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Abstract

Dispersal beyond the local patch in clonal plants was typically thought to result from sexual

reproduction via seed dispersal. However, evidence for the separation, transport by water,

and re-establishment of asexual propagules (asexual hydrochory) is mounting suggesting

other important means of dispersal in aquatic plants. Using an unprecedented sampling size

and microsatellite genetic identification, we describe the distribution of seagrass clones

along tens of km within a coastal lagoon in Southern Portugal. Our spatially explicit individ-

ual-based sampling design covered 84 km2 and collected 3 185 Zostera noltei ramets from

803 sites. We estimated clone age, assuming rhizome elongation as the only mechanism of

clone spread, and contrasted it with paleo-oceanographic sea level change. We also studied

the association between a source of disturbance and the location of large clones. A total of

16 clones were sampled more than 10 times and the most abundant one was sampled 59

times. The largest distance between two samples from the same clone was 26.4 km and a

total of 58 and 10 clones were sampled across more than 2 and 10 km, respectively. The

number of extremely large clone sizes, and their old ages when assuming the rhizome elon-

gation as the single causal mechanism, suggests other processes are behind the span of

these clones. We discuss how the dispersal of vegetative fragments in a stepping-stone

manner might have produced this pattern. We found higher probabilities to sample large

clones away from the lagoon inlet, considered a source of disturbance. This study corrobo-

rates previous experiments on the success of transport and re-establishment of asexual

fragments and supports the hypothesis that asexual hydrochory is responsible for the extent

of these clones.

Introduction

Clonal propagation is widespread throughout the Tree of Life, including multicellular eukary-

otes, in 45% of vascular plant families [1] and over 70% of animal phyla [2]. Most eukaryotic

clonal organisms are also capable of reproducing sexually, and will carry out one mode of

reproduction or the other according to the circumstances [3–5]. Dispersal is one of many

important life history traits associated with sexual reproduction: sexually-derived bodies (such
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as gametes, pollen, zygotes, seeds, larvae) are often thought of as the relevant dispersal propa-

gules mediating gene flow within and between populations. On the other hand, asexual repro-

duction was for long thought to play a role constrained to the population spatial limits, such as

resource foraging through clonal extension, physical and physiological integration and popula-

tion maintenance under mate limitation [6]. This clonal extension, or growth, is equivalent to

asexual dispersal because it constitutes movement of genes away from zygote natal site [7]. In

clonal plants this is achieved by creeping rhizomes, stolons, or roots. We note that this type of

asexual dispersal occurs with the organism never leaving the substrate, although the physical

connection between modules might be kept or lost. Thus, the rate of asexual dispersal through

this mechanism is tightly associated with specific clonal growth rates which are generally slow.

However, in aquatic organisms, a much faster asexual dispersal mechanism is the aquatic

transport of asexual propagules, a form of asexual hydrochory (AH). Evidence for AH is

mounting calling attention to the role of asexual dispersal at spatial scales beyond the local

population [8,9]. AH occurs when an asexual propagule is fragmented and temporally escapes

its sessile dependency on the substrate. This type of propagule dispersal is a three-stage pro-

cess: a separation from the established clone and from the substrate, followed by a transport
period, and finally, the establishment in a new location. The potential to produce viable vegeta-

tive fragments has been observed and demonstrated in a number of animal and plant species

[10–15]. The water transport phase of asexual dispersal in nature is often difficult to track, due

to practical limitations to observe or experimentally test propagule dispersal, particularly

beyond the local patch. Settlement of the dispersed asexual propagules has been confirmed in

several taxa: plants in lentic habitats [16], in streams [12,17,18], marine macrophytes [19,20],

freshwater bryozoans [21], moss [22], sea anemones [23], corals [14,24] and sponges [11],

among others. Post dispersal establishment of fragments of submerged freshwater macro-

phytes is well supported [12,25,26]. Studies which looked into this process in marine macro-

phytes reported successful establishment [19,20,27–30].

