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Abstract

Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with
Alzheimer’s disease (AD), our understanding about the progression of AD in a functional connectivity (FC) perspective is still
rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-
state functional MRI (fMRI), this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15
amnestic mild cognitive impairment (aMCI) patients, and 14 age-matched healthy aging subjects and found that all three
groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in
the progression of AD, represented by a more localized modular organization with less efficient local information transfer.
Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum
between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the
overall FC and structural connectivity (SC) in AD patients. In this study, diffusion tensor imaging tractography was used to
map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and
less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the
pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders
can be characterized by multimodal neuroimaging-based metrics.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease

clinically characterized by progressive dementia and neuropsychi-

atric symptoms include confusion, aggression, language break-

down and loss of cognitive functions. Mild cognitive impairment

(MCI), characterized by memory impairment, is believed to be a

transitional period between normal aging and AD. As a subclass of

MCI, amnestic MCI (aMCI) is a syndrome with cognitive decline

greater than expected for an individual’s age and educational level

yet not fulfilling the criteria of AD. Subject with aMCI has a high

probability (approximately 10%–15% per year) of evolving toward

AD, up to 80% of these individuals would progress to dementia

after 6 years [1]. Facing these serious facts, an upsurge of interest

has been directed toward understanding the pathogenesis of AD

and developing both diagnostic and prognostic biomarkers with a

goal of predicting which individuals are more likely to progress

and ultimately discovering effective therapies. Though previous

studies showed the earliest regions affected by AD pathology are

the transentorhinal cortex, parahippocampal gyrus, cingulum and

hippocampal formation [2,3], what are the effects of these focal

damage on whole neural networks is still largely unexplored.

The human brain forms a large-scale network of interconnected

brain regions which coordinate brain activities. Recent advances

in neuroimaging techniques and graph theory methods allow for

the investigation of human brain networks from topological

perspective (for a review, see [4]). Accumulated studies of healthy

populations have shown that human brain networks have special

topological organization, including small-worldness, existence of

highly connected network hubs, and modularity [5,6]. Changes in

brain network topology have been related to normal cognitive

development and to a wide range of brain diseases, indicating a

close relation between connectivity and cognitive status. For

patients with AD, there is a growing body of studies suggesting that

the cognitive dysfunction may result from abnormal wiring of the

brain’s network (for a review, see [7]). Particularly, convergent

evidence of a loss of the small-world network, an optimal brain

network architecture characterized by high efficiency of informa-

tion transfer with low wiring cost, has been revealed in AD [8–12].

Although small-worldness summarizes key properties of complex
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networks at both global and local levels of topological description,

the brain network organization of AD patients at meso-level,

which could be described by the modularity of network, is still

limitedly understood.

Modularity is considered to be one of the main organizing

principles in brain network [4,13] and represents an optimal

partition of a brain network into smaller functional communities

or modules [4,14,15]. Each module contains subsets of densely

interconnected nodes which are sparsely connected to nodes in

other modules [14]. Theoretically, there are several advantages of

modular brain network architecture. It provides an optimal

solution for balancing the opposing demands that are placed on

many dynamical systems: a high level of local specialization, while

maintaining tight global integration [4]. Another major advantage

of modularity is that it allows the brain to adapt to multiple or

distinct selection criteria over time [16]: a modular-organized

network can evolve or grow one module while maintain the

functionality of other modules. Several previous studies have

demonstrated the evolution of modular organization in the human

during infancy [17,18] and aging [19–21]. For instance, Chen and

colleagues have demonstrated that elderly adults had less number

of modules and significantly reduced modularity in anatomical

brain networks when compared to young adults, which might be

induced by the reduced functional segregation in the aging brain

[22]. In the context of the recent focus on the developmental

phenotypes of neuropsychiatric disease [23–25], the application of

modularity can help us to reveal sensitive markers of abnormal

brain development in brain diseases such as aMCI and AD. In

fact, using resting state magnetoencephalography (MEG) signals, a

dysmodularity of AD has recently been reported with a significant

weakening of intermodular connectivity, indicating the loss of

communication between brain systems that are specialized to carry

out different cognitive tasks [25]. This study provides insightful

implications on the understanding of how the modularity altered

in aMCI and AD and inspires us to investigate how functional

modular organization evolves from aMCI to AD.

There are widespread atrophy and abnormal structural

connectivity in AD-related pathological regions, which raise

another open problem in brain networks of AD, that is, how the

abnormality of structural connectivity would affect the corre-

sponding functional connectivity. Because the propensity for two

populations to interact should vary, at least in part, to the density

and efficacy of the projections connecting them [26]. In other

words, connectivity of brain activity is predicted to be confined

towards pathways of neuroanatomical connections between

specific brain regions. Thus it makes sense to assume that the

repertoire of functional configurations and interactions is reflective

of underlying anatomical linkage [27,28]. The emerging field of

combining both functional and structural brain networks has

provided some of the first quantitative insights to better

understand brain dysfunctions associated with neurological and

psychiatric disorders, which would significantly advance our

diagnostic and prognostic capacities (for a review, see [29,30]).

Recently, Van de Heuvel et al., have revealed an increase in the

strength of functional connectivity (FC) - structural connectivity

(SC) coupling and speculate that it may be an indicative biomarker

of less dynamic brain function in patients with schizophrenia [31].

