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Abstract Structural equation modeling using partial least squares (PLS-SEM) has become

a main-stream modeling approach in various disciplines. Nevertheless, prior literature still

lacks a practical guidance on how to properly test for differences between parameter

estimates. Whereas existing techniques such as parametric and non-parametric approaches

in PLS multi-group analysis solely allow to assess differences between parameters that are

estimated for different subpopulations, the study at hand introduces a technique that allows

to also assess whether two parameter estimates that are derived from the same sample are

statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a

reduced version of the well-established technology acceptance model.
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1 Introduction

Structural equation modeling (SEM) has become a main-stream modeling approach in

various disciplines, such as marketing, information systems, and innovation management

(Hair et al. 2013; Henseler et al. 2014). Its ability to model complex relationships between

latent constructs, to configure associations between indicators and constructs, and to

account for various forms of measurement errors makes SEM a powerful statistical method

for a variety of research questions. Among various approaches to SEM, including variance-

and covariance-based estimators, the partial least squares path modeling (PLS) approach

(Wold 1982) has particularly gained increasing attention in the last decades (Hair et al.

2014). Representing a two-step approach, PLS firstly creates proxies for the latent con-

structs and subsequently estimates model parameters. Since PLS is based on separate OLS

regressions, no distributional assumptions are imposed on the data (’soft modeling

approach’) and complex models can be estimated using a relatively small number of

observations compared to the number of indicators and constructs (Henseler 2010).

Since any research method only leverages its strengths if it is properly applied in the

specific research context, scholars incessantly study the limitations of PLS (Sarstedt et al.

2014; Hair et al. 2013). In so doing, scholars steadily advance PLS to broaden its appli-

cability as well as reinforce its methodological foundations. The latest advancements to

PLS refer to (i) a bootstrap-based test for evaluating the overall model fit (Dijkstra and

Henseler 2015b), (ii) the heterotrait-monotrait ratio of common factor correlations as a new

criterion for discriminant validity (Henseler et al. 2015), and (iii) consistent partial least

squares (PLSc) as an extension of PLS, which allows for the consistent estimation of

common factor and composite models (Dijkstra and Henseler 2015a). The ability to model

latent constructs as both composites and common factors makes PLSc an outstanding and

appealing estimator for SEM. Thus, in its most modern appearance PLS can be understood

as a full-fledged SEM method1 which enables the hybridization of two complementary

paradigm of analysis—behavioral and design research. However, PLS is still continuously

enhanced. Particularly, PLS-users very often struggle with issues that are of greater

practical relevance and have not been sufficiently addressed yet. One of those issues is the

lack of appropriate guidance and techniques that are necessary for exploring and inter-

preting statistical differences between various parameter estimates (e.g., Doreen 2009 in

the SmartPLS internet forum). By exploring the existence of significant differences

between various parameter estimates, scholars become enabled to deepen the knowledge of

both the structural model (e.g., ranking different management instruments) as well as the

measurement model (e.g., identifying outstanding indicators). Commonly used practices,

such as ranking various indicators/constructs based on differences in the p-values of

weight/loading/path coefficient estimates or deriving conclusions solely based on effect

size differences, though are prone to misleading findings and misinterpretations (e.g., Kline

2004; Vandenberg 2009; Nieuwenhuis et al. 2011; Hubbard and Lindsay 2008; Schochet

2008; Gross 2015). Gelman and Stern (2006, p. 328), for instance, accentuate that ’large

changes in significance levels can correspond to small, not significant changes in the

underlying quantities’. Hence, drawing conclusion about parameter differences solely

based on differing p-values has to be regarded with caution, since the difference between

significant and non-significant does not necessarily have to be significant (Gelman and

Stern 2006).