Seagrasses are marine plants relying on both clonal growth and sexual reproduction to

extend their coverage in the habitat or to occupy new ones. Dispersal distance by sexual propa-

gules is often limited when they are on their own in the marine environment [31], although

dispersal distances can be orders of magnitude longer when seeds are transported by repro-

ductive structures or fragments floating in the current [6,31–34]. Perhaps because of this, stud-

ies on seagrass dispersal disproportionately focus their attention on seed dispersal, while

asexual dispersal is mainly associated with rhizome extension. However, evidence for the dif-

ferent elements necessary for AH in seagrasses is mounting. Production of seagrass fragments

is common across species regardless of their size or habitat and can be a natural or human-

induced process [35–37]. The transport of such fragments was reported for the first time in

1908 [38] and has since been suggested many times [39–44] or as a transport vector for seeds

[34]. Using genetic markers to characterize clonality, Arnaud-Haond et al. [45] suggested that

fragment dispersal could explain the distribution of very large clones, along areas where sea-

grasses could not have persisted during the low sea levels of the most recent glacial period.

While recently, the largest extension covered by a single seagrass clone was found in the Indian

River Lagoon, Florida, for Thalassia testudinum [9]. The mechanism proposed for the wide

extension of this clone was AH. Across these studies, evidence is still lacking for the success of

all three steps necessary for AH in the same species. Berković et al. [46] study demonstrated

long viability of seagrass shoots, and seeds carried in them, during the transport phase of Z.

noltei fragments. In a follow up study, Berković [47] showed biologically relevant post-dis-

persal successful settlement in Z. noltei, ranging between 30 and 100% depending on the size

of the fragment, the time spent floating, and the time after settlement. These studies provided

the motivation to find a spatial signature of AH that relies on genetic identification of clones.

Seagrass asexual hydrochory
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The use of hyper-variable genetic markers (e.g. microsatellites) in the last 15 years has

increased our knowledge on the spatial patterns of clonal structure [48]. Unbiased genetic

identification of the same clone sampled across distant locations has been explained as a result

of rhizome elongation [45,49,50]. Clone age estimation based on species’ rhizome elongation

rates might lead to overestimated ages if AH is overlooked. Using this age estimation method,

some seagrass species are mentioned among the oldest organisms on the planet [45,49]. How-

ever, when estimating clone age using this approach, rarely has the hypothesis of AH been ade-

quately considered using experimental studies, possibly avoiding age overestimation by orders

of magnitude.

Most sampling designs used in population genetics are compromised in their capacity to

reveal AH. Many studies have a population-based spatial scale with “populations” arbitrarily

defined and sampled in clusters, leaving a large proportion of unsampled habitat in between.

On the other hand, when the focus is on within-population processes, as in fine spatial scale

genetic structure analysis, sampling densities are higher but the spatial extent of the sample is

limited. To circumvent these limitations one should use an individual-based, spatially-explicit

sampling design, which is common in landscape genetics [51]. In this design, sample units are

collected randomly or stratified over the entire habitat under study. Such strategy, if including

large enough sample size, increases the chance of sampling multiple ramets of the same clone

spread over large distances in a continuous or disjunctive mode. This sampling design has

only been applied with limited spatial extent in studies of sessile clonal organisms.

In this study, we used an individual-based sampling design, across an unprecedented spatial

extent, to study the clonal structure of the seagrass Zostera noltei using microsatellite markers.

Given previous experimental work supporting the capacity for AH in this species [46,47], we

predicted finding large spatial extent of clones within the Ria Formosa.

Materials and methods

Study site

This study was carried out in the Ria Formosa lagoon, Portugal (37˚N 8˚W). This intertidal

lagoon extends roughly 55 km along the mainland and is 6 km across its widest point, with an

average depth of about 2 m and low fresh water input. Separated from the ocean by five islands

and two peninsulas, it consists of a complex set of channels, mudflats, saltmarshes and highly

dynamic sand barrier islands. Intertidal mudflats are inhabited by the seagrass Z. noltei,
whereas subtidal areas are habitat to two other seagrass species, Cymodocea nodosa and Zostera
marina.