Several attempts have also been made to uncover the AD related

network changes with a combined approach of different imaging

modalities, e.g., fMRI and DTI [32,33]. However, in these

pioneering studies, the comparisons of FC and SC are typically

conducted in default mode network (DMN) regions; while the

relationship between FC and SC evolves from NC to AD at the

whole brain level is only beginning to be revealed.

With above considerations, we constructed the functional brain

network based on resting state fMRI data measured from healthy

controls, aMCI and AD patients, and further investigated the

topological characteristics of the brain networks by graph

theoretical analysis (Figure 1A). We sought to determine whether

functional brain networks would show altered topological organi-

zation in patients with aMCI and AD. Our hypothesis is that

cognitive impairment in aMCI and AD will be reflected by the

abnormal functional brain network characterizing of: i) a loss of

small-world architecture, ii) an altered nodal betweenness central-

ity, and iii) a reduced modularity as well as a reduction in the

connectivity of the modules. In network terms, we expect AD to be

a ‘disconnection disease’. We further measured the SC using

diffusion tensor imaging (DTI) tractography in the same individ-

uals to investigate function-structure relations in brain networks of

AD and aMCI patients (Figure 1B). We hypothesize that an

altered relationship of functional-structural connectivity (FC-SC)

would appear in aMCI and AD patients compared with healthy

controls. We believe that this study would provide new insights on

the understanding of AD development from the aspects of brain

networks, especially on the alternation of modularity at meso-level

and on FC-SC relationship in AD via multi-modal neuroimaging.

Results

2.1 Demographic and Clinical Data
The demographic data and neuropsychological characteristics

are shown in Table 1. Subject groups did not differ significantly in

age (p = 0.348), gender distribution (p = 0.871), or years of

education (p = 0.258). For the neuropsychological tests, there were

significant between-group differences in MMSE scores (p,

1.061025), CDR (p,1.061024) and ADL (p,1.061025). Post

hoc comparisons showed significantly reduced MMSE, CDR and

ADL scores in both aMCI and AD patients relative to the normal

controls.

2.2 Small-world Network Metrics
Previous studies have demonstrated that small-world topology

exists in both functional brain networks [8,34] and structural brain

networks [9,35] of human and nonhuman primates [36]. The

small-world properties of three groups (AD, aMCI, & NC) are

shown in Figure 2. Over a wide range of sparsity (10%–25%), all

three groups exhibited small-world properties as they had a larger

clustering coefficient (c&1) and an almost identical shortest path

length (l<1) compared to the size-matched random networks.

This small-world property suggests that in all three groups the

brain networks are efficient for both global and local information

transfer. In agreement with previous studies [8,9,34,37,38], the

functional networks of the patients with AD and aMCI showed

varying degrees of degeneration of this efficient architecture.

Statistical results of the global network metrics at a specific sparsity

(S = 10%) were summarized in Table 2. Significant group effect

was revealed in the normalized clustering coefficient (c), and small-

worldness (s) regardless of the parcellation. Post hoc comparisons

showed significantly reduced c and s in AD patients relative to the

controls while such corresponding metrics were intermediate for

the aMCI group. More interestingly, only in the high resolution

parcellation, a significant (p,0.05) decrement of s was revealed in

aMCI group compared to healthy subjects. In addition, significant

positive correlations were identified betweenc and MMSE as well

as s and MMSE at two parcellation scales. Our findings thus

provided further support for the hypothesis that brain network had

a decline in the optimal small-world architecture in the

progression from MCI to AD [8,9]. AD-related differences in

Functional Connectivity and Alzheimer’s Disease
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global network metrics were not unique to the single sparsity used

to generate low-cost networks with S = 10%. As shown in Figure 2,

AD patients had reduced c and s over almost the entire range of

the network sparsity (10%–25%). The integrals of the network

metrics (corresponding to the areas of the network metrics curves

within the sparsity range from 10%–25%) were used as summary

metrics and confirmed detrimental effects of AD on clustering

coefficients and small-worldness independent of different parcella-

tion scales (Table S2).

2.3 Altered Regional Nodal Characteristics in aMCI and
AD

Following the discovery of a less efficient global network

organization in patients with aMCI and AD, we further

investigated the localized alteration (i.e., nodal efficiency) of the

network structure. Regions with significant group effects and

correlation (Pearson’s p,0.05) with clinical diagnostic result

(MMSE) are shown in Figure 3, including two regions in the

right hemisphere (opercular part of inferior frontal gyrus

(IFGoperc.R) and caudate nucleus (CAU.R)) and five left

hemispheric regions [superior parietal gyrus (SPG.L), insula

(INS.L), temporal pole, superior temporal gyrus (TPOsup.L),

amygdala (AMYG.L), and lingual gyrus (LING.L)]. Additionally,

post hoc tests unfolded that most of them (5 of 7: SPG.L, INS.L,

TPOsup.L, AMYG.L, and CAU.R) had a significant nodal

efficiency decreases in AD patients compared to health controls.

Group differences between AD and aMCI were uncovered in

three regions (IFGoperc.R, CAU.R and AMYG.L), with a higher

nodal efficiency observed in the aMCI group. More interestingly,

one region (LING.L) showed a significant increased nodal

efficiency in AD patients compared to aMCI and NC subjects.