1 For more detailed information on the state of the art of PLS please refer to Henseler et al. (2016).
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A comparison of two estimated effects rather requires a statistical test that is based on

the difference between two parameter estimates rather than two separate tests for each

parameter estimate. Since the mere presence of differences in p-values does not allow to

make any inferences about the nature of these differences, more sophisticated steps need to

be taken to fully exploit the information inherent in the SEM. Otherwise, important

parameter differences might remain undetected (Gelman and Stern 2006). Figure 1 pro-

vides an overview of common misconceptions by exemplary comparing three variables

(g1, g2, and g3) and their related estimated coefficients (b̂1, b̂2, and b̂3, where b̂1 [ b̂2).
To eliminate these sources of misinterpretation and support PLS-users in fully lever-

aging information inherent in the underlying dataset, the study at hand introduces a

practical guideline on how to statistically assess a parameter difference in SEM using PLS.

For assessing the statistical significance of a difference between two parameter estimates,

we use several bootstrap techniques which are commonly applied to test single parameter

estimates in PLS. To be more precise, we construct confidence intervals for the difference

between two parameter estimates belonging to the same sample. The procedure is com-

piled in an user-friendly guideline for commonly used PLS software packages such as

SmartPLS (Ringle et al. 2015) or ADANCO (Henseler and Dijkstra 2015). By introducing

this advancement, we not only fill an important gap within existing PLS literature

(McIntosh et al. 2014), but also draw attention to the commonly made mistake of relying

on individual p-values when prioritizing effects (Gelman and Stern 2006).

2 Field of application

While most studies solely consider the estimated net effect of various predicting variables

on the outcome of interest, they usually do not test whether two parameter estimates are

statistically different. This prevents researchers from fully exploiting the information

captured in the estimated model. Evaluating the statistical difference between two

parameter estimates might be particularly valuable when model estimates are proposed to

guide decision makers in handling budget constraints (e.g., selection of marketing strate-

gies, success factors or investment in alternative instruments of innovation, process, and

product, etc.). In situations in which two management instruments coexist with both having

impact on the outcome of interest, a ranking of priority based on their explanatory power

supports managers in selecting the most relevant. In the following, we present some

empirical examples illustrating the practical relevance of assessing whether the difference

between two parameter estimates belonging to the same model (i.e., comparisons within a

single sample) is statistically significant.2

Figure 2a and 2b display two excerpts of the well-known corporate reputation model

(CRM) by Eberl and Schwaiger (2005) and the technological acceptance model (TAM) by

Davis (1989).

Testing parameter differences might be applied to test which of the two predictors has a

greater influence on the endogenous construct. To be more precise, researchers might be

potentially interested in exploring whether ’Company’s Competence’ or ’Company’s

Likeability’ has a higher impact on ’Customer Satisfaction’ in the context of the CRM, or,

with regard to the TAM, they might be interested in statistically testing whether ’Perceived

2 For an overview of techniques for assessing statistical significance of differences between parameter
estimatess in a multi-group setting, i.e., comparing the estimated coefficients across different sub-models,
please refer to Sarstedt et al. (2011) or Henseler (2012).
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Usefulness’ is more relevant than ’Perceived Ease of Use’ in explaining ’Intention to Use’.

In general, drawing conclusions solely based on the individual p-values of the estimated

coefficients is not recommended (Gelman and Stern 2006) as p-values provide no infor-

mation about the substantiality of a variable or the magnitude of an effect. Hence, claims

such as ’Perceived Usefulness’ is more relevant than ’Perceived Ease of Use’ might be

misleading (see the TAM in Fig. 2b).

In addition to the previously described examples, Fig. 3 illustrates a less common

though highly interesting and important scenario: the two estimated parameters of both

antecedents are approximately equal in magnitude but differ with regard to their signs

(jb̂1j � jb̂2j) (Eggert et al. 2012). To eventually assess the total impact of the two ante-

cedents on the outcome of interest (here: ’Channel Switching’) researchers might need to

test whether the difference of the absolute estimated effect between both antecedents (here:

’Distributor Loyalty’ and ’Brand Loyalty’) differs significantly from zero (H0: jb1j ¼ jb2j).