Study species

Zostera noltei is a small seagrass species distributed along central/southern Europe and NW

Africa [52]. In the Mediterranean it is mostly found in the shallow subtidal zone, with lower

shoot density, while being intertidal in most Atlantic meadows with high density [53–55]. Z.

noltei is the dominant seagrass species in the Ria Formosa lagoon, covering over 13 km2 of the

intertidal area [56]. The species shows highly variable growth rates, but it is generally consid-

ered a fast growing species. Alexandre et al. [57] reported frequent flowering and high produc-

tion of seeds in the Ria Formosa for this monoecious species. Seeds can be released directly

from the plant or can be transported attached to the flowering shoot [58]. Seed transport dis-

tance ranges from tens of cm, when released from an attached parental shoot, to a couple thou-

sand kilometers when transported by buoyant detached shoots, assuming unidirectional

current flow [46]. Detached positively buoyant fragments keep producing new shoots and can

carry maturing seeds for more than 50 days [46]. An experimental study on post-dispersal
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settlement success, after a floating period of up to four weeks, demonstrated that these frag-

ments once entangled are quickly buried and keep growing [47].

Sample collection

We randomly selected 1 000 sampling coordinates within a 13 km2 area of Z. noltei meadows

in the Ria Formosa, based on an available georeferenced distribution across more than 84 km2

of the lagoon [56]. Due to logistic constrains only 899 of these plots were visited by boat, kayak

and walking within the intricate saltmarsh channels. Z. noltei was found at 803 of these co-

ordinates. At each plot, 4 sample units were collected at the vertices of a 4 m2 quadrat. Each

individual sample unit consisted of a single ramet with three to four shoots connected by a

horizontal rhizome. Thus, a total of 3 212 individual ramet sample units were sampled. Back in

the laboratory, samples were carefully washed in fresh water, dried on paper and stored dry

with silica gel. Sample collection was authorized by the Parque Natural of Ria Formosa

(PNRF) the natural park managing this natural area.

Genetic analysis of clone identity

Genomic DNA for all ramets sampled was isolated from silica dried tissue (5–10 mg) using

the CTAB method [59]. All Z. noltei samples were genotyped for nine microsatellite loci fol-

lowing Coyer et al. [60]. We used fluorochrome-labelled primers on a GeneAmp 2700 thermo-

cycler (Applied Biosystems, Foster City, CA, USA) and an ABI PRISM 3130xl DNA analyser

(Applied Biosystems) was used to determine the size of amplification products (i.e., microsat-

ellite alleles). We scored raw fragment sizes using STRand v.2.4.59 (http://www.vgl.ucdavis.

edu/informatics/strand.php), and binned into allele classes using the R (R core team, 2016)

package MsatAllele [61]. The probability that sampled ramets with observed identical multilo-

cus genotypes (MLGs) were different genets originated by distinct sexual reproduction events,

psex [62,63], was estimated using custom R code.

Estimating clonal age using rhizome elongation rates

Typically, a seagrass individual’s age is estimated assuming that the sampled spatial extent of a

clone is the result of rhizome elongation alone [45,49]. We used a similar strategy, but iteratively

corrected age estimates by combining sampling locations with spatial explicit sea-level data for the

time the clone would have been initiated. Once clonal assignment was determined, we determined

the longest “as-the-crow-flies” distance between clonemates (ramets belonging to the same genet).