Together, our results are consistent with several recent studies

showing that the roles of regions in managing information flows

over the brain networks were profoundly affected in AD and

aMCI patients [8,9,37].

Figure 1. The flowchart of the analysis steps. (A) The construction of resting-state functional connectivity (FC) network for graph theoretic
analysis. Note that, two parcellation scales (low: 90 ROIs, and high: 1024 ROIs) were employed to estimate the graph metrics. For better presentation
purpose, only low parcellation scale was utilized here. (B) The construction of structural connectivity (SC) network for assessing the FC-SC
relationship. In the current study, the level of coupling between FC and SC was examined by calculating the level of correlation between the weights
of existing SC and their functional counterparts.
doi:10.1371/journal.pone.0096505.g001

Table 1. Demographic and neuropsychological data.

NC aMCI AD F value (x2) p value

Age (years) 68.6468.36 70.2066.94 73.0867.90 1.09 0.348

Education (years) 12.8663.61 10.8764.88 9.9265.25 1.41 0.258

Gender (M/F) 6/8 7/8 4/8 0.28 0.871#

MMSE 28.5761.16 26.4763.44 17.4264.46 42.16 ,0.0001*,{,`

CDR 0.2960.26 0.5360.13 1.5060.67 32.63 ,0.0001*,{,`

ADL 14.2160.56 14.4761.13 30.2569.20 42.85 ,0.0001{,`

ACER 86.5766.91 75.47611.87 39.33613.79 62.88 ,0.0001*,{,`

Values are represented as the mean 6 SD. #p value for gender distribution in the three groups was obtained via a x2 test. Separate ANOVA analysis was performed to
investigate the group effect of age and neuropsychological data. NC: healthy controls, aMCI: amnestic mild cognitive impairment, AD: Alzheimer’s disease, MMSE: Mini-
Mental Screening Examination, CDR: Clinical Dementia Rating, ADL: Activities of Daily Living, ACER: Addenbrooke’s Cognitive Examination Revised.
*Post hoc test showed significant group difference between NC v.s. aMCI;
{Post hoc test showed significant group difference between NC v.s. AD;
`Post hoc test showed significant group difference between aMCI v.s. AD. Post hoc pairwise comparison was performed through Fisher’s least significant difference (LSD)
and p,0.05 was considered significant. Bold data indicated statistical significance.
doi:10.1371/journal.pone.0096505.t001
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2.4 Modularity and Disease-related Changes
Maximum modularity Q of the brain networks decreased as a

function of increasing sparsity (Figure 4). In a wide sparsity range,

a decline trend with the cognitive impairment was observed (QAD

,QaMCI ,QNC). A community structure would be considered as

nonrandom community if its modularity fulfills: Q$0.3 [39]. In

the current work, the functional brain networks in the three groups

were consistently modularly organized (Q$0.3 over the predefined

sparsity band). The community structures were obtained for the

three groups at a fixed sparsity (S = 10%), which captured the

connectivity backbone and maintained a fully-connected brain

networks. The brain networks were separated into five, seven, and

seven modules for AD, aMCI and NC groups, respectively (see

Figure 5A for their color coded modular structures in the

anatomical space). According to their topological functions in

the network, four possible roles of the regions were defined as

connector hub (H), provincial hub (P), connector node (C), and

provincial node (N). The information about the module compo-

sitions and regional node roles for each group was presented in

Figure 5B. The distribution of the connectors and the topological

roles of the module of three groups were summarized in Table 3.

2.4.1 Modules and node roles in functional brain network

with AD. The functional brain network of AD patients

comprised 5 connected modules, which varied in size from 22 to

14 regional nodes (Table 3). For Module 1, most of the regions (14

among 22) had numerous connections to other modules. Four of

them were categorized as connector hubs (SMA.R, PCG.L,

PoCG.L, and ANG.R) because they also had high intra-module

connections. Only 8 among 22 regions had no connection to

regions in other modules, including one provincial hub (PoCG.R).

Similar to Module 1, most regions (13 among 21) in Module 2

were identified as connectors, including one connector hub

(MFG.L); the other 8 among 21 regions were categorized as

provincial nodes, including 3 provincial hubs (ORBsup.L,

ORBsup.R, and MFG.R) with high intra-modular connections.

While, for Module 3, most (11 among 17) regions were provincial

nodes, including 1 provincial hub (PAL.R); only 6 regions were

categorized as connectors, including 1 connector hub (PUT.L).

For Module 4, most regions (9 among 16) were identified as

provincial nodes, including 1 provincial hub (STG.R). Likewise,

for Module 5, only 5 among 14 regions were categorized as

connector nodes.

2.4.2 Modules and node roles in functional brain network

with aMCI. The functional brain network of aMCI comprised

7 modules, varying in size from 22 to 8 regions (Table 3). Most of

the regions (16 among 22) in Module 1 were identified as the

connectors. Five regions (PreCG.R, SMA.R, PCG.L, PoCG.L,

and PoCG.R) were categorized as connector hubs. Only 6 among

22 regions had no inter-module connection and were categorized

as provincial nodes. For Module 2 in aMCI patients, most regions

(7 among 12) were categorized as provincial nodes, including 1

provincial hub (REC.R); the other 5 regions were categorized as

connectors, including 2 connector hubs (OLF.R and ORBsup-

med.L). For Module 3, half of the regions (7 among 14) were

classified as connectors, including 1 connector hub (AMYG.L).