3 Methodological framework for testing differences between parameters

Typically in PLS, a bootstrapped based confidence interval (CI) is constructed to draw a

conclusion about the population parameter. In general, a CI is designed to cover the

Company’s
Competence

Company’s
Likeability

Costumer
Satisfaction

+

+

(a) Corporate reputation model

Perceived
Usefulness

Perceived
Ease of Use

Intention
to Use

+

n.s.

(b) Technological acceptance model

Fig. 2 Practical examples for testing parameter differences

Distributor
Loyalty

Brand
Loyalty

Channel
Switching

β1

β2

Fig. 3 Example from Eggert
et al. (2012)
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population parameter with a confidence level 1� a. We suggest the same approach for

testing a parameter difference of the following form: hk � hl ¼ 0, see Sect. 4.3

In the following, we summarize the commonly used bootstrap procedures to construct

CIs (Davison and Hinkley 1997) for a single parameter h and show how these approaches

can be used to assess parameter differences.4

3.1 The standard/Student’s t confidence interval

For the standard/Student’s t CI it is assumed that ðĥ� hÞ= d

VarðĥÞ
1
2

is approximately

standard normally or t-distributed, respectively. Since in empirical work this rarely holds,

the central limit theorem is often used to justify the distribution of the standardized

parameter estimates. The standard/Student’s t CI for a certain level of significance a is

constructed as follows

ĥ� F�1 1� a
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

Varðĥ�Þ
q

; ĥ� F�1 a
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

Varðĥ�Þ
q� �

; ð1Þ

where ĥ is the parameter estimate of the original sample and F�1 is the quantile function of

the standard normal or the t-distribution with n� k degrees of freedom, where n denotes

the number of observations and k the number of estimated parameters. Since PLS does not

provide an analytical closed-form of the variance, the bootstrapped-based estimator

d

Varðĥ�Þ for the variance is used. This approach is problematic when the distribution of the

parameter estimates is not normal. This is especially true for small sample sizes. Moreover,

the standard/Student’s t CI does not adjust for skewness in the underlying population

(Efron and Tibshirani 1994).

3.2 The percentile bootstrap confidence interval

In contrast to the standard bootstrap CI, the percentile bootstrap CI is not based on dis-

tributional assumptions. The boundaries are directly calculated from the bootstrap sample

distribution of the estimated parameter

F̂�1
h�

a
2

� �

; F̂�1
h� 1� a

2

� �h i

; ð2Þ

where F̂�1
h� is the empirical quantile function of the bootstrap sample distribution of ĥ. This

approach only works well if a transformation, even unknown, exists which makes the

bootstrap distribution symmetric around zero (Wehrens et al. 2000). In case of no such

transformation, the percentile method has to be be adjusted.5 However, the percentile

method is really appealing due to its simplicity (Sarstedt et al. 2011).

3 Using some slight modifications, hypotheses of the form hk � hl � a can be also tested, where a is a
constant.
4 We refer to Davison and Hinkley (1997) for further bootstrap procedures which overcome some limi-
tations of the approaches presented here.
5 A well-known approach to achieve the adjustment is the bias corrected (BC) estimator (Efron and
Tibshirani 1994) that is not discussed in this paper.
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3.3 The basic bootstrap confidence interval

The basic bootstrap CI assumes that the distribution of ĥ� h can be approximated by

ĥ� � ĥ and therefore the quantiles of ĥ� h are estimated by the empirical quantiles of

ĥ� � ĥ (Wehrens et al. 2000). The basic bootstrap CI is constructed as follows

2ĥ� F̂�1
h� 1� a

2

� �

; 2ĥ� F̂�1
h�

a
2

� �h i

; ð3Þ

where ĥ represents the parameter estimate from the original sample, and F̂�1
h� ð1� a

2
Þ and

F̂�1
h� ða2Þ are the 1� a

2
and a

2
quantiles of the empirical bootstrap sample distribution of ĥ.

4 Guideline on testing parameter differences in partial least squares path
modeling

Following Gelman and Stern (2006), we recommend to consider the statistical significance

of the difference between two parameter estimates rather than the difference between their

individual p-values when comparing two treatments. Thus, we provide a user guideline on

testing a parameter difference in PLS as well as PLSc, see Table 1.