This distance between a pair of clonemates A and B is likely an underestimate (i.e., sampled) of

clone’s span. We then conservatively assumed that the clone initiated growth at the middle point

(O0) in a line between A and B. An initial estimate of clone age (t0) was calculated by dividing the

distance from O0 to A (half the clone’s span) by Z. noltei growth rate. We used a mean rate of rhi-

zome elongation of 68 cm/year from Marbà and Duarte [64] review, including different areas and

seasons to reflect changes in habitat and climate through time. The estimated age of these clones

was then matched with sea-level change reconstruction using paleoceanographic data over the

past 20 000 years for Southern Portugal [65] and current bathymetry. Clone age estimated above

allowed us to determine if at the inferred time of clone initiation O0 was submerged or on land. If

the latter was true, we reiterated the clone aging process by moving O0 to the closest submerged

location at the date corresponding with clone age. The iteration continued until we found a sub-

merged O0 or runned out of paleoceanographic data (details in S1 File and S1 Fig).

To further characterize the spatial distribution of Z. noltei clones within the Ria Formosa,

we estimated for each plot the average probability of sampling an MLG that was present in the

sample more than 5, 10 and 15 times (Pc5, Pc10 and Pc15, respectively). Note that Pc5
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represents the chance of sampling a clone that was found at least in two plots, because only

four ramets were sampled per plot (average shortest distance between plots: 96 m). Finally, we

investigated how Pc changed with distance from the lagoon’s barrier island system, a putative

source of disturbance [66] (details in S2 File).

Results

The genetic analysis of 3 185 Zostera noltei ramets revealed 1 999 unique MLGs (S1 Table) cor-

responding to a relatively high genotypic richness (MLGs/N = R = 0.63), with mean allelic

richness per locus A = 15.0, observed heterozygosity Ho = 0.62 and probability of sexual re-

sampling, Psex, always <0.001. Out of the unique MLGs, 504 were sampled more than once. A

total of 16 MLGs were sampled more than 10 times and the most abundant MLG (ID 1886)

was sampled 59 times (Table 1, Fig 1C). The largest distance between two samples with identi-

cal MLG was 26.4 km (Fig 1B). A total of 58 MLGs were sampled across more than 2 km and

out of those 10 MLGs were sampled across more than 10 km. An example of the large spatial

extent of four these clones is shown in Fig 2A. To illustrate the necessary power to detect asex-

ual hydrochory, we calculated the proportion of ramet pairwise combinations that shared the

same MLG and plotted it as a function of the distance between sampled ramets (Fig 2).

Although many clones were extended across several kilometers, the proportion of pairwise

samples that captured clonemates decreased with distance and was generally small, 1.62% and

0.12%, at 50 m and 30 km distance classes, respectively (Fig 2).

Using the rhizome elongation rate method, corrected for sea-level change, we estimated

that among the 10 largest clones three could be approximately 20 000 years old, while the

remaining seven to be older than 20 000 years. Further iterations of our age estimation process

beyond 20 000 years before present (YBP) were not possible, due to the temporal extent of

available paleoceanographic data for this region. However, the age of these older clones would

have to be at least equal or older than the range found at the point where we could no longer

proceed (22 058 to 33 088 years, Table 1).

The analysis of spatial distribution of large Z. noltei clones within the lagoon revealed higher

probability to sample large clones (Pc) further away from the lagoon barrier islands (Fig 3A).

The average clonal probability Pc5 per plot was 0.05 at 400 m away from the barrier island and

Table 1. Age estimation for the ten largest clones of Zostera noltei assuming no asexual hydrochory. N–number of clonemates sampled; distance–maximum distance

sampled between two clonemates; O1 through O4 –shortest distance to the estimated point of origin; t0 through t3 –estimated age of the clone assuming rhizome elongation

from the point of origin at different sea levels (APPENDIX A); Data is also shown for one clone of the seagrass Cymodocea nodosa in the Ria Formosa lagoon (reanalyzed

from Alberto et al. 2008).

Species Clone N Distance (km) O0 (km) t0 (y) O1(km) t1 (y) O2(km) t2 (y) O3(km) t3 (y) O4(km)

Zostera noltei 1 259 34 26.4 13.2 19 421 22.5 33 088 n.a.

120 6 24.1 12.0 17 710 22 32 352 n.a.

