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Abstract
In this editorial, we discussed the article published in the recent issue of the World 
Journal of Diabetes. To understand the effect of mizagliflozin on kidney injury 
induced by diabetes, we focused on the mechanisms by which high glucose tri-
ggers oxidative stress and contributes to kidney injury in diabetes. The high level 
of unmetabolized glucose reaching the kidney triggers glucose reabsorption by 
renal tubules, which elevates the cellular glucose level of renal cells. High glucose 
induces lactate dehydrogenase overexpression and thus shifts glucose meta-
bolism, which causes mitochondrial dysfunction. Mitochondria generate approx-
imately 90% of the reactive oxygen species in cells, whose dysfunction further 
alters glucose metabolism and enhances reactive oxygen species generation. Oxi-
dative stress stimulates proinflammatory factor production and kidney inflam-
matory injury. Mizagliflozin decreases glucose reabsorption and thus ameliorates 
diabetes-induced kidney injury.
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Core Tip: In diabetes, insulin resistance and insufficient insulin release lead to a decrease in glucose uptake by muscles and 
fat tissues, resulting in elevated blood glucose levels, which are dangerous to human organs. The tolerance of high glucose 
switches the metabolism of glucose, which causes mitochondrial dysfunction. Oxidative stress in-duced by excess reactive 
oxygen species generated by dysfunctional mitochondria causes cell damage and thus stimulates proinflammatory factor 
production and tissue injury. Therefore, antidiabetic therapies are aimed at decreasing blood glucose and oxidative stress.
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INTRODUCTION
Diabetes mellitus is defined as hyperglycemia in both the fasting and postprandial states[1]. Insulin serves as the primary 
regulator of blood glucose levels. Insufficient insulin release and suppressed insulin action (named insulin resistance) 
lead to increased glucose production in the liver and decreased glucose uptake by muscles and fat tissues, resulting in 
elevated blood glucose concentrations, which are dangerous to human health[2,3]. Hyperglycemia can contribute to in-
creased reactive oxygen species (ROS) generation and upregulate markers of inflammation, which ultimately cause tissue 
dysfunction. Conversely, increased oxidative stress and inflammation further increase insulin resistance and impair 
insulin secretion[2,4,5]. Diabetes can cause serious health complications. In patients with diabetes, persistent hyper-
glycemia and disorders of metabolic pathways cause damage to various tissues and organs, which increases the risk of 
cardiovascular disease and can result in disorders such as diabetic retinopathy, neuropathy, and nephropathy (Figure 1)
[6-8]. The complications of diabetes are far more harmful than those of diabetes itself[7].

Diabetic nephropathy (DN), one of the most important long-term complications of diabetes, is the major cause of end-
stage renal disease and high mortality in patients with diabetes[9,10]. Thus, protecting the kidney is very important for 
patients with diabetes. High blood glucose and oxidative stress are the major contributors to kidney injury; therefore, 
anti-DN is aimed at inhibiting excess blood glucose and ROS overproduction[1,4].

Glucose is taken up in the kidney via sodium-D-glucose cotransporters (SGLTs), which further maintain high levels of 
serum glucose to play an important role in diabetic kidney injury. The two most well-known members of the SGLT family 
are SGLT1 and SGLT2[11]. SGLT1 is located on the apical side of the proximal tubule and facilitates the reabsorption of 
urinary glucose from the glomerular filtrate. SGLT1 accounts for most of the dietary glucose absorption in the intestine 
and the renal reabsorption of glucose in the kidney, especially in patients with uncontrolled diabetes and those receiving 
SGLT2 inhibitors[12,13]. Inhibiting SGLT1 can reduce the risk of cardiovascular death and improve nonalcoholic steato-
hepatitis by reducing glycogen accumulation and decreasing the production of mitochondrial ROS[13-15]. Currently, 
novel antidiabetic drugs aimed at lowering blood glucose through the inhibition of SGLT in the intestine and kidney have 
been developed. Mizagliflozin (MIZ) is a potent, orally active, and selective SGLT1 inhibitor that has been used as an 
antidiabetic agent that can modify postprandial blood glucose excursion[16-18].

MECHANISMS OF HIGH GLUCOSE TRIGGER OXIDATIVE STRESS AND KIDNEY INFLAMMATORY 
INJURY
Oxidative stress, which is defined by a disturbance in the balance between ROS production and antioxidant defenses, 
plays a critical role in cellular physiology and pathophysiology and is associated with the initiation and progression of 
numerous diseases[19,20]. Chronic oxidative stress induces lipid peroxidation, protein modifications, and DNA damage
[21]. Increased ROS generation plays a crucial role in the pathogenesis of diabetes, including DN[2]. Mitochondria, as the 
power plants of cells, play pivotal roles in adenosine triphosphate production and ROS generation. They are extremely 
sensitive to environmental stimuli, including hypoxia, drugs, toxicity, and changes in nutrient supply[22,23]. Mito-
chondrial alterations serve as the primary driving force for cellular malfunction before and after insulin resistance[24]. 
Dysfunctional mitochondria-produced ROS overwhelm intrinsic antioxidant defenses, causing oxidative stress, which can 
lead to deleterious oxidative damage to DNA, proteins, and membrane lipids and chronic inflammation[25]. Conversely, 
inflammation can lead to oxidative stress[26].