Firstly, the parameters of interest need to be obtained by PLS or PLSc respectively (Step

1). For this purpose, every common PLS software such as SmartPLS or ADANCO can be

used. Secondly, the difference between the parameter estimates of interest is calculated

(Step 2). Thirdly, the bootstrap estimates of the parameters need to be obtained (Step 3)

and extracted to a spreadsheet in order to manually calculate the parameter difference for

every bootstrap sample. Depending on the CI used (see Table 2), Step 4 comprises the

estimation of the variance of the estimated parameter difference (e.g., VAR.S() in MS

Excel). If the percentile bootstrap CI or the basic bootstrap CI is used Step 5 needs to be

conducted comprising the determination of the empirical quantiles of the bootstrapped

parameter difference (e.g., PERCENTILE.INC() in MS Excel).

Based on the CIs constructed the null hypothesis is rejected or not rejected. If the zero is

covered by the CI, it cannot be assumed that a statistical difference between the two

estimated parameters considered exists, regarding the type I error. For an illustration of the

described procedure, see Fig. 4.

Table 1 Guideline for testing parameter differences based on different CI

Step 1 Use PLS or PLSca to obtain the model parameter estimates: ðĥk; ĥlÞ:
Step 2 Calculate the difference of the parameter estimates: Dĥ ¼ ĥk � ĥl:

Step 3 Create B bootstrap samples of the original data set and calculate the parameter estimates ĥ�ki and ĥ
�
li,

and their difference Dĥ�i ¼ ĥ�ki � ĥ�li for every bootstrap sample, with i ¼ 1; :::;N:

Step 4 Estimate the variance of the estimated parameter difference as

d

VarðDĥ�Þ ¼ ðB� 1Þ�1 P
B

i¼1

ðDĥ�i � Dĥ
�Þ2; with Dĥ

� ¼ B�1
P
B

i¼1

Dĥ
�
i : (4)

Step 5 Estimate the a
2
and 1� a

2
sample quantile of Dĥ� given by F̂�1

Dh� ða2Þ and F̂�1
Dh� ð1� a

2
Þ:

a PLSc should be used if constructs are modeled as common factors in the model
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5 Empirical example

To illustrate our proposed procedure, we refer to the TAM developed originally by Davis

(1989); Davis et al. (1992), suggesting ’Perceived Usefulness’ and ’Perceived Ease of Use’

as potential predictors of IT adoption intention. More precisely, we demonstrate our

procedure by referring to Chin et al. (2003), who followed Davis (1989) theoretical

framework when investigating the intention to regularly use electronic mail within an

organization. The data set consists of 12 indicators and 250 respondents from a single

organization, which had recently installed an electronic mail system.6 The respondents

work at different organization levels including managers, engineers, technicians, and

clerical workers. The dependent construct ’Intention to regularly use electronic mail’ (INT)

is explained by both ’Perceived Usefulness’ (USE) and ’Enjoyment’ (ENJ). The structural

model is depicted by the following equation (see also Fig. 5):

INT ¼ b1 � USEþ b2 � ENJþ f ð5Þ

Table 2 Necessary steps for the construction of the different CIs:

- Steps 1 and 2 are needed for all approaches except for the percentile bootstrap CI.

- To apply the standard/Student’s t CI (Eq. 1), additionally Step 3 and 4 are necessary.

- In contrast, the construction of the percentile bootstrap CI (Eq. 2) and the basic bootstrap CI (Eq. 3) of
the parameter difference. Requires the Steps 3 and 5

θ̂∗
k1

...

θ̂∗
ki

...

θ̂∗
kB

-

θ̂∗
l1

...

θ̂∗
li

...

θ̂∗
lB

=

Δθ̂∗
1

...

Δθ̂∗
i

...