896 11 19.6 9.8 14 389 19 27 941 n.a.

1 886 59 16.7 8.4 12 306 13 19 117 16.5 24 264 n.a.

1 480 9 16.2 8.1 11 879 15 22 058 n.a.

737 19 15.9 8 11 710 15 22 058 n.a.

1 386 2 15.0 7.5 11 001 10 14 705 12 17 647 13 19 117�

44 3 14.1 7 10 368 11 16 176 12.5 18 382 13 19 117�

1 524 13 12.3 6.2 9 070 10 14 705 13 19 117 15 22 058 n.a.

707 6 10.8 5.4 7 993 10 14 705 12.5 18 382 13.5 19 852�

Cymodocea nodosa 1 176 42.9 21.4 53635

�–final age estimation after correcting for sea level; n.a.–unavailable sea level data after this point, clone older than last age estimated.

https://doi.org/10.1371/journal.pone.0199275.t001
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increased to 0.35 at 4 300 m, with a linear increase of 0.075 per km. This pattern did not change

with the number of clonemates used to estimate Pc (5, 10 or 15, Fig 3B).

Discussion

The spatial distribution of Z. noltei clones in Ria Formosa revealed multiple identical MLGs

separated by tens of kilometers, despite the high genetic and genotypic diversity found. The

Fig 1. Clonal spatial structure of Zostera noltei in Ria Formosa, Portugal. Panel A shows the distribution of four large Zostera noltei clones. The circles represent

sampling plots and the colors used show where the same clone was sampled. The most opaque colors indicate that all four ramets sampled in a plot had that particular

clone. Histograms show the distributions of the longest distance sampled between clonemates, panel B, and the number of clonemates sampled per clone, panel C.

https://doi.org/10.1371/journal.pone.0199275.g001
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Fig 2. Change with distance between sample units in the proportion of clonemates pairs. This figure illustrates the need for large

individual based sample designs to reveal large clonal spans. The black line indicate the proportion of ramet pairs, sampled at different

spatial distance classes that showed the same Z. noltei genotype (clonemates). The gray line shows the large total number of ramet pairwise

combinations that were compared at each distance class (log10 scale is being used).

https://doi.org/10.1371/journal.pone.0199275.g002

Fig 3. Spatial distribution of the probability of sampling a large clone of Z. noltei. Panel A shows the plot specific probability of sampling a clone that was observed in

the sample five or more times (Pc5). Higher values were more frequent distant from the barrier islands. Panel B shows the spatial autocorrelograms of mean Pcn
probabilities with distance from the barrier island, Pc5, Pc10 and Pc15. The gray envelope is the 95% confidence band for the expected Pc5 under the null hypothesis of

random spatial distribution, i.e., no association between sampling larger clones and distance to barrier island.

https://doi.org/10.1371/journal.pone.0199275.g003
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large sample size used allowed finding for the first time several of these large clones. Given the

extremely old ages found using this method, many of the largest clones sampled had estimated

points of origin on land at their inferred time of clone initiation. Upon correcting our esti-

mates for sea-level change, the estimated age of several clones within the lagoon surpassed 20,

and even 30, thousand years. The estimation of replicated, extremely old organisms is on its

own quite interesting and would add Z. noltei to the list of the oldest living organisms on the

planet. However, we argue that rhizome elongation is not the most parsimonious model to

explain our results. The large spatial extent covered by these seagrass clones is best explained

by asexual hydrochory corroborating our previous findings on the potential for transport [46]

and establishment of asexual fragments in this species [47].