The rest 7 regions only have local connections, and were

categorized as provincial nodes, including 1 provincial hub

(PAL.R). Likewise, for Module 4, half of the regions (6 among

12) were categorized as connectors, with 1 connector hub (STF.L).

Among the rest 6 provincial nodes, MTG.L was classified as

provincial hub. Only 3 among 12 regions were categorized as

connectors in Module 5, including 1 connector hub (CUN.L);

most the regions (9 among 12) were identified as provincial nodes,

including two provincial hubs (CUN.R and LING.L). Interesting-

ly, most of the regions were categorized as connectors in Module 6

(7 among 8) and Module 7 (7 among 10).

2.4.3 Modules and node roles in functional brain network

of NC. The group averaged brain network of NC subjects also

comprised 7 modules, varying in size from 24 to 8 regions

(Table 3). For regions comprising the Module 1, most (17 among

24) regions were categorized as connector nodes, including four

connector hubs (MFG.R, SMA.R, PoCG.L, and PCUN.L); only 7

Figure 2. Small-world network metrics of functional brain networks at two different parcellation scales. The graphs show the changes
in c (solid line) and l (dashed line) in the functional brain networks of AD (red), aMCI (green), and NC (blue) groups at (A) low parcellation scale and (B)
high parcellation scale with respect to sparsity. For all the three groups, c was significantly greater than 1 and l was relatively close to 1, indicating
prominent small-world properties for all groups.
doi:10.1371/journal.pone.0096505.g002
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among 24 regions had no inter-module connection and were

classified as provincial nodes, including three provincial hubs

(PoCG.R, IPL.L, and PCL.L). For Module 2, only 3 among 12

regions were categorized as connector nodes, with no connector

hubs; most (9 among 12) regions were identified as provincial

nodes, including 1 provincial hub (ORBsup.R). For Module 3,

most (5 among 8) regions were categorized as connectors, without

connector hubs; the rest (3 among 8) regions were classified as

provincial nodes, with 1 provincial hub (PHG.L). Module 4

included exactly the same set of brain regions as in AD group.

However, the topological role profile of the module is significantly

different, that is, most (11 among 16) regions were categorized as

connectors, including 2 connector hubs (STG.R and TPOsup.R);

only 5 among 16 regions were classified as provincial nodes,

including 1 provincial hub (MTG.R). For module 5, only 4 among

12 regions had inter-module connections, including 2 connector

hubs (LING.L and SOG.L); most (8 among 12) regions were

categorized as provincial nodes, including 1 provincial hub

(IOG.R). Most (8 among 10) regions in Module 6 were classified

as connectors, including 1 connector hub (PCG.L); the rest 2

regions included 1 provincial hub (PCG.R). The regions in

Module 7 are all subcortical regions, where only 2 among 8

regions were connectors, with no connector hub; the rest 6 regions

only have local connections, including 1 provincial hub (PAL.R).

By inspection of Figure 5, all three groups showed clear

similarities in relative size and composition of the modules,

suggesting that certain modular organization is conserved in AD.

For instance, Module 1 in all groups comprised almost same brain

regions and most of the regions in this module served as

connector-module (Table 3). Such similarities were also found in

the Module 4 and Module 5. Nevertheless, there were also

significant changes in the topological roles of regions and modules.

Module 2 in AD group were re-organized and segregated into two

modules (i.e., Module 6 and Module 7) in aMCI group. Therefore

Module 2 in aMCI group included a smaller number of regions;

the topological role of ‘‘connector-module’’ was inherited by

Module 6 in aMCI group (See methods section of the definition of

connector-module). In addition, the regions constituting Module 7

of the NC brain network were a subgroup of the brain regions

constituting Module 3 in AD and aMCI and were all subcortical

brain regions (bilateral caudate nucleus, lenticular nucleus (both

putamen and pallidium parts), and thalamus). Note that Module 7

in aMCI and NC groups had no overlap brain regions.

Interestingly, the topological role of Module 4 in NC group was

different (served as connector-module) compared to AD and

aMCI group, though it included almost the same set of brain

regions. Moreover, significant differences in the topological roles

of the modules in the brain networks of three groups were also

revealed. The connector-module was defined as the module that

had both high connector ratio and a high ratio of intermodule

connections. For patient groups, only two modules (Module 1 & 2

for AD, Module 1 & 6 for aMCI) were identified as connector-

module. The NC group showed a higher proportion of

intermodule connections and more connectors, e.g., three modules

(i.e., Module 1, 4, & 6) were classified as connector-module.

2.5 Functional-structural Connectivity Relationship
After averaging connectivity data across all subjects in the same

group, the probability densities of FC were categorized into two

classes: with SC and without SC. As shown in Figure 6A, when

direct SCs are present, the strength of FC is evidently larger than 0

(i.e., mean value (m) larger than 0) for all three groups; while when

direct SCs are absent, the strength of FC varies over a wide range

around 0 (i.e., with a mean value close to 0). Those findings are
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consistent with observations demonstrated in [26,40]. Interesting-

ly, when direct SC is present, m values of the FC distribution

presents an increase trend among three groups (AD,aMCI,NC).

However, for individual participants, the group effect of m values

failed to pass the significant level.