Δθ̂∗
B

→

Variance:

Var(Δθ̂∗)
Quantiles:

F̂ −1
Δθ∗ (

α

2
)

F̂ −1
Δθ∗ (1 − α

2
)

θ̂k

↓
- θ̂l

↓
= Δθ̂

↓
Δθ̂∗

Fig. 4 Construction of the CIs

6 For a detailed description of the indicators, please refer to Chin et al. (2003).
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Following Chin et al. (2003), all constructs are modeled as common factors. While USE is

measured by six indicators, both ENJ and INT are measured by three indicators each. All

indicators are on a seven-point Likert scale.

Using our proposed procedure for statistically testing the difference between two

parameter estimates, we seek to answer whether USE (extrinsic motivation) has a statis-

tically different impact on INT than ENJ (intrinsic motivation) (H0: b1 ¼ b2). Since this

model was originally estimated by traditional PLS but represents a common factor model,

we used both approaches PLS and PLSc (Dijkstra and Henseler 2015a) for model esti-

mation.7 The analysis eventually leads to the following estimated path coefficients: b̂1 ¼
0:517 and b̂2 ¼ 0:269 for the model estimation with PLS and b̂1 ¼ 0:507 and b̂2 ¼ 0:313
for the model estimation with PLSc.

The 95 % CIs derived from the bootstrap procedure with 5000 draws (see Sect. 3) are

displayed in Tables 3 and 4. Since they do not contain the zero with regard to the esti-

mation using PLS, we infer that both path coefficient estimates (b̂1 and b̂2) are significantly
different. With regard to the estimation with PLSc, all CIs cover the zero. We, therefore,

conclude that the difference between the two path coefficient estimates (b̂1 and b̂2) is not
statistically significant.8 Hence, if the underlying measurement models are conceptualized

as composites (i.e., model estimation using PLS), the null hypothesis of no parameter

difference (H0: b1 ¼ b2) has to be rejected. If the measurement models, on the other hand,

are conceptualized as common factors (i.e., model estimation with PLSc), there is not

enough evidence against the null hypothesis.

6 Discussion

The purpose of this paper is to provide a practical guideline as well as the technical

background for assessing the statistical difference between two parameter estimates in

SEM using PLS. This guideline is intended to be used to test a parameter difference based

on the parameter estimates and the bootstrap distribution. The input required for the

proposed methodological procedure directly builds on the output of the most popular

variance-based SEM statistical software packages such as ADANCO or SmartPLS. The

methodological procedure serves as functional toolbox that can be considered as a natural

Perceived
Use

Enjoyment

Intention to
regularly use
electronic

mail

β1

β2

Fig. 5 Structural model of the
reduced TAM

7 As outer weighting scheme we used mode A and the factorial scheme was used as inner weighting
scheme.
8 As PLSc path coefficient estimates are known to have a larger standard deviation compared to PLS
estimates (Dijkstra and Henseler 2015a), it is not surprising that PLSc produced larger CIs than PLS.
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extension of PLS. As it is common practice in PLS to use bootstrap approaches to draw

conclusions about single parameters, we use these approaches and the resulting CIs to draw

conclusions about a parameter difference. As the study at hand shows, the same procedure

can also be employed for PLSc to assess a parameter difference in models where constructs

are modeled as common factors instead of composites.

Using the well-established TAM we eventually demonstrated the application of our

proposed assessment technique. In accordance with Chin et al. (2003), we made use of PLS

to test for a statistical difference between the estimated influence of ’Perceived Usefulness’

(extrinsic motivation) and ’Enjoyment’ (intrinsic motivation) on ’Intention to regularly use

electronic mail’. Since no CI covered the zero, we conclude that a statistical difference

between the parameter estimates exists. We also performed our proposed procedure using

PLSc, since prior literature has shown that traditional PLS tend to overestimate factor

loadings and underestimate path coefficients when referring to common factor models

(Schneeweiss 1993). Contrasting the estimation with PLS, we cannot infer that the esti-

mated influence of ’Perceived Usefulness’ and ’Enjoyment’ on ’Intention to regularly use

electronic mail’ is statistically different. Considering the concrete example used in this

study, our proposed technique has proven to be useful, i.e., when estimating the SEM using

traditional PLS, we were able to show that the estimated effects of the two antecedents

explaining the outcome of interest are significantly different.

Contrasting established methods for assessing whether various parameter estimates are

statistically different [e.g., parametric and non-parametric approaches in PLS multi-group

analysis (PLS-MGA) (Sarstedt et al. 2011)], the procedure introduced in this study enables

PLS-users to test whether two parameter estimates from one sample (b̂
1

k and b̂
1

l ) are

statistically different. Approaches used in PLS-MGA, for instance, are not suitable in this

framework, since the underlying assessment approach is based on the hypothesis that a

parameter bk differs for two subpopulations (b̂
1

k and b̂
2

k) which can be tested, for instance,

by using an unpaired t-test in the PLS-MGA framework (e.g., Keil et al. 2000). In the PLS-

MGA framework, the proposed research model is estimated for different subsamples,

followed by a comparison of the coefficient estimates across the various models. Taken

together, while techniques used in PLS-MGA represent proper approaches for statistically

Table 3 Results of PLS
Type of CI (a=5 %) Lower bound Upper bound

Standard 0.046 0.450

Percentile 0.044 0.496

Basic 0.001 0.452

Table 4 Results of PLSc
Type of CI (a=5 %) Lower bound Upper bound

Standard -0.099 0.488

Percentile -0.048 0.508

Basic -0.120 0.437

66 M. Rodrı́guez-Entrena et al.

123



assessing the difference between the same parameter estimate but for different subsamples

(H0: b
i
k ¼ bjk, where i and j refer to the different subpopulations and k to the parameter

tested), the procedure proposed in the study at hand represents the first choice when

assessing the difference between two parameter estimates derived from the same sample

(H0: b
i
k ¼ bil, where i refers to the population, and k and l to the parameters tested).

Although the present study only considered path coefficient estimates while testing for

differences, the proposed approach might also be performed with regard to other parameter

estimates, such as weights, factor-loadings, or cross-loadings. Thus, testing for statistically

significant differences between factor-loading and cross-loading estimates, for instance,

might be a promising approach for evaluating discriminant validity (e.g., Hair et al. 2011;

Henseler et al. 2009). Analysing whether estimated weights are significantly different

might further be useful for identifying key indicators of composites. Furthermore, while

the study at hand focused on explanative analysis—which still tends to be the main-stream

in business research, the identification of statistical differences among parameter estimates

might also become a standard procedure for predictive-analysis, which is becoming more

and more pronounced in business and social science researcher (Carrión et al. 2016).

7 Limitations and future research

Though we were able to introduce a diagnostic procedure for statistically assessing the

differences between two parameter estimates, the study at hand is not without limitations.

Firstly, we only considered the difference between one pair of parameter estimates. We,

thus, recommend future research to develop procedures for testing more than two

parameter estimates, following two potential approaches: (i) performing several single tests

and adjust the assumed level of significance (e.g., using the Bonferroni correction) (Rice

1989), or (ii) performing a joint test, similar to a F-test in regression analysis.

Secondly, the procedure proposed in this study solely makes use of basic bootstrap

approaches when calculating the required CIs. Therefore, scholars might also consider

more sophisticated techniques, such as studentized, bias-corrected, tilted, balanced, ABC,

antithetic, or m-out-of-n bootstrap techniques.

Thirdly, more general, scholars might in more detail investigate the performance and

limitations of the various bootstrap procedures when using PLS and PLSc, in particular for

small sample sizes, i.e., by a simulation study.
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Systems Under Indirect Observations, Part II, pp. 1–54. North-Holland, Amsterdam (1982)

Assessing statistical differences between parameters... 69

123


	Assessing statistical differences between parameters estimates in Partial Least Squares path modeling
	Abstract
	Introduction
	Field of application
	Methodological framework for testing differences between parameters
	The standard/Student’s t confidence interval
	The percentile bootstrap confidence interval
	The basic bootstrap confidence interval

	Guideline on testing parameter differences in partial least squares path modeling
	Empirical example
	Discussion
	Limitations and future research
	Acknowledgments
	References