The relative young age of Ria Formosa lagoon, when compared to clone ages estimated

above, is evidence against a parsimonious model of clonal spread relying exclusively on rhi-

zome elongation. The age of the Ria Formosa lagoon is still a matter of debate. Estimates vary

from two thousand YBP to about six and a half thousand YBP [65,67]. Thus, any clone older

than seven thousand years would not have originated inside the lagoon. Contrary to the rhi-

zome elongation aging method, effective asexual hydrochory dispersal would hinder aging

clones. However, we note that clone age can be much lower if AH dispersal proceeds in a step-

ping-stone manner. Support for stepping-stone AH dispersal comes from the observation of

many clones with large spatial extent. If AH dispersal is the mechanism explaining the spatial

extent of this many clones, then the same mechanism is likely recurrent within the clone as it

expands. Although the rate of stepping stone AH dispersal is unquantifiable, our previous

work with Z. noltei, showing long viability and high rates of successful establishment of vegeta-

tive fragments, suggests this might be more common and relatively fast than previously

believed.

Mounting empirical evidence in other aquatic species, including seagrasses, supports the

three necessary stages of separation, transport and establishment for successful AH. Separation

of clonal modules and transport of fragments is known in many partially clonal organisms

[11,14,19,21–24,68–70]. Moreover, dispersal via vegetative fragments is well documented in

freshwater flora. Sand-Jensen et al. [12] found that 90% of new macrophyte patches in streams

developed from the vegetative fragments that settled in a new area. In their review, De Meester

et al. [16] corroborated this finding with examples from other plant and animal species.

Finally, Riis & Sand-Jensen [17] followed up on this work, estimating the dispersal distance of

plant fragments. In seagrasses, natural detachment, drifting and re-rooting was observed for

small fragments of Posidonia oceanica in the Balearic Islands, Spain [40], for two other Posido-
nia species in Western Australia, with varying success [71], and for Halophila johnsonii and H.

decipiens in Florida, USA [39].

As the interest in seagrass dispersal is growing in the last years [32–34,37,39,41,65,72–75]

we believe that AH might be found in other species if studied at a relevant scale. AH seems to

be possible for a range of seagrass species that cover a range of sizes, from some of the larger

species from genus Posidonia [40,71] to one of the smaller species Halophila johnsonii [41].

Recently, an extremely large clone, spread over 47km, was found for the seagrass Thallassia tes-
tidinum in Florida using microsatellite analysis [9]. The authors concluded that AH dispersal

was the likely process behind the propagation of this organism. Another recent study on Zos-
tera noltei genetic and clonal structure, aimed at understanding the mechanism of dispersal in

the Black Sea, concluded that sexual dispersal is the mechanism for long distance dispersal

because no clonemates were found among populations [76]. That study provides an opportu-

nity to compare the statistical power of individual (our study) versus population based [76]

sampling designs to discover AH. Assuming that AH occurs with similar rate in Ria Formosa

and Black Sea (for the sole purpose of considering statistical power) we compared the

Seagrass asexual hydrochory
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proportions of clonemates sampled at different distances in our study (Fig 2) with sample sizes

and distances between populations in Jahnke et al. [76]. We estimated that the latter study

would have sampled 6, 4 and 0.1 clonemate pairs at 1, 5 and 10 km distances, respectively.

Although no clonemates were actually found among populations in Jahnke et al. [76], the

study had small power to detect a strong AH effect, such as observed in Ria Formosa. Much

smaller rates of AH would still be biological significant and undetectable under classic popula-

tion based sampling designs.

Interestingly, from the other two seagrass species found in Ria Formosa, in Cymodocea
nodosa we previously found an even larger (43km) male clone, distributed across the entire

lagoon [77,78]. When we applied the aging methods used in this study to C. nodosa, we found

that this single clone would have to be 53 000 years old (Table 1). The other seagrass present in

Ria Formosa, Zostera marina, did not show large clonal spans [79], although its patch extinc-

tion-recolonization dynamics in Ria Formosa suggests that seed dispersal via floating frag-

ments might be an important process.

Significance for seagrass conservation

An alarming rate of seagrass ecosystem decline has been observed in the last decades [80–84].

The rates of seagrass recovery on their own, assuming removal of the pressures that led to

extinction, may be underestimated by failing to acknowledge the potential for AH dispersal.