For data averaged across participants in each group, the FC-SC

correlation was r = 0.35 for AD, r = 0.36 for aMCI, and r = 0.37 for

NC (Figure not shown). When excluding region-pairs without SCs,

the correlation of group averaged data strengthens to r.0.48 for

all groups (see Figure 6B). For individual participants, the FC-SC

correlation coefficient ranged from 0.13 to 0.23 (Figure 7). The

detrimental effect of AD on the relationship between FC and SC

strength was statistically significant (ANOVA, F = 4.17, p = 0.02).

Post hoc comparisons showed significantly (p,0.05) reduced FC-SC

relationship in AD group relative to the aMCI patients and

controls.

Discussion

In this study, we investigated the changes of functional brain

networks associated with AD by graph theoretical analysis, and

found evidence that mostly supported our hypotheses. In

particular, three main findings were found. First, the organization

of the functional brain networks in aMCI and AD patients were

significantly disrupted, as indicated by reduced clustering coeffi-

cient and small-worldness. Moreover, the characteristics of brain

network in the aMCI patients displayed an intermediate position

between those of NC and AD patients. In addition, the results on

functional impairment of regional characteristics suggested that

AD related cognitive impairments might be related to the less

efficient information transfer. Second, we demonstrated that

functional brain networks exhibited modular organization in all

groups and changed greatly in the AD group. Compare to NC,

who represented a distributed organization, brain networks of AD

patients showed a more localized modular organization. Third, we

also reported, for the first time, a decline in the FC-SC coupling in

the progression from MCI to AD. Taken together, these results

extend our understanding of the neurophysiologic mechanisms

associated with aMCI and AD from a network perspective.

3.1 Small-world Properties and AD-related Changes
Our results showed that the resting-state brain networks of

aMCI and AD patients also exhibited a small-world topology,

which agrees well with previous fMRI studies on AD [8,11,34].

Note that though functional brain network of aMCI and AD

Figure 3. The distribution of brain regions with both significant (p,0.05, uncorrected) groups effects in BC and significant (p,0.05)
correlation between BC and MMSE scores. Each bar represents the average BC values for AD (red), aMCI (green), and NC (blue). Error bars
represent standard deviations (S.D.). The regions were overlaid on the brain surface at the Medium view. Post hoc pairwise comparison was
performed through Fisher’s least significant difference (LSD) with * indicates p,0.05 and ** indicates p,0.01. Regions showing positive correlation
are coded in purple and region showing negative correlation is coded in light grey. For the abbreviations of cortical regions, see Table S1. L = left;
R = right. The figure was visualized with BrainNet Viewer software (http://www.nitrc.org/projects/bnv/).
doi:10.1371/journal.pone.0096505.g003

Figure 4. Modularity Q of the functional brain networks for AD,
aMCI and NC groups with respect to sparsity. The black dashed
line indicates the threshold for the nonrandom community structure.
Note that only the modularity of AD group is less than 0.3 for S = 25%.
doi:10.1371/journal.pone.0096505.g004
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patients showed prominent small-world properties like that of NC,

the normalized clustering coefficient (c) and small-worldness (s)

were significantly lower in aMCI and AD compared to NC in both

low and high parcellation scales. Clustering coefficient represents

efficiency of local information transfer for specialized processing,

which is believed to constitute the basis of cognitive processes. The

disease related decrease in the normalized clustering coefficient

and small-worldness could be attributed to the hypo-metabolism in

aMCI and AD [41]. We also observed a progression pattern of the

altered network metrics from aMCI to AD, i.e., c and s of aMCI

patients showed median values between those of NC and AD

patients. The lower clustering and small-worldness in the aMCI

and AD networks indicate that normal balance between local

specialization and global integration was disturbed. Our result

thereby further supports the notion of AD as a disconnection

syndrome from a network perspective. More importantly, we

revealed that aMCI forms a boundary between normal aging and

AD and represents a functional continuum between healthy aging

and the earliest signs of dementia.

3.2 Disease Related Distinctions of Nodal Characteristics
Following the discovery of a disrupted global network organi-

zation in aMCI and AD, we further localized the brain regions

exhibiting significant altered nodal betweenness which also

correlates with the neuropsychological MMSE scores. Among

the three groups, we found that the regions with significant group

effects were mainly association and paralimbic cortex regions

(Figure 3). Most (6/7) regions showed significantly decreased nodal

centrality in AD; among them four brain regions (SPG.L, INS.L,

TPOsup.L, and AMYG.L) exhibited monotonically reduced nodal

betweenness with the progression of AD. Previous studies have

found that subjects with aMCI and AD had a significant loss in the

amount of gray matter in hippocampus, caudate nucleus, insula,

medial temporal lobe, parietal areas, and frontal cortex [2,42].

Therefore, the reduced nodal betweenness centrality might be

attributed to the regional gray matter reduction. Interestingly, one

region (LING.L) showed significantly increased nodal centrality in

AD. There is evidence for AD-related increases in blood-oxygen-

level dependent (BOLD) signal [43] and functional connectivity

[33] of lingual gyrus during cognitive tasks. In addition, He and

colleagues had also revealed an increase of nodal centrality in

lingual gyrus in structural brain networks in AD [9]. We

speculated that the increased betweenness centrality of LING.L

in AD might represent a compensatory process for the reduced

centrality in the regions described earlier. Together, our results

suggested that the roles of brain regions in managing information

transmission and functional integration over the networks were

profoundly affected in AD patients.