At present, there is strong evidence that the hyperglycemia-induced overproduction of superoxide by the extracellular 
matrix proteins and attenuated antioxidant defenses are recognized as major causes of the clinical complications as-
sociated with diabetes[2,27]. High blood glucose triggers lactate dehydrogenase (LDH) overexpression and enhances the 
rate of the anaerobic glycolytic pathway, reduces glucose oxidation, and decreases fatty acid β-oxidation[28,29]. Dysfunc-
tional metabolism causes mitochondrial dysfunction, which augments ROS generation. Moreover, long-chain free fatty 
acid accumulation can inactivate mitochondrial enzymatic activity and hinder electron transport, thus further increasing 
ROS production, and saturated free fatty acids can also induce chronic inflammation[30-32]. Other metabolic pathways 
are also involved in oxidative stress development, including the enhanced formation of advanced glycation end products, 
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Figure 1 Common complications of diabetes mellitus. Chronic hyperglycemia stimulates tissues and organs, which causes multiple problems and 
pathological changes including retinopathy, neuropathy, nephropathy, cardiovascular diseases, and chronic healing.

the hexosamine pathway, the polyol metabolism pathway, and the activation of protein kinase C, which are thought to be 
involved in the pathogenesis of DN[2,33,34]. Mitochondrial metabolic reprogramming is characterized by mitochondrial 
biosynthesis dysfunction, increased glycolysis, and abnormal lipid and amino acid metabolism, which significantly 
influences the pathophysiological progression of DN. Increased fatty acid oxidation in diabetes leads to an increase in the 
level of oxidized low-density lipoproteins, which activates the nuclear factor kappa B signaling pathway[35]. Once 
activated, it translocates to the nucleus and is bound to a specific section of DNA that triggers the expression of various 
proinflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor 
beta, and chemokines (Figure 2)[36].

Glucose levels and metabolite-generated ROS play major roles in the development of various diabetes-related complic-
ations. Therefore, antidiabetic therapies are aimed at decreasing blood glucose and oxidative stress[2,37]. Numerous 
studies have demonstrated the effectiveness of various antioxidants (Q10, α-lipoic acid, coenzymes, and glutathione are 
the principal intracellular antioxidant buffers against oxidative stress) in the treatment of diabetes mellitus[38,39].

MIZ TARGETS SGLT2 TO DECREASE GLUCOSE REABSORPTION IN THE KIDNEY
MIZ, a potent selective SGLT1 inhibitor, can decrease glucose reabsorption in the kidney. Lin et al[40] reported that 
“mizagliflozin ameliorates diabetes induced kidney injury by inflammation and oxidative stress”. High glucose increased 
the expression of SGLT1, LDH, TNF-α/β, and IL-1β and the levels of superoxide dismutase and malondialdehyde and 
decreased the levels of catalase and glutathione peroxidase. MIZ treatment decreased the protein expression of SGLT1, 
which decreased glucose reabsorption under high-glucose conditions. It would be better if these effects were supported 
with SGLT1 knockdown studies. Decreased cellular glucose can normalize glucose metabolism and thus reverse LDH 
expression and ROS generation[40]. If mitochondrial functions were measured, the authors could see the restoration of 
those functions. For oxidative stress, it is necessary to analyze the level of ROS, which are the major mediators of 
oxidative stress, via confocal microscopy or spectrophotometer via the use of mitochondrial ROS or 2’7’-dichlorofluor-
escein diacetate dye. The decreased ROS restored antioxidant defenses and deactivated the nuclear factor kappa B 
signaling pathway, which reduced TNF-α/β and IL-1β expression and apoptosis (should be analyzed in cells). Thus, MIZ 
effectively ameliorated kidney injury in patients with diabetes (Figure 2).

Compared with canagliflozin, MIZ resulted in greater improvement in LDH levels caused by high glucose. In addition 
to reducing serum glucose and kidney protection, most SGLT1 and SGLT2 inhibitors provide cardiovascular and liver 
protection[41]. However, SGLT2 has rarely been detected in human hearts, whereas SGLT1 is highly expressed in the 
myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of 
SGLT2 inhibitors may be due to SGLT1 inhibition[42].

CONCLUSION
High glucose-induced cellular metabolism triggers mitochondrial dysfunction, oxidative stress, and inflammation in 
diabetes. Thus, restoring glucose metabolism and mitochondrial function is important for diabetic therapy. Inhibiting 
glucose absorption and reabsorption through the suppression of SLGT1 plus antioxidants represents a potentially new 
therapeutic approach in the diabetic mellitus therapeutic process. Given the role of mitochondria in metabolism and ROS 
generation, future efforts should focus on validating mitochondrial protection mechanisms in DN.
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Figure 2 High glucose induces kidney cell injury and the protective effect of mizagliflozin. High glucose is absorbed into the cytosol and induces 
lactate dehydrogenase overexpression and thus shifts metabolism (glycolysis and fatty acid oxidation), which causes mitochondrial dysfunction. Dysfunctional 
mitochondria generate excessive reactive oxygen species, causing oxidative stress. Low-density lipoprotein oxidation leads to nuclear factor kappa B activation, 
which further triggers the expression of inflammatory factors. Oxidative stress and inflammation contribute to kidney cell injury. Mizagliflozin inhibits sodium-D-glucose 
cotransporter 1 and changes these processes, thus protecting cells. LDH: Lactate dehydrogenase; LDL: Low-density lipoproteins; NF-κB: Nuclear factor kappa B; 
ROS: reactive oxygen species; SGLT1: Sodium-D-glucose cotransporter 1.
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