For example, in a recent synthesis on seagrass dispersal a model was used to estimate the mul-

tiple generation time that different seagrass species would take to disperse over distances rang-

ing from meters to thousands of kilometers [6]. The time needed to disperse over 1 to 10 km

distances solely by asexual reproduction (i.e., rhizome elongation) was estimated to be orders

of magnitude longer (thousands of years) than by dispersing seeds (weeks). However, mount-

ing evidence provided above supports that asexual dispersal can be as fast as sexual dispersal.

We note that the only way a seagrass sexual propagule can disperse as far as an asexual one is

precisely by being transported by water while coupled to a “vegetative” fragment. However,

there has been far more attention to the fate of such sexual propagules than to the fate of the

vegetative vector. Moreover, the potential reduction of genetic diversity in patches colonized

by asexual propagules after extinction might be counteracted by the migration rate of such

propagules. This could be generalized to other seagrasses if their AH dispersal is as frequent as

for Z. noltei in Ria Formosa, like the large number of replicated spatially disjunct clones indi-

cates. Additionally, while our focus here has been in the asexual dispersal component, floating

fragments can transport maturing fertilized flowers and can release viable seeds, which can

impede loss of genetic diversity. These are optimistic news for seagrass ecosystem recovery

that should attract the attention of marine ecologists interested in studying the dynamics of

seagrass ecosystems.

We found higher probability of sampling large clones with increasing distance from barrier

islands, assumed to be a source of physical disturbance through increased burial [66]. This

association can be the result of two non-mutually exclusive processes linked to the disturbance

regime—different clone survival and different allocations to sexual and asexual reproductive

components. Survival and longevity might be affected by different habitat stability, with

increased stability in the inner area of the lagoon allowing established clones to survive longer

and thus grow larger. In contrast, in the disturbed areas meadows are frequently buried by

increased sedimentation associated to the barrier island inlets and their migration. Survival of

clones in such a habitat is likely lower, as the conditions are less favorable due to higher burial

rates, increased turbidity and disturbance frequency. Simultaneously, higher allocation to sex-

ual propagation is shown for seagrasses in disturbed habitats. Gallegos et al. [85] showed four-
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fold increase in flowering for Thalassia testudinum after the disturbance cause by a hurricane

passage. Looking at C. nodosa response to sediment dynamics via sand dune migration, Marbà
& Duarte [86] noted overall higher flowering frequency in the studied disturbed meadow, in

comparison to the data for non-disturbed meadows. In particular, fragments which were bur-

ied just before the flowering season showed highest frequencies of flowering. In 72% of studies

on this topic, seagrasses responded to disturbance by increasing reproductive effort by 4-fold

[87]. The same was shown for terrestrial grasses over 30 years ago [88]. Thus, our study indi-

cates some interesting directions for future experimental work, tackling the relative impor-

tance of variable clone survival, as suggested by Bricker et al. [9], and variable allocation to

sexual and asexual reproduction in association with the disturbance regime.

Supporting information

S1 Fig. Seagrass age estimation integrating paleoceanographical sea-level change. Example

of one iteration of Zostera noltei age estimation based on horizontal rhizome elongation rate

and paleoceanographical sea-level reconstitution of the Ria Formosa lagoon area. A and B are

locations of ramets belonging to the same clone. O0 is the initial point of origin for the clone,

placed midway between points A and B. Assuming rhizome elongation only, the time t0 neces-

sary for the clone to grow from O0 to A and B is 17 710 years. At that period, 17 000 years

before present, the sea level was 120 m lower than in the present (indicated by the red dotted

line). Thus, the point of origin is corrected to O1, the coast line at that period, at an intermedi-

ate distance from A and B. The clone age t1 is updated with the time necessary to grow from

the corrected O1 to sample sites A and B, here 32 352 years. Other discontinuous lines repre-

sent the coastline location during different periods in the past.
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S1 File. Estimating clonal age using rhizome elongation rates and paleoceanographical

sea-level change.
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nates.
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