Figure 5. The modular structure of group averaged functional brain network at S = 10%. (A) Color coded modular structure plotted in the
anatomical space. The brain network is presented with the frontal cortex on the left of the panel and the occipital region on the right of the panel.
Inter-modular links are colored in gray for better illustration. Detailed information about the module regions and regional node roles for AD, aMCI
and NC groups are presented in (B). The module order was determined according the descending order of the region numbers in AD group. The
topological representations were drawn by the Pajek (http://pajek.imfm.si/doku.php). For the abbreviations of cortical regions, see Table S1. L = left;
R = right.
doi:10.1371/journal.pone.0096505.g005
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3.3 Abnormal Changes in Modularity
Resting-state functional brain networks have been described

consistently, indicating the existence of a modular organization

[13,44,45]. The highly modularized architecture elucidated in the

current study hence provided further support for the presence of

the modular structure in the functional brain network of healthy

controls, aMCI and AD patients. It has been suggested that such

modular organization contribute to various aspects of intrinsically

functional organization of human brain such as the balance

between brain functional segregation and integration while

conserving wiring cost and high resilience to network node or

edge damages [4]. The number of modules, five to seven modules,

we observed in our networks resembled what was found in

previous fMRI studies [13,44,45]. Key circuit components related

to the primary brain functions such as motor, auditory and visual

systems, were consistently detected in previous studies [13,19–

21,45]. Our results are also consistent with these findings: Module

1 was primarily associated with motor and somatosensory; Module

3 was mainly involved in the visual system; Module 4 was involved

in auditory and memory functions in all three groups. Despite

these convergence results, there were notable discrepancies in the

composition and topological roles of modules among the brain

networks in this study. The composition of the modules was quite

different among three groups (Figure 5). Two new modules

(Module 6 & 7) were identified in aMCI group, representing the

re-organization of the brain regions known as Module 2 and

Module 4 in the AD group. In NC group, two new modules

(Module 6 & 7) were revealed, representing the reorganization and

separation of subcortical regions from the areas known as Module

2 and 3 in AD group. In other words, the regions in the AD group

were assembled more densely, leading to the overnumbered

regions in modules. In addition, the modules in the aMCI and AD

groups seemed to be more locally organized, resulting in fewer

connectors and inter-module connections. The connectors were

crucial for maintaining network integrity; and intermodule

connections facilitated communication between different modules

[19,45]. Three connector-modules were identified in NC, while

only two were revealed in aMCI and AD groups. These findings

pointed in the direction similar to the results of age-related

changes in modular organization of human functional brain

networks [19,20], which indicated the organization of multiple

functional networks shifts from distributed organization in middle-

age groups to a more localized organization with great alternation

in old age.

3.4 Altered Functional-structural Relationship in aMCI
and AD

We observed an evident relationship between the strengths of

FC and SC in all three groups when structural connections are

present. This finding agrees with previous studies and provides

further support that functional linked resting-state connectivity is

reflective of the underlying structural connectivity architecture

[26,46]. We further assessed the possibility of inferring the

presence of SC through thresholding FC and found that the

prediction was not reliable (data not shown), indicating that the

functional and structural organization of the brain network is not a

one-to-one relationship [4,26,47]: the anatomically unconnected

edges also exhibit FC with strength in a wide range (Figure 6A).

The presence of FC in the absence of SC may reflect that two

functional connected cortical regions may be connected via a third

region without a direct structural connection.

More interestingly, a decreased coupling between FC and SC

was observed in AD patients. Further analysis reveals that the

overall level of SC strengths was significantly reduced in AD
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patient groups (data not shown), supporting previous observations

[7]; yet the FC strengths did not show significant group effects. We

speculated that the decreased correlation between FC and SC in

AD may attribute to (i) the asynchronous decrease of the FC and

SC, and (ii) functional interactions are less directly related to the

underlying anatomical connections in AD. The decreased FC-SC

coupling may be indicative of more stringent and less dynamic

brain function in AD patients. It is notable that this is the first

work, to our knowledge, which finds a decreased relationship

between FC and SC in AD. We demonstrate that AD related

brain dysfunctions can be characterized by profiles of FC – SC

relationship.

3.5 Methodological Issues
There are several issues that should be addressed. First, it has

been suggested that functional brain networks share similar

topological features with anatomical networks, implying a close

relationship between brain function and structure. Although the

results of the current study mainly obtained from functional brain

networks, similar findings have been revealed in the structural

brain networks, further proving that AD is a disconnection

syndrome (R. Fang, et al., unpublished data). Combining different

modalities would aid in uncovering how the functional brain

network changes are associated with underlying anatomical

changes in aMCI and AD. Second, recent studies have suggested

that the node definition by different parcellation scales might result

in different properties of brain networks [48–52]. In the current

study, two parcellation scales were adopted and the network

analysis of global properties corresponding to these two scales

showed comparable results, i.e., in both parcellation scales, small-

world network properties were decreased with AD progress.

