusion, pristine and Zn-doped SnS2 crystals were grown in this study with the
CVT method, and their morphological, structural, optical, and photoelectric properties
were studied. The SEM images revealed that the SnS2 crystals were layered materials, with
an angle of 120◦ characterizing the edge of each layer. The doublet E mode and mixture
A1 + E mode signals in the Raman spectra verified that the grown layered crystals were the
4H polytype of SnS2. The TEM results revealed that the lattice constant a of the pristine
SnS2 crystals was approximately 3.681 Å. The value of parameter a reduced slightly as Zn
atoms were doped into the SnS2 crystals, possibly because the Zn ions replaced some of the
Sn ions. The X-ray diffraction results indicated that the lattice constant c of the pristine and
Zn-doped SnS2 layered crystals was 11.812 Å. Because the interactions between the S–Sn–S
monolayers were weak vdW forces, the influence of Zn doping on the lattice constant c
was minimal. Moreover, the bandgap of the pristine SnS2 crystals was determined to be
2.22 eV by using absorption and PC spectra. After doping with Zn atoms, the bandgap
increased. Frequency-dependent photocurrent measurements revealed that the normalized
photocurrent of the Zn-doped SnS2 crystals decreased more slowly than that of the pristine
SnS2 crystals as the frequency increased. When operated at a high alternating illumination
frequency, the optical response of the Zn-doped SnS2 crystals was superior to that of the
pristine SnS2 crystals. The time-dependent photocurrent measurements for the SnS2 layered
crystals indicated that, under all illumination frequencies, the rise and fall times of the
Zn-doped SnS2 crystals were shorter than those of the pristine SnS2 crystals, whereas the
current amplitude of the Zn-doped SnS2 crystals was higher than that of the pristine SnS2
crystals. Moreover, experiments on laser-power-dependent and bias-voltage-dependent
photoresponsivity revealed that Zn doping increased the photoresponsivity of SnS2. All of
the experimental results indicate that Zn doping markedly enhances the optical response
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of SnS2 layered crystals, which suggests that Zn-doped SnS2 has the potential for use in
optoelectronic devices.
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