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COVID‑rate: an automated 
framework for segmentation 
of COVID‑19 lesions from chest CT 
images
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Novel Coronavirus disease (COVID-19) is a highly contagious respiratory infection that has had 
devastating effects on the world. Recently, new COVID-19 variants are emerging making the situation 
more challenging and threatening. Evaluation and quantification of COVID-19 lung abnormalities 
based on chest Computed Tomography (CT) images can help determining the disease stage, efficiently 
allocating limited healthcare resources, and making informed treatment decisions. During pandemic 
era, however, visual assessment and quantification of COVID-19 lung lesions by expert radiologists 
become expensive and prone to error, which raises an urgent quest to develop practical autonomous 
solutions. In this context, first, the paper introduces an open-access COVID-19 CT segmentation 
dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist. 
Second, a Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate , 
that autonomously segments lung abnormalities associated with COVID-19 from chest CT images. 
Performance of the proposed COVID-Rate framework is evaluated through several experiments based 
on the introduced and external datasets. Third, an unsupervised enhancement approach is introduced 
that can reduce the gap between the training set and test set and improve the model generalization. 
The enhanced results show a dice score of 0.8069 and specificity and sensitivity of 0.9969 and 0.8354, 
respectively. Furthermore, the results indicate that the COVID-Rate model can efficiently segment 
COVID-19 lesions in both 2D CT images and whole lung volumes. Results on the external dataset 
illustrate generalization capabilities of the COVID-Rate model to CT images obtained from a different 
scanner.

Coronavirus disease 2019 (COVID-19) has been the world’s most threatening challenge of the twenty first 
century. According to the Coronavirus Resource Center of John Hopkins University (JHU)1, over 179 million 
confirmed cases of COVID-19, including over 3.8 million deaths, have been reported in 192 countries/regions 
by 24 June 2021. Numerous studies indicate that COVID-19 vaccination can effectively reduce disease trans-
mission, hospital admissions, and deaths. However, due to new emerging COVID-19 variants2–4 the number of 
COVID-19 daily cases is still increasing in many areas. It is, therefore, crucial for healthcare professionals and 
authorities across the globe to find practical solutions to manage the COVID-19 pandemic and learn from this 
experience to be well prepared for potential future ones.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold-standard test for the diagnosis of 
COVID-19. However, the RT-PCR test suffers from high false-negative rates and delayed results. Medical imag-
ing, particularly Computed Tomography (CT) scans, has been recommended by the World Health Organization 
(WHO) as a complementary source of data for diagnosis and severity assessment of COVID-19. Countries with 
high rates of COVID-19 cases use chest CT images as the primary screening/monitoring technique. Several 
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studies, therefore, have investigated COVID-19 manifestations on chest medical images. The most commonly 
observed chest imaging patterns in COVID-19 patients, as shown in Fig. 1, are Ground-Glass Opacity (GGO) 
and consolidation5–7. GGO refers to a slight increase in lung attenuation such that the underlying vessels are 
still observable8. The consolidation, on the other hand, is considered as a rise in lung intensity such that the 
underlying vessels are obscured8. The appearance of different types of imaging patterns and their location and 
distribution can be considered as specific signs of COVID-19 and provide helpful information for identifying 
the stage and severity of the disease9–12.

Evaluation and quantification of lung involvement in COVID-19 patients based on their chest images can 
help determine the disease stage, have an optimal allocation of the limited health resources, and make informed 
treatment decisions. Compared to other imaging modalities, CT imaging provides more accurate representa-
tions of COVID-19 lesions, making it the most informative imaging modality for the prognosis of COVID-19 
pneumonia. Radiologists measure the COVID-19 lesions from the chest CT images and quantify the disease’s 
severity using different severity measures such as the Percentage of Opacity (PO) and CT severity score. The 
PO indicates the extent of involvement of the whole lung volume14, while the CT severity score is determined 
based on the spread of the COVID-19 lesions in each lobe15. During the pandemic era, when the number of 
patients is exponentially increasing, visual assessment and quantification of lung lesions by expert radiologists 
become expensive, laborious, and prone to error. Automatic segmentation of infectious regions can, therefore, 
help quantify the extent of lung involvement in patients confirmed with COVID-19, compute different severity 
scores, and speed up the treatment procedure.

Contributions: Motivated by the urgent quest to develop accurate and reliable automated models for prog-
nostic assessment of COVID-19 pneumonia, we introduce an open-access COVID-19 segmentation dataset along 
with a Deep Learning (DL)-based framework for the segmentation of COVID-19 lung abnormalities from chest 
CT images. In summary, the main contributions of this study are as follows:

•	 We propose the COVID-Rate framework, which is a DL-based model for segmenting COVID-19 lesions, 
including GGOs and consolidations. In the COVID-Rate architecture, we incorporate multi-size kernels 
(ranging from 7 to 1) and dilated residual blocks in the encoding path to provide variable receptive fields for 
feature extraction. In addition, we implement a Squeeze-and-Excitation (SE) module to recalibrate channel-
wise feature maps and improve model generalization. A convolution layer with a stride of two replaces the 
max-pooling layer to mitigate information loss during the down-sampling stage. Furthermore, we incorporate 
a context perception boosting module in the encoding path to learn multi-scale representations of COVID-19 
manifestations using four parallel paths of dilated convolutions and a linear projection of the input feature 
maps. Implementing an un-symmetric network architecture leads to a greater emphasis on the mask recon-
struction process. Adopting a hybrid loss function facilitates image-level and patch-level supervision during 
the training phase.

•	 We produced a high-quality COVID-19 segmentation dataset containing 433 annotated chest CT images 
from 82 COVID-19 patients, annotated by a thoracic radiologist with 20 years of experience.

•	 We introduce an unsupervised enhancement approach that can mitigate the gap between the training set 
and test set and improve model generalization on CT images obtained by a different scanner, addressing a 
critical challenge in applying AI in medical imaging.

•	 A novel synthetic data generation (augmentation) pipeline is proposed that generates synthetic pairs of CT 
images and infection masks by inserting the infectious regions from COVID-19 CT images into healthy 
CT images. The proposed method improves the model performance by introducing more variability to the 
training set.

Based on a set of comprehensive experiments, we have evaluated performance of the proposed COVID-Rate 
model in segmenting COVID-19 lesions from 2D CT images and whole lung volumes. The above-mentioned 
contributions of the COVID-Rate framework collectively have resulted in the state-of-the-art dice score of 0.8069 

Figure 1.   The most commonly observed CT patterns in COVID-19 pneumonia: (a) GGO pattern, and; (b) 
Consolidation pattern. Infection regions have been identified with red borders13.
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and specificity and sensitivity of 0.9969 and 0.8354, respectively. Additionally, experiments performed on the 
entire lung volumes indicate promising results, demonstrating that despite being trained only on infected CT 
images, the model can assist in patient-level lesion segmentation.

Methods
In this section, we introduce the pixel-level labeled COVID-19 CT dataset along with the COVID-Rate segmen-
tation framework that takes thick-slice chest CT images of confirmed COVID-19 patients and automatically 
segments regions of COVID-19 infection. Figure 2 illustrates the overall pipeline of the COVID-Rate framework, 
which consists of lung extraction and pre-processing stage, development and training stage, an unsupervised 
enhancement method, and a set of comprehensive experiments for model evaluation. Additionally, a novel syn-
thetic data generation (augmentation) pipeline is introduced to tackle the issue of limited access to annotated 
training data.

COVID-CT-Rate : pixel‑level labeled COVID‑19 CT dataset.  As stated previously, DL-based segmen-
tation networks need a large number of annotated CT images for efficient training. Most of the private anno-
tated datasets, which are the basis of the existing COVID-19 lesion segmentation models, are not publicly avail-
able. Open-source pixel-level annotated datasets can promote developing DL networks for COVID-19 lesions 
segmentation. Furthermore, evaluation of segmentation models on public datasets makes it feasible to fairly 
compare different segmentation models. To address the aforementioned issues, via this manuscript, we intro-
duce a pixel-level annotated CT dataset, referred to as the COVID-CT-Rate . The CT images used to generate 
the COVID-19 segmentation dataset are a subset of our previous COVID-19 diagnosis CT dataset16, which is 
accessible through Figshare16. A SIEMENS, SOMATOM Scope scanner has been used to obtain all axial CT 
images in COVID-CT-Rate . All CT images are reconstructed by the Filtered Back Projection method using the 
reconstruction matrix size of 512× 512 and D40s kernel, which modifies the data frequency contents and miti-
gates the noise. All CT images are obtained without contrast enhancement and saved in the Digital Imaging and 
Communications in Medicine (DICOM) format and the Hounsfield Unit16.

In the annotation process, a standard U-Net model is firstly trained on an open-access COVID-19 segmenta-
tion dataset17. The trained model then takes the CT images as unseen test sets and predicts the infection masks. 
Next, a thoracic radiologist with 20 years of experience in lung imaging, carefully modified and verified the 
generated infection masks. Overall, we annotated 433 CT images from 82 COVID-19 patients. The patients’ 
average age is 51± 3.59 years (mean ± std). Figure 3 represents the age and gender distribution of the COVID-
19 patients in the COVID-CT-Rate . As illustrated in Fig. 3, the COVID-CT-Rate is gender-imbalanced, i.e., the 
proportion of males in this dataset is more significant than females. However, it is worth mentioning that the 
same pattern applies to several datasets pertaining to COVID-1918, probably because men are more vulnerable 
to the disease than women19. Besides, clinical findings indicate no association between CT scores and patients’ 
gender in COVID-19 pneumonia15.

COVID-19 CT findings demonstrate that most COVID-19 patients have “bilateral” lung involvement, mean-
ing that the disease affects both the right and left lungs. The COVID-CT-Rate dataset illustrates a similar behavior, 

Figure 2.   The overall pipeline of the proposed COVID-Rate framework. GT and CI denote Ground Truth and 
Certainty Index, respectively.
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i.e., 42% of CT images display bilateral lung involvement, 34% include lesions in the right lung, and the remain-
ing 24% involve the left lung. The CT images are from diffident parts of the lung (top, middle, and bottom) with 
different infection rates. The distribution of lung area to the whole image area in COVID-CT-Rate is shown in 
Fig. 4. More specifically, we selected 73% of the CT images from the middle part of the lung and the remaining 
27% from the top and bottom sections to cover different appearances of the lung region in a CT image. Figure 5 
illustrates the distribution of infection rate in CT images with bilateral, left, and right lung involvements. The 
infection rate in CT images with left/right lung involvement is obtained by dividing the infection region area by 
the left/right lung region. In CT images with bilateral lung involvement, the infection rate is calculated by divid-
ing the area of total infection region by the whole lung area in that CT image. These considerations support the 
AI model to achieve better performance when predicting the infection regions on a whole lung volume. GGOs 

Figure 3.   Age and gender distribution of the COVID-CT-Rate dataset.

Figure 4.   The distribution of the lung area to the image area in COVID-CT-Rate dataset.

Figure 5.   The distribution of slice-level infection rate in COVID-CT-Rate images with bilateral, left, and right 
lung involvement.
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and consolidations, as the most prevalent manifestations of COVID-19, have been annotated in our dataset. 
Examples of CT images with their ground truth masks are shown in Fig. 6.

COVID‑19 lesion segmentation network.  The architecture of the proposed COVID-Rate framework 
(as shown in Fig. 7) is an encoder-decoder-based network containing an encoding path, transition layers, a con-
text perception boosting module, and a decoding path. These four underlying components are described below:

Encoding Path extracts informative features from chest images. The Encoding Path is initiated with a 7× 7 
convolution layer with 32 filters, followed by a Batch Normalization (BN) layer and ReLU activation function. 
Four encoding blocks with 32, 64, 128 and 256 filters, with the architecture represented in Fig. 7(a), are then 
applied sequentially. The encoding block has two units, each consisting of two successive 3× 3 convolution lay-
ers with dilation rates equal to 1 and 2, followed by the BN layer and ReLU function. The first convolution layer 
of the first unit in the encoding block uses a stride of 2 for down-sampling. The max-pooling layer is replaced 
with a convolution layer with a stride of two to mitigate information loss during down-sampling. The output 
of each unit is fed into a Squeeze-and-Excitation (SE) module22 to recalibrate channel-wise feature maps and 
improve model generalization. The input feature maps of each unit are then added to the output feature maps of 
SE module using element-wise addition operation. Transmitting the feature maps to the deeper levels (residual 
linking) facilitates the convergence of the network and alleviates the gradient vanishing issue20.

Context Perception Boosting (CPB) Module: As mentioned previously, a critical challenge in segmenting 
COVID-19 lung abnormalities is various sizes and scattered distribution of the regions of infection. Since a 
Convolutional Neural Networks (CNN)-based encoder extracts the information from a local area of the global 
image by applying the convolution kernel, it may fail to learn the long-range dependencies of the global image. 

Figure 6.   Examples of CT images with various infection rates and different positions in lung volume. First row: 
CT images. Second row: Ground truth masks.

Figure 7.   Architecture of the proposed COVID-Rate segmentation framework.
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To address this problem and inspired by21, we adopt a context perception boosting module in the last encoding 
block of the COVID-Rate network. This module, as demonstrated in Fig. 8, contains a 1× 1 convolution layer 
for linear projection of the input feature maps and four parallel 3× 3 convolution layers with different dilation 
rates. L2 regularization is applied after each convolution operation to penalize weight matrices and mitigate 
over-fitting. The outputs of different convolution layers are then integrated using element-wise addition. The 
dilation rates for parallel convolutions are set to 1, 2, 4 and 8. The context perception boosting module increases 
the receptive field of the extracted feature maps by incorporating multi-scale kernels, helping the network detect 
COVID-19 abnormalities of various sizes.

Transition layer: A critical feature of the U-Net, that has also been leveraged in many other segmentation 
networks, is using skip connections to transfer encoding feature maps with higher spatial information to the 
decoding blocks. Here, we apply a transition layer, a 1× 1 convolution layer followed by ReLU activation, on 
extracted features from the encoding path before concatenating them with the decoding feature maps. This 
transition layer enriches the spatial context information of encoding features, particularly those from primary 
encoding blocks, elevating their contribution to the mask reconstruction.

Decoding Path takes the extracted features of the context perception boosting module as input, aiming to 
restore the spatial representation and generate masks indicating the regions of infection. For reconstructing pre-
cise infection masks, four decoding blocks are adopted within the decoder path of the COVID-Rate segmentation 
network. Each decoding block, presented in Fig. 7(b), starts with an up-sampling layer to expand the feature 
maps’ size to the size of encoding feature maps. The up-sampling layer’s outputs are fed to a 3× 3 convolution 
layer followed by a BN layer, and a ReLU activation function and then concatenated to the extracted features 
from the transition layer. A 3× 3 convolution layer followed by a BN layer, and a ReLU layer is then applied to 
the skip connection’s output to learn the spatial representation of the contextual information. The numbers of 
filters for decoding blocks are 512, 256, 128 and 64. The first decoding block of the COVID-Rate network has the 
maximum number of filters. Indeed, the number of feature channels in each decoding block is higher than its 
corresponding encoding block, leading to a greater emphasis on the mask reconstruction process. Each encoding 
block’s output is fed into a SE module22 to calibrate channel-wise features. The output of the last decoding block 
has the same spatial dimension as the original CT images. A 1× 1 convolution layer with one feature channel 
is applied on the last decoding block’s output. The sigmoid activation function predicts the probability of each 
pixel belonging to the infection class.

Unsupervised enhancement.  Different types of scanners and image acquisition settings produce CT 
images with heterogeneous characteristics, resulting in poor performance of a trained deep learning-based 
model on unseen CT images. To address this critical challenge, we propose an unsupervised enhancement 
method for segmentation networks, illustrated in Fig. 2, to reduce the shift between the training set and different 
test sets and elevate the model’s generalization on various test sets. In other words, our method automatically 
extracts and annotates a portion of a test set using a probabilistic selection metric. The selected data points and 
their associated predicted masks are then leveraged to re-train and enhance the initially trained model. For this 
purpose, we extract a subset of the test set for which the model predicts the most confident masks. Assuming 
that we are blind to the lesion masks of the test set, we introduce a Certainty Index (CI) to measure the model’s 
confidence on test images’ predicted masks, which is defined as follows

(1)CI(Ŷ) =

∑N
i=1 Pi

N
for Pi > Cut − off threshold,

Figure 8.   Architecture of the proposed context perception boosting module.
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where Ŷ  represents the predicted masks on a test CT image, Pi is the predicted probability of pixel i, and N denotes 
the number of pixels for which Pi is more significant than a cut-off threshold. In a binary predicted mask, the 
pixels with Pi less than the cut-off threshold are considered as the background class, and the rest are assigned 
to the foreground class. Indeed, the CI determines the average of Pi over pixels belonging to the lesion regions, 
measuring the model confidence in segmenting lesion regions in the minority class. Next, we sort the predicted 
masks by the value of the CI and select the top 25%, if their measure CI is not less than 90%, as the most certain 
predictions. It should be noted that the values of 25% and 90% have been determined based on the test sets’ sizes 
and measured CIs in our experiments. Next, we utilize the subset of the most-confident CT images with their 
predicted lesion masks to retrain our initial trained model. In the first experiment, we examined the proposed 
method upon a set of CT images obtained from the same scanner as the COVID-CT-Rate dataset for which we 
did not have the ground truth masks and re-evaluated the performance of the retrained model on our test set. 
In another experiment, we first evaluated our trained model on a public dataset independent of our training set. 
Then, we applied the proposed unsupervised enhancement method to select the most certain predictions and 
retrain the model. The performance of the retrained model was evaluated on the same public dataset contain-
ing both infected and non-infected CT images. In both cases, the model yielded improved results. However, 
the results on the public dataset showed more improvement. The reason is that, on the first test, the model had 
previously seen the CT images from that scanner, and the retraining process on the most-certain predictions 
with the predicted infection masks could not give much information to the model. In contrast, the model in the 
second experiment didn’t have any information about the new data acquired by a different scanner. Consequently, 
through the retraining process, the model was able to learn helpful information about the specifications of the 
unseen images, which led to further improvements. In other words, the proposed unsupervised method could 
mitigate the gap between the training set and the independent set, resulting in an enhanced generalization.

Synthetic data generation specific to COVID‑19 lesion segmentation.  Using data augmentation 
techniques23,24 has become a standard solution in different computer vision tasks to tackle the lack of sufficient 
training data and prevent over-fitting. These techniques mainly include applying simple transformations such 
as rotating, horizontal/vertical flip, zooming, and/or translation on original images. However, these transfor-
mations make minor changes to the existing images, resulting in limited diversity on newly generated images. 
Development of new data augmentation techniques is therefore crucial to introduce more variability to the syn-
thetic samples for better data reinforcement. For example, recently, Ref.25 implemented a specific data augmenta-
tion approach into a generative adversarial segmentation network and achieved improved results. Capitalizing 
on this vision, we propose a specific approach for generating synthetic pairs of CT images and their correspond-
ing infection masks by extracting the COVID-19 regions of infection from infected chest CT images and insert-
ing them into healthy chest CT images. We use a chest CT image containing COVID-19 regions of infection 
alongside its infection mask and a chest CT image from a healthy person acquired by the same scanner alongside 
its lung mask as the input. First, CT images are normalized using the mean and standard deviation of their pixel 
intensities. Next, regions of infection are extracted from the COVID-19-infected CT image using the infection 
mask. Lung regions from the normalized healthy CT image are extracted using its corresponding lung mask. 
Then, the location of the region of infection is evacuated by element-wise multiplication of normalized healthy 
lung regions and the inverted infection mask. In the next step, the regions of infection are added to the evacuated 
healthy CT image. Finally, the regions of infection outside the healthy lung regions are trimmed off using the 
healthy lung mask, and the new infected CT image is generated. The synthetic infection mask is adjusted for the 
synthetic infected CT image by multiplying the healthy lung mask by the infection mask.

Hybrid loss function.  For a segmentation task, when dealing with highly imbalanced datasets, which is 
common when dealing with COVID-19 chest CT images, equally penalizing False Negatives (FNs) and False 
Positives (FPs) during the training process will result in a low sensitivity in predicted masks. To tackle this 
problem, we trained the COVID-Rate model by minimizing a hybrid loss function over the training epochs to 
supervise the model in both image-level and local areas. The hybrid loss is a combination of weighted Binary 
Cross-Entropy (w-BCE)26 and Focal Tversky Loss (FTL)27 and is given by

where κ determines the FTL’s contribution to the total loss function and is set to 1 in our experiments. The FTL, 
which is a generalization of the Tversky Index (TI)28, is a loss function that improves the model performance 
by assigning higher weights to hard pixels and has been introduced explicitly for the segmentation of class-
imbalanced datasets. The TI and FTL are defined as follows

where Pli is the probability that pixel i belongs to the lesion class and Pbi is the probability that pixel i is of the 
background class. The GTli is one for a pixel labeled as lesion and zero for a pixel labeled as background, and vice 
versa for the GTbi . The trade-off between FPs and FNs can be adjusted through the hyper-parameters α and β . 
Term γ is defined within the range of [1, 3] and forces the model to detect small Regions of Interest (RoI). We set 

(2)LTotal = Lw−BCE + κ LTFL,

(3)TI =

∑

N

i=1
Pli GTli

∑

N

i=1
Pli GTli + α

∑

N

i=1
Pli GTbi + β

∑

N

i=1
Pbi GTli

(4)FTL =
∑

c

(1− TI)
1
γ
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α = 0.7 , β = 0.3 , and γ = 4
3

27. Compared to the standard LBCE , the Lw−BCE can improve the model’s performance 
by assigning higher weights for the target pixels (i.e., COVID-19 lesions) instead of weighting all pixels equally.

Experiments.  This research work is performed based on the policy certification number 30013394 of Ethical 
acceptability for secondary use of medical data approved by Concordia University, Montreal, Canada. All experi-
ments were conducted in accordance with the Tri-Councel Policy Statement of Ethical Conduct for Research 
Involving Humans in Canada. Furthermore, informed consent is obtained from all the patients. To evaluate 
the efficacy and potential limitations of the proposed COVID-Rate framework, we performed an extensive set 
of experiments. In particular, we have investigated the model’s capability in detecting regions of infection of 
different sizes on the CT images. The conducted experiments analyze the model’s performance in segmenting 
COVID-19 lesions in: (i) Slice-level segmentation, where only CT images containing COVID-19 abnormalities 
are fed to the network, and; (ii) Patient-level experiments when the model is tested on the whole CT volume 
containing CT images with and without COVID-19 lesions. To explore COVID-Rate ’s generalization, we experi-
mented on an independent dataset and evaluated the model’s performance on CT images acquired by a different 
scanner in a different imaging center. We also tested the COVID-Rate on CT volumes of 50 COVID-19 patients 
to assess performance of the model in discriminating infected CT images from non-infected ones.

Description of datasets.  Four datasets are used in different steps of the experiments as outlined below:

•	 Dataset A17, which is a public dataset containing chest CT volumes of 10 COVID-19 patients, a total of 2, 581 
CT images. The matrix size of the images is 512× 512 pixels. In total, 1351 CT images (out of 2581) have 
shown COVID-19 manifestations and have been annotated by three expert radiologists. The segmentation 
of lung regions exists for all CT slices.

•	 Dataset B (the COVID-CT-Rate  dataset): The in-house dataset, which contains 433 annotated CT images 
from 82 COVID-19 patients.

•	 Dataset C29, which contains nine COVID-19 chest CT volumes, a total of 829 CT slices. In total, 373 out of 
829 CT images indicated COVID-19 lesions and have been segmented by a radiologist. The segmentation of 
lung regions has been performed for the whole CT volumes. The CT slices have a dimension of 630× 630 
pixels and are resized to 512× 512 pixels for our experiments.

•	 Dataset D, introduced in our previous work16, containing chest CT volumes from 76 healthy cases, 171 
COVID-19 patients, and 60 patients with other types of Community Acquire Pneumonia (CAP). In this 
dataset, 55 out of 171 COVID-19 CT volumes have slice-level labels, indicating which CT slices demonstrate 
COVID-19 lesions. The CT images used for the COVID-CT-Rate dataset are a subset of COVID-19 cases in 
Dataset D.

The first two datasets (Dataset A and B) are used for training/testing purposes, while the third and fourth datasets 
(Dataset C and D) are used to evaluate the model’s performance from various aspects.

Evaluation metrics.  We evaluate the COVID-Rate model’s performance in segmenting COVID-19 lesions by 
comparing the predicted segmentation masks with the ground truth labels. The following metrics are used for 
evaluation purposes:

Dice Similarity Coefficient (DSC), which is the most commonly used metric for segmentation. The DCS 
measures the relative overlap of the predicted regions of infection and their ground truth labels. It takes the value 
one as its maximum when the two regions have a complete agreement and a minimum value of zero when there 
is no overlap between the two underlying areas. The DSC is defined as follows

where terms Pr and GT correspond to the set of pixels belonging to the predicted and the ground truth regions, 
respectively. The symbol ∩ represents the intersection operation, and | · | is the cardinality operator.

Sensitivity (SEN) and Specificity (SPC): The SEN metric calculates the number of pixels correctly labeled as 
COVID-19 lesions in the predicted masks relative to the total number of pixels identified as COVID-19 abnor-
malities in the ground truth. The SPC metric measures the number of pixels correctly labeled as the background 
class relative to the total number of background pixels in the ground truth. SEN and SPC metrics are defined 
as follows

where TP, FN, TN, and FP are the number of pixels in the true positive, false negative, true negative, and false-
positive regions, respectively.

Mean Absolute Error (MAE), which calculates the absolute error between each pixel’s predicted and ground-
truth label and takes the average over the whole pixels. The MAE is given by

(5)DSC =
2(|Pr| ∩ |GT|)

|Pr| + |GT|
,

(6)SEN =
TP

TP + FN
,

(7)and SPC =
TN

TN + FP
,
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The MAE metric has a minimum of zero if all the pixels are correctly labeled and a maximum of one when all 
the pixels are predicted with the wrong label.

Pre‑processing step.  In the pre-processing step, we extract lung regions from all CT images using a lung seg-
mentation model, referred to as the “U-net (R231CovidWeb)”30. This model has been trained and evaluated 
on three public datasets covering six different types of lung diseases and then fine-tuned on a small COVID-
19 dataset. The U-net (R231CovidWeb) can accurately extract lung regions from COVID-19 CT images and 
has already been used for calculating lung area in COVID-19 outcome prediction31,32, as a pre-processing step 
in COVID-19 diagnosis33,34, and in lesion segmentation studies35,36. It is worth mentioning that segmenting 
lung abnormalities can also be performed in an end-to-end fashion without extracting lung regions via a pre-
processing step. Removing non-lung regions via a pre-processing step, however, enables the learning model 
to be restricted to the region of interest, reducing false-positive detection outside the lung area. Furthermore, 
rendering all non-lung pixels to zero decreases the computational costs and helps the model converge faster. For 
these reasons, several research studies with the objective of COVID-19 diagnosis or lesion segmentation from 
CT images have extracted lung regions in their pre-processing phase. After segmenting the lung regions, only CT 
images containing the lung tissues are passed to the next stage, and the rest are eliminated. Each CT image is nor-
malized based on its mean and standard deviation (std). The datasets are divided into three independent groups 
for training (60%), validation (10%), and testing (30%). To avoid information leakage, we kept the underlying 
datasets patient-independent, meaning that patients’ CT images are not shared between training, validation, and 
test sets. Furthermore, to improve the model performance on unseen data and mitigate over-fitting issues, we 
use real-time data augmentation strategies, including zooming, shifting, and shearing, where artificial images 
are synthesized from each mini-batch of original CTs during the training process. The model observes each syn-
thetic image only once, resulting in an enhancement in the model’s overall generalization ability. The network 
uses the Adam optimizer with an initial learning rate of 0.001 over 100 epochs and will stop if the loss function 
on the validation set does not decrease over ten epochs.

Quantitative and qualitative analysis.  We use a combination of Datasets A and B, i.e., a total of 1784 CT images 
with COVID-19 manifestations from 92 patients to train/test the proposed COVID-Rate model. The average of 
the evaluation metrics calculated on the whole test set over 10-fold cross-validation is represented in Table 1. The 
average DSC over the entire test set over 10-fold cross-validation is equal to 0.8036. The average MAE is 0.0053, 
which means that 99.47% of pixels on the test set have been labeled correctly. The average of SPC and SEN met-
rics are 0.9968 and 0.834, respectively. The calculated standard deviations for the evaluation metrics demonstrate 
that the different folds’ results do not vary significantly, indicating that the model has a reliable performance on 
different test sets of the 10-fold cross-validation.

We assess effects of different loss functions, including weighted binary cross-entropy (w-BCE), FTL, and the 
hybrid loss function on the model performance; results are shown in Table 2. The FTL loss function improves the 
model performance (DCS, SPC, and MAE metrics) compared to the w-BCE loss function. However, it decreases 
the model sensitivity from 83.94 to 82.58%. The model trained on the hybrid loss function slightly reduces the 
SEN compared to the w-BCE loss but improves DSC, SPC, and MAE evaluation metrics.

To better investigate our model’s performance in segmenting COVID-19 lesions at different scales, we cat-
egorize the test images into two groups: (i) Group-A, CT images with infection rate smaller than 0.015, and; 
(ii) Group-B, CT images with the infection rate larger than 0.015. The infection rate is calculated by dividing 
COVID-19 lesions’ area by the lungs’ area in a CT slice. Table 3 represents performance of the COVID-Rate model 
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Table 1.   Performance of the proposed segmentation network on the test set through 10-fold cross-validation 
approach.

DSC SPC SEN MAE

Ave ± std 0.8036± 0.033 0.9968± 0.0007 0.834± 0.044 0.0053± 0.001

Table 2.   Quantitative evaluation of our proposed model trained with different loss functions. The presented 
results are the average of the obtained results through a 10-fold cross-validation process. Significant values are 
in bold.

Loss function DSC SPC SEN MAE

w-BCE 0.7810 0.9960 0.8394 0.0056

FTL 0.7935 0.9967 0.8258 0.0054

Hybrid loss function 0.8036 0.9968 0.8340 0.0053
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across these two groups, indicating the median of evaluation metrics and their Inter-quartile Ranges (IQR) for 
25% and 75% percentiles. As can be seen, although the model yields better results on CT images in Group-B, its 
performance in dealing with small regions of infection is also acceptable. The average DCS for Group-A (median: 
0.6671, IQR: 0.403–0.7877) and Group-B (median: 0.8264, IQR: 0.7421–0.8754) are calculated. The quantitative 
analysis over Group-A and Group-B indicates that the proposed model is reliable in segmenting COVID-19 
lesions at different scales. To better understand the model’s capabilities, we visualized some examples of Group-A 
and Group-B along with their predicted masks in Fig. 9.

As mentioned previously, in the COVID-CT-Rate dataset, we mainly focused on providing lesion masks 
for GGO and consolidation infection patterns, as the most frequently observed COVID-19 CT manifestations. 
Here, we randomly selected CT samples containing GGO and consolidation from the test set to illustrate and 
qualitatively discuss the model’s performance and capabilities/limitations on segmenting GGO and consolidation. 
As it can be observed in Fig. 10, even in multifocal lung involvement conditions, the model can ideally segment 
GGO and consolidation infection regions. However, in the very low-intensity ranges of the GGO patterns, the 
predicted infection region is smaller than the ground truth label. Due to the higher intensity range, the predicted 
infection regions for consolidation patterns are very close to the ground truth labels. The qualitative evaluation 
of the results also indicates that when the infection patterns are complicated with an irregular shape, the model 
prediction can be more accurate than manually provided ground truth labels.

For comparative analysis, we compare the proposed COVID-Rate framework with the following benchmark 
models: (i) Standard U-Net; (ii) Attention U-Net37; (iii) U-Net++38, (iv) Residual U-Net with CPB module, (v) 
COVID-Rate without CPB module, and (vi) enhanced COVID-Rate results via unsupervised enhancement 
method. It should be noted that for implementing the proposed unsupervised enhancement method, in each 
cross-validation, the trained model was applied to a test set containing 588 CT images from 12 COVID-19 
patients acquired by the same scanner of COVID-CT-Rate dataset, for which we did not have the ground truth 
masks. Then, considering that we are blind to the ground truth masks, we quantified the model confidence on 
each predicted mask by calculating CI measure and selected the top 25%, if their CI is not less than 90% the most 

Table 3.   Performance of the proposed COVID-Rate network on CT images of groups A and B. The presented 
results are the average of the 10-fold cross-validation.

Group A Group B

Median (IQR 25%, IQR 75%) Median (IQR 25%, IQR 75%)

DSC 0.6671 (0.403, 0.7877) 0.8264 (0.7421, 0.8754)

SPC 0.9997 (0.9994, 0.9998) 0.9979 (0.9965, 0.9990)

SEN 0.7689 (0.4182, 0.9434) 0.8969 (0.7637, 0.9578)

Figure 9.   Qualitative evaluation of model performance on test set. From left: Original image, Ground truth 
mask, Predicted mask. Row 1 and 2: Test images from group A with infection rate less than 0.015, Row 3 and 4; 
Test images from group B with infection rate more significant that 0.015.
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certain predictions. This subset of most certain predictions, including CT images and the associated predicted 
masks, are then used to re-train the initially pre-trained model. Table 4 presents the average of different evaluation 
metrics for each model. A common 10-fold cross-validation with similar data split and pre-processing steps is 
used to train/test different models. To examine effects of removing non-lung regions, as the main pre-processing 
step, on the model’s overall performance, we have trained the model without performing the lung extraction 
step. The model achieved 77.2%, 99.6%, 78.3% and 0.006 for the DSC, SPC, SEN, and MAE metrics, respectively. 
As it can be observed, the lung extraction step significantly improves the DSC and SEN metrics. The reason 
is that removing non-lung parts from the CT images enables the learning model to be restricted to the region 
of interest, reducing false-positive detections that fall outside the lung area. Another significant advantage of 
removing non-lung regions in the pre-processing step is that rendering all non-lung pixels to zero decreases the 
computational costs and helps the model converge faster.

Generalization: assessment on external datasets.  When developing AI-based models using CT images, it is cru-
cial to assess if the trained model can be generalized on CT images from a new scanner. This is mainly because 
CT images, acquired from different scanners with varying acquisition settings, show different resolutions and 
characteristics. For this purpose, we evaluate the COVID-Rate performance on a third dataset (referred to as 
Dataset C) that is different from our training set and contains COVID-19 CT images from nine patients. We 
ignore one of the CT volumes that shows minimal infection regions (the infection rate is almost zero) and 
include the rest in the experiments. In the first step of this generalization assessment experiment, we examine 
the COVID-Rate model only on CT images containing COVID-19 lesions (372 out of 787 CT images contained 
infection regions). The results are shown in Table 5. The DSC, SPC, SEN, and MAE metrics for the first test are 
0.794, 0.993, 0.901 and 0.0087. The obtained results show that the model can reasonably work on CT images 
from a new scanner. We compare performance of the COVID-Rate with Ref.39 that has used 374 infected CT 
slices from Dataset C along with 100 infected CT slices for training and testing their proposed segmentation net-
work through a five-fold cross-validation. Although their model has been trained on this dataset, the proposed 
COVID-Rate framework outperforms their model in terms of SPC and SEN metrics and yields comparable DCS 
results.

Figure 10.   Qualitative evaluation of model performance on segmenting GGO (first row) and consolidation 
(second row) infection patterns. Ground truth and predicted infection regions have been indicated with red and 
green borders, respectively.

Table 4.   Quantitative comparison of different architectures in segmenting COVID-19 lesions. The presented 
results are the average of the obtained results through a 10-fold cross-validation process. The best results have 
been highlighted in bold.

Architecture DSC SPC SEN MAE

Standard U-Net 0.7793 0.9963 0.7622 0.0059

U-Net++ 0.7891 0.9964 0.8118 0.0061

Attention U-Net 0.7911 0.9974 0.7842 0.0056

Residual U-Net with CPB 0.7921 0.9968 0.8239 0.0055

COVID-Rate without CPB 0.7991 0.9968 0.8296 0.0054

COVID-Rate 0.8036 0.9968 0.8340 0.0053

Enhanced COVID-Rate 0.8069 0.9969 0.8354 0.0053
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In practical settings, COVID-19 CT volumes consist of several slices, some of them with regions of infec-
tion and the rest with no evidence of infection. To assess the model’s performance in segmenting COVID-19 
lesions, we test the COVID-Rate on whole lung volumes of eight COVID-19 patients (683 out of 787 CT images 
included lung tissues). Figure 11 demonstrates some examples of the ground truth and the predicated masks 
from this experiment. As can be observed, the model predicts a black mask for CT images with no trace of 
infection. The experiment results over the 683 test images containing lung tissues are 0.787, 0.9961, 0.901 and 
0.0049 for DSC, SPC, SEN, and MAE metrics. Compared to Ref.40, which have used 638 slices of this dataset 
(285 normal slices and 353 slices with COVID-19 lesions) as an external test set for evaluation of their semi-
supervised segmentation framework, the COVID-Rate achieved better results across all the evaluation metrics. 
The mean absolute error between the ground truth and predicted infection rate for each CT image is 0.049 and 
0.0087 for CT images with and without evidence of infection, respectively. Figure 12 represents the linear rela-
tionship between ground truth and predicted infection rates for CT images containing COVID-19 lesions. The 
Pearson correlation coefficient between the two groups of data is measured 0.959 indicating that the predicted 
and ground truth infection rates are highly correlated. In the next step, we examined the effectiveness of our 

Table 5.   Model evaluation on external dataset on CT images containing COVID-19 lesions and on whole CT 
volumes. Significant values are in bold.

Method Input data Validation type DSC SPC SEN MAE

Ref.40 CTs with infection regions Cross-validation 0.831 0.993 0.867 –

COVID-Rate CTs with infection regions External validation 0.794 0.9931 0.901 0.0087

Enhanced COVID-Rate CTs with infection regions External validation 0.806 0.9933 0.914 0.0082

Ref.41 Whole lung volumes External validation 0.597 0.977 0.865 0.033

COVID-Rate Whole lung volumes External validation 0.787 0.9961 0.901 0.0049

Enhanced COVID-Rate Whole lung volumes External validation 0.7998 0.9962 0.914 0.0046

Figure 11.   Qualitative evaluation of the model generalization on an external dataset. From left: Original image, 
Ground truth mask, Predicted mask. The model predicts a black mask for CT images with no trace of viral 
infection.
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proposed unsupervised enhancement method on improving model generalization. For this purpose, we applied 
our trained model to the infected slices of the external dataset. Then, we measured the model confidence on 
the predicted mask using the introduced CI and selected the top 25%, if their measured CI is not less than 0.9, 
as the most confident prediction. The most confident prediction and their predicted infection masks were used 
to retrain our initially trained models. The performance of the enhanced model was then examined on (i) the 
infected slices and (ii) whole CT volumes (CT images containing lung regions), and the results were presented 
in Table 5. As can be observed, the unsupervised enhancement method could improve the results regarding all 
evaluation metrics. This is because the initial model has no insight into the characteristics of the CT images from 
the external dataset. The enhancement approach gives the initially trained model some helpful information on the 
new dataset, reducing the shifts between the original training set and the external dataset, leading to improved 
performance. Indeed, the obtained results demonstrate the enhancement method’s capability in improving the 
model’s generalization upon receiving a new dataset from a different scanner, addressing a critical challenge in 
applying AI models in medical imaging.

Model evaluation on discriminating CT images with infection.  To further explore how the proposed COVID-Rate 
framework performs on whole CT volumes, we use a subset of Dataset D that contains 50 CT volumes with slice-
level labels and evaluate the COVID-Rate performance on discriminating infected CT images from non-infected 
ones. According to our framework, we first extracted lung regions from CT images. From 6846 CT images con-
taining lung tissues, 3503 showed COVID-19 lesions. Since our COVID-CT-Rate dataset is a subset of Dataset 
D, we eliminated the 267 common CT slices that were overlapping between the two datasets. The rest of the CT 
images, a total of 6579 images from 50 patients, were passed through the segmentation network. The model 
predicts a mask containing lesion regions for CT images with infection and a black mask for CT images without 
infection. To avoid spurious effects from minor imaging findings, we consider a CT image as an “infected image” 
only if its predicted infection rate is more significant than 0.005. The accuracy, sensitivity, and positive predic-
tive value for this discrimination experiment are 0.877, 0.946 and 0.831, which are promising for the potential 
application of the COVID-Rate framework on whole lung volumes.

Efficacy of the proposed synthetic data augmentation.  To explore the efficacy of our proposed data augmenta-
tion technique in the training process, first, we trained the COVID-Rate model without the CPB module on 
the COVID-CT-Rate dataset. We split the dataset into three subsets for training (60%), validation (10%), and 
testing (30%). The conventional data augmentation techniques, including zooming, shifting, and shearing, were 
used during the training. In the next step, we performed the same experiment using a training set augmented 
by our data augmentation technique. For this purpose, we used 988 CT images from nine healthy lung volumes 
acquired by the same scanner of the COVID-CT-Rate. In each fold of the cross-validation, we generated syn-
thetic pairs of CT images and infection masks based on the training set of each fold. We then eliminated the syn-
thetic images with an infection rate of less than 0.01. To investigate the effect of incorporating different numbers 
of synthetic images with the training set, we performed a set of experiments with the number of synthetic images 
equal to 0.5N, 1N, 1.5N, and 2N, where N is the size of the original training set. In each fold, the validation 
and test sets are kept the same as the previous step of the experiment. The results of both experiments through 
10-fold cross-validation are presented in Table 6. As demonstrated, the model yields the optimum results when 
the number of synthetic images is about to N. Indeed, this method of generating synthetic images introduces 
more variability than the conventional data augmentation methods and can considerably improve the results. 
However, by increasing the number of synthetic images, the infection patterns with the same intensity range will 
be repeated during the training, causing the overfitting problem. Figure 13 demonstrates some samples of the 
synthetic images and their corresponding infection masks. The synthetic images with the infection rate more 
significant than 0.01 are concatenated with the training set.

Figure 12.   Ground truth and predicted slice-level infection rate in generalization assessment experiment.
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Table 6.   Evaluation of the proposed data augmentation method’s efficacy through a two-step 10-fold cross-
validation approach.

Training set Number of synthetic images

DSC SPC SEN MAE

Ave ± std Ave ± std Ave ± std Ave ± std

Existing training set – 0.7624± 0.02 0.9944± 0.002 0.8342± 0.06 0.0079± 0.001

Augmented training set

0.5× N 0.7696± 0.02 0.9944± 0.001 0.8573± 0.04 0.0077± 0.001

1× N 0.782± 0.01 0.9948± 0.001 0.8614± 0.02 0.0073± 0.001

1.5× N 0.7604± 0.02 0.9944± 0.001 0.8393± 0.05 0.0079± 0.001

2× N 0.752± 0.05 0.9953± 0.001 0.79± 0.1 0.0077± 0.001

Figure 13.   Samples of synthetic images and infection masks. First and second rows: COVID-19 infected CT 
images and their corresponding infection masks. Third and fourth rows: Synthetic images and the adjusted 
infection masks.

Figure 14.   The structure of the Capsule-network-based classifier integrated with the COVID-Rate 
segmentation network.
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Capsule‑network‑based classifier integrated with the COVID‑Rate segmentation network.  As another variation 
of our COVID-19 lesion segmentation framework, as illustrated in Fig. 14, we embedded a capsule-network-
based module prior to the segmentation network to identify CT images containing COVID-19 manifestations 
from the non-infected ones. The CT images identified as infected slices will then be fed into the segmentation 
network for the lesion segmentation task. The classifier module takes the lung area of 2D CT images as the 
input and predicts a label demonstrating whether the given image is infected or not. Capsule networks41, which 
have demonstrated superior capability in learning informative features from small datasets, form the basis of 
the developed classifier. An iterative process, known as “Routing by Agreement”, is used in capsule networks, 
helping identify the spatial relation between extracted features from an image. The detailed structure of the 
capsule-network-based module is a modified variation of the model architecture proposed in34. Specifically, the 
classifier adopts five convolution layers, followed by a BN layer and the ReLU activation function. Instead of the 
max-pooling layer, we utilize a 3× 3 convolution layer with stride 2 to mitigate information loss during down-
sampling. In addition, residual connections facilitate the model’s convergence during the training process. The 
fifth convolution layer’s output is then reshaped and fed into the three consecutive capsule layers. The last capsule 
layer includes two capsules determining the probability of class labels. The candidate images from the classifier 
are then used as input to the segmentation network to generate the infection masks. In this experiment, we 
first measured the performance of our previously trained COVID-Rate segmentation network on only COVID-
Rate-CT images, where the model achieved a DSC of 0.781, SPC of 0.9961, SEN of 0.812, and MAE of 0.0066. 
Then, for training the two-stage framework, we used 433 infected CT images from the COVID-CT-Rate dataset 
integrated with 988 normal CT images from nine patients acquired by the same scanner. We randomly split the 
dataset into 60%, 10% and 30% for training, validation, and test sets. The training set, containing infected and 
non-infected slices, was used as the classifier’s input. The candidate CT images, predicted as the infected class, 
were fed into the segmentation network to produce the infection masks. In each cross-validation, we used the 
weights of the previously trained segmentation network as the initial weights and let the model’s weights be 
updated during the training process. The integrated framework achieved a DSC of 0.767, SPC of 0.9963, SEN of 
0.781, and MAE of 0.0068. Although the integrated framework yields lower performance than the segmentation 
network being trained only on the infected slices, the obtained results are promising for applying the COVID-
Rate segmentation network with integrated Capsule-network-based classifier in scenarios without availability of 
experts for image-level labeling of CT images.

Discussion
This study is motivated by the urgent quest to develop accurate and reliable automated models for prognostic 
assessment of COVID-19 pneumonia coupled with the need for providing high-quality COVID-19 lesion seg-
mentation datasets. To better position this study within the existing literature, first, we discuss the related works.

Related works: Recently, several autonomous models are proposed/designed based on DL solutions to assist 
in the rapid diagnosis of COVID-19 from other types of respiratory infections,42−50. There are, however, fewer 
works on developing DL-based models for segmentation and quantification of COVID-19 lesions. Segmentation 
models designed based on DL models are mainly developed based on CNNs. Such DL models are image-to-image 
networks containing an encoding path for extracting high-resolution features from input images and a decoding 
path for generating masks indicating the regions of interest. The majority of the COVID-19 lesion segmentation 
models have been developed upon U-Net23 due to its superiority for the task of medical image segmentation51,52. 
For example, using a U-Net architecture integrated with DenseNet blocks in the encoder path, Chaganti et al.14 
proposed a segmentation model to quantify lung abnormalities caused by COVID-19 from CT images. Similarly, 
Zhou et al.39 proposed an enhanced U-Net segmentation model by incorporating spatial and channel attention 
mechanisms. Segmentation networks can be designed based on 2D or 3D CNNs to segment COVID-19 regions 
of infection either on slice-level or patient-level basis. It should be noted that 3D segmentation networks that 
can segment infections on the whole lung volumes are more desired from practical point of view. However, they 
need a large amount of 3D annotated lung volumes for efficient training and are more computationally expensive. 
Ref.52 trained both 2D and 3D variants of the U-Net model for segmenting COVID-19 infections from chest CT 
images of 558 patients confirmed with COVID-19 pneumonia. According to their experiments, the 2D U-Net 
model achieved a Dice Similarity Coefficient (DSC) of 79.07% while 3D U-Net obtained DSC of 70.35%, dem-
onstrating that on small datasets, slice-level segmentation can achieve better results.

Generally speaking, to efficiently train a DL-based segmentation model, large amount of annotated CT images 
are required. However, due to nonuniform contrasts and irregular boundaries of COVID-19 lesions, providing 
pixel-level labeled datasets is challenging and expensive. Multi-task DL networks that jointly perform COVID-19 
classification and lesion segmentation have shown promising results when facing lack of annotated data53,54. In 
this context, Wu et al.54 developed a joint classification and segmentation network that distinguishes COVID-19 
cases from uninfected ones and at the same time produces the infection masks. They incorporated two parallel 
branches to extract image features for classification and segmentation tasks separately. The extracted features 
are then combined and fed into a decoding path to generate COVID-19 lesion masks. Performing classification 
and segmentation tasks simultaneously provides deep supervision for training the network on image-level and 
pixel-level, yielding more accurate results on both tasks. Transfer learning is a powerful technique to resolve 
shortage of data when deep learning models are designed for medical image analysis tasks with limited labeled 
datasets. Existing DL models for COVID-19 lesion segmentation have taken advantage of both natural images 
(like the ImageNet dataset) and medical images to enhance their model’s performance. The use of top-performing 
CNN models such as ResNet, DenseNet, and Inception-Net pre-trained on ImageNet dataset as the backbone 
of encoding path can improve the segmentation results55,56. For instance, Ref.57 leverages a two-stage transfer 
learning approach to deal with the lack of annotated data. In the first step, as the basis for their segmentation 
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network’s encoding path, they utilize ResNet50 trained on ImageNet. The next step involves performing another 
transfer learning stage and pre-training the segmentation network using a large chest CT dataset for lung nodule 
detection. The second stage compensates for the large gap between the natural and COVID-19 chest images and 
enhances the final training on COVID-19 chest CT images. Some research studies use segmentation methods 
that require less data for training to overcome the lack of sufficient pixel-level annotated CT images. Authors in 
Ref.40 developed a semi-supervised segmentation framework that is trained only on 50 annotated CT images of 
COVID-19 patients together with 1600 unlabeled CT images. Their proposed model segments the COVID-19 
lung abnormalities under both one and two classes of infections. Integrating semi-supervised and few-shot learn-
ing methods, Ref.58 introduced a segmentation network that can learn from a few number of labeled chest CT 
images. Authors proposed a dual-path network architecture for few-shot learning and incorporated an adaptive 
knowledge exchange module between the networks’ paths to enhance the model’s performance in segment-
ing COVID-19 lesions. Considering COVID-19 classification as a few-shot learning problem and leveraging a 
contrastive learning approach, Ref.59 trained an encoder that can capture discriminative feature representations 
from open-access datasets. The prototypical network is then adopted to detect COVID-19 cases from CT images. 
Alternatively, one may choose to train a DL network with weak supervision through lower-quality labels, which 
are inexpensive and need less time to be generated. For instance, Laradji et al.60 proposed a weakly supervised 
learning method by annotating a single pixel for any COVID-19 infection region on a CT image and achieved 
a DSC range of 68–75% on three public datasets. Their proposed labeling scheme reduced the annotation time 
for each infection region from 10–15 s to 1–3 s. Using some simple operations, Yao et al.61 synthesized COVID-
19 regions of infection on chest CT images of healthy people and generated fake image-label pairs for training 
their segmentation network with no labeled data. It is worth mentioning that although these studies suggest 
effective solutions in compensating the lack of sufficient labeled data, they cannot yield the same success of fully 
supervised learning methods with accurate labels. This study aimed to address this gap.

The COVID-Rate Framework: Capitalizing on the above discussion, we proposed a deep convolutional neural 
network model, the socalled COVID-Rate framework, for segmenting COVID-19 legions from chest CT images. 
A high-quality COVID-19 segmentation dataset containing 433 CT slices from 82 patients is also introduced.

Several comprehensive experiments were conducted to evaluate efficacy and limitations of the proposed 
COVID-Rate model on 2D CT images and whole CT volumes, using both internal and external datasets. The 
results indicate that COVID-Rate can efficiently segment COVID-19 regions of infection from CT images on 
both slice-level and patient-level basis. To cope with data hungry nature of deep AI models, a novel data aug-
mentation method is proposed that generates synthetic CT images and infection masks by inserting regions of 
infection from COVID-19 infected CT images to healthy CT images. In particular, based on the results of the 
comparison study (Table 4), it can be observed that the standard U-Net network achieved the lowest performance 
in our experiments. This is mainly because that the other networks are improved variations of the U-Net. The 
COVID-Rate network outperforms the U-Net++ and Residual U-Net with CPB across all evaluation metrics and 
against Attention U-Net across the DSC, SEN, and MAE metrics. The results demonstrate that incorporating CPB 
module can improve the model performance. Finally, the unsupervised enhancement method could improve 
results of the DSC, SPC, and SEN metrics while achieving the same value on the MAE metric. The results of the 
generalization experiment (Figs. 11 and 12) illustrate that despite being trained only on CT images with infec-
tion, our proposed COVID-Rate can optimally segment COVID-19 lesions on whole CT volumes. Indeed, by 
quantifying the regions of infection on 2D CT slices and summing them up for the entire lung volume, assuming 
that the changes over a thick CT slice are negligible, the model can approximate the patient-level infection rate 
in COVID-19 patients.

Experimental results show that the proposed unsupervised enhancement method can improve model’s perfor-
mance. However, the external test set results showed more improvement than utilizing an extra subset acquired 
by the same scanner used for the initial training. The main reason is that due to prior exposure to CT images 
from that scanner, the model did not retain much information during the retraining process on most-certain 
predictions. Conversely, when adopting the proposed enhancement method on an external dataset, the model 
does not have any information about the unseen data from a different scanner. In this way, the model was able 
to acquire practical knowledge about the specifications of the unseen images through the retraining process, 
resulting in further improvements. As a result, the proposed unsupervised method could bridge the gap between 
the training and independent sets, leading to an increased generalization capability. The presented results in 
Tables 4 and 5 further support this notion. Finally, from the results of the experiment conducted to evaluate 
efficacy of the proposed synthetic data augmentation mechanism (Fig. 13 and Table 6), it can be observed that 
model yield the optimum results when the number of synthetic images incorporated with the original dataset is 
equal to N (N is the size of original training set), improving the average DSC from 0.7624 to 0.782, the average 
SEN from 0.8342 to 0.8614, the average SPEC from 0.9944 to 0.9948, and the average MAE from 0.0079 to 0.0073. 
The experimental results indicate that concatenating the synthetic images generated by our data augmentation 
method will enrich the training set by introducing more variability to the training set, resulting in enhanced 
model performance. However, as the number of synthetic images increases, infection patterns following the same 
intensity range will be repeated during the training process, leading to overfitting.

Segmenting COVID-19 lung abnormalities under different classes of infection can yield helpful information 
on disease severity and stage. However, our experiments and provided CT data are limited to segmenting lung 
lesions under one class of data. One direction for future research is extending the dataset to model multi-class 
segmentation of COVID-19 lesions. Although the generalization test demonstrates that the model can work 
reasonably on a patient-level basis, the patients’ number in the test set is limited. More experiments on larger 
datasets are required to further evaluate reliability of the model patient-level application. Finally, chest CT scans 
can be utilized for diagnosing and assessing COVID-19 disease, however, it has been shown that standard-dose 
CT scanning can be highly radiation-intensive for patients, especially when multiple scans are required. In this 
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regard, replacing low- and extra-low-dose CT scans is a safer option for the patients. Developing segmentation 
networks and datasets on low- and extra-low-dose CT images is another direction for future research. Segmen-
tation models are used as the first step of severity assessment and prognosis prediction of COVID-19 patients, 
which would help optimize resource allocation and patient management. Future directions include extending 
the COVID-Rate for quantifying specific COVID-19 severity measures and integrating it into a hybrid deep 
learning model to detect high-risk COVID-19 patients and predict adverse outcomes based on CT images and 
clinical/laboratory information.

Data/Code availability
The Datasets and codes generated and/or analyzed during the current study are available for public access through 
Figshare62 and63, respectively.
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