Figure 6. The overall FC-SC relationships. (A) The probability densities of FC strengths between structurally connected and unconnected
regions pairs. When direct SC presents, higher FC strength appears than the case direct SC absents, indicating a robust relationship between FC and
SC. (B) Scatter plot of SC strength against FC strength for the regions with direct SC. Further analysis showed significant coefficient between FC and
SC strengths for all groups. Data are from group averaged functional connectivity matrix of AD, aMCI, and NC groups, at the high resolution
(102461024).
doi:10.1371/journal.pone.0096505.g006

Figure 7. The functional connectivity (FC) – structural connec-
tivity (SC) coupling for AD patients, aMCI patients, and healthy
controls. AD patients exhibited a significant decrease in FC-SC
coupling compared to aMCI patients and healthy controls. Significant
statistical differences are indicated with * for p,0.05 and ** for p,0.01.
doi:10.1371/journal.pone.0096505.g007
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Graph theoretical analysis with different spatial resolution would

be necessary and important to provide more comprehensive

information of the topological alterations of the brain networks in

AD patients. Note that the comparison of network parameters

across studies must be made with reference to the spatial scale of

the nodal parcellation [48]. Third, we constructed weighted

functional brain networks with estimating the Pearson’s correla-

tion coefficients between the time series of BOLD signals in the

frequency interval of 0.01–0.08 Hz between all possible pairs of

regions. One recent study reported that certain subset of frequency

band, i.e., 0.031–0.063 Hz, is more sensitive for detecting the

topological aberrations in aMCI patients [53]. Accumulating

evidence also revealed frequency-dependent functional changes in

the brain under various clinical conditions [54,55]. Therefore,

future studies considering the frequency specificity will provide a

comprehensive understanding about the pathophysiological mech-

anisms of aMCI and AD. Finally, considering the small number of

subjects was used in this study, a further study is needed to assess

the reproducibility of the obtained results with a large number of

subjects.

To summarize, we quantitatively analyzed the changes in small-

world properties and modularity of functional brain networks in

NCs, aMCI and AD patients. Our results of global network

metrics indicated that although the overall small-world property is

preserved in aMCI and AD patients, clustering coefficient and

small-worldness are progressively decreased during AD develop-

ment. We also demonstrated that inter-modular connections seem

to be vulnerable in aMCI and AD, suggesting the relevance of a

network perspective on dementia and further proving AD as a

disconnection disease. More importantly, we found, for the first

time, a dissociated relationship between functional and structural

connectivity in AD. We interpret our finding as a proof of

principle, providing insightful implications on how the brain

regions interact abnormally in patients with aMCI and AD, and

demonstrating that functional brain disorders can be characterized

by multimodal neuroimaging-based metrics.

Materials and Methods

4.1 Participants
Participants for this study were 41 right-handed subjects,

comprising 12 patients with AD (4 males), 15 patients with aMCI

(7 males) and 14 sex-, age-, and education-matched normal control

subjects (NC, 6 males) recruited from the neurology department of

Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

All participants were native Chinese speakers. Written informed

consent was obtained from each participant following a complete

description of the study, and the study was approved by the

Institutional Review Board of the Ruijin Hospital. Ethics review

criteria conformed to the Declaration of Helsinki. Diagnostic

evaluation was performed by a board-certified neurologist using

information obtained from the clinical history, mental statues

examination, existing medical records, and the administration of

the DSM-IV disorders-Patients Version (SCID-P). All participants

were assessed using a standardized clinical evaluation protocol that

included the Mini-Mental State Examination (MMSE) [56], the

Clinical Dementia Rating Scale (CDR) [57], the Activities of Daily

Living Scale (ADL) [58], and the Addenbrooke’s Cognitive

Examination Revised (ACER) [59]. The diagnosis criteria of each

group were the following: (1) AD group: participants should meet

the McKhann criteria of probable AD of the National Institute of

Neurological and Communicative Disorders and Stroke and

Alzheimer Disease and Related Disorders Association

(NINCDS-ADRDA) [60]; (2) aMCI group: subjects should meet

the Petersen’s criteria [1] and exhibited objective evidence of

impaired memory compared to normal subjects matched for age,

gender and education (the Auditory Verbal Learning Test (AVLT

of Chinese version) [61], AVLT-delayed scores: #4, between 51–

60 years; #3, between 61–70 years; and #2, over 71 years, see

Table S3); (3) NC group: control subjects denied any significant

neuropsychiatric disease or memory problem and were not taking

any psychoactive medication. Healthy subjects with a MMSE

score less than 26 and patients with neurologic disease other than

AD and aMCI, which might impair the current study, were not

eligible for the study. All magnetic resonance imaging data were

collected immediately upon diagnosis. The detailed demographics

and clinical characteristics of the participants were presented in

Table 1.

4.2 Data Acquisition
MRI data were acquired using a GE 3-Tesla MR scanner

(Signa HDxt 3T, GEMS, GE Healthcare) in the radiology

department of Ruijin Hospital, Shanghai Jiao Tong University,

Shanghai, China. Functional data was obtained using a single-shot

echo-planar imaging (EPI) sequence and the acquisition param-

eters consisted of the following: repetition time [TR] = 3000 ms,

echo time [TE] = 40 ms, field of view [FOV] = 24624/Z, flip

angle = 90u, matrix size = 64664, NEX = 1. Twenty-seven slices

(5 mm slice thickness with no gap in-between) were acquired in an

inferior to superior direction in sequential order. During the data

acquisition, participants were required to lie quietly in the scanner

with their eyes closed to minimize motion artifacts. The scan

included 120 volumes for each participant. For each subject, three

dimensional high resolution T1-weighted images were also

obtained by a magnetization prepared rapid acquisition gradient

echo (MPRAGE) sequence with the following parameters:

TR = 5.6 ms, TE = 1.8 ms, flip angle = 15u, matrix

size = 2566256, voxel resolution = 16161 mm3.

4.3 Data Preprocessing and Network Construction
Data preprocessing was carried out using Statistical Parametric

Mapping (SPM8, http://www.fil.lon.ucl.ac.uk/software/SPM8/;

Wellcome Trust Center for Neuroimaging, University College

London), resting-state fMRI data analysis toolkit (REST) [62] and

Data Processing Assistant for Resting-State fMRI (DPARSF) [63]

running under Matlab 2011a. Briefly, prior to preprocessing, the

first 10 volumes were discarded considering the instability of the

initial signals and the subjects’ adaption to the environment. The

remaining fMRI volumes were corrected for different signal

acquisition times by shifting the signal measured in each slice

relative to the acquisition of the slice at the mid-point of each TR.

Then, the time series of images for each subject were realigned to

the first volume (i.e., the original 11th volume) to compensate the

inter-scan head motion artifacts using a least squares approach

and a six-parameter linear transformation [64]. Exclusion

threshold for excessive head movement was set as.3 mm or 3u
in this study. All subjects were eligible for these criteria. The

relative displacements (FD-Jenkinson) for all three groups were

found to be small (mean 6 S.D. for AD: 0.07960.056 mm,

aMCI: 0.07160.032 mm, and NC: 0.07860.043 mm). No

statistical differences were found among three groups (ANOVA,

F = 0.161, p = 0.852). A standard template (Montreal Neurological

Institute) was then employed to normalize the resulting motion-

corrected functional volumes [65], which were further resampled

to 36363 mm3 and spatially smoothed by convolution with an

isotropic Gaussian kernel (FWHM = 4 mm). The temporal wave-

form of each voxel was finally band passed into 0.01–0.08 Hz to

reduce the effect of every low frequency drift and high frequency
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physiological noise. For more details about the data preprocessing,

please refer to [63].

To study the topological properties of functional brain networks

among three groups, we examined the correlation matrices using

graph theoretical analysis. In the current study, two parcellation of

regions of interest (ROIs) (low: 90 ROIs, and high: 1024 ROIs)

were employed to investigate the dependence of functional brain

networks on different nodal scales. To construct the brain

networks on low resolution, we employed the automated

anatomical labeling (AAL) atlas to parcellate the brain into 90

ROIs (denoted as AAL-90, 45 for each hemisphere, see Table S1)

[66]. Prior to the BOLD signal estimation, the whole-brain signal,

cerebrospinal fluid and white matter signals were removed as

nuisance variables to reduce the effect of the physiological artifacts

and non-neuronal BOLD fluctuations [67]. Representative time

series (110 time-points) of each ROI was then obtained by

averaging the time series of each voxel with that region. Pearson

correlation coefficient, which represented the functional connec-

tivity strength, was then calculated between all possible pairs of

ROIs. A Fisher’s-Z transformation was applied to the correlation

matrices to improve the normality of the correlation coefficients

[68] and further reduce the relationships between motion and

inter-individual differences in the obtained functional connectivity

matrixes [69]. For high resolution ROI partition, a template of

1024 ROIs (called AAL-1024), which are with almost equal size of

brain regions and sub-divided from the AAL-90 template [49], was

adopted. The parcellation scheme of the AAL-90 and AAL-1024

was presented in Figure S1. The functional connectivity matrix

acquisition procedures were repeated for high parcellation scales.

Then we obtained two correlation matrices (90690 & 102461024)

for each subject at the low and the high resolution parcellation

respectively. A flowchart for the construction of resting-state

functional brain network is shown in Figure 1A. These matrices

served as the input for revealing the global topological organiza-

tion of brain networks. We assessed the matrices at 11 different

sparsity levels from 10% to 25%, at intervals of 1.5%. For a given

network G with N nodes, sparsity (S) is defined as ratio of the actual

edge number (K) to the maximum possible edge number [i.e., N(N-

1)/2] in the network. Through choosing a threshold that preserves

a specified percentage of the strongest edges in the network, it is

possible to compare the topological organization among different

groups.

4.4 Graph Theoretical Analysis
Graph theory is a natural framework for the mathematical

representation of complex networks. Recently, graph theory has

attracted considerable attention in brain network research because

it provides a powerful way to quantitatively describe the

segregation and integration of brain network from the perspective

of the topological organization [5]. In this study, graph theoretical

analysis was conducted with Brain Connectivity Toolbox [70].

4.4.1 Global network metrics. Three network metrics, i.e.,

normalized clustering coefficient (c), normalized shortest path

length (l), and small-worldness (s), were adopted to reveal the

global topological aberrations of the brain networks in AD and

aMCI. The clustering coefficient is an index of the local inter-

connectedness of the network, whereas the characteristic path

length is an indicator of its overall connectedness [15]. Optimal

brain functioning requires a balance between local specialization

and global integration [4,71]. For a given network G with N nodes,

the clustering coefficient Ci of a node i is defined as the ratio of the

number of existing edges between its neighbor vertices to the

number of maximum possible edges between the neighbor

vertices:

Ci~
2
P

j,k wijwjkwki

� �1=3

ki ki{1ð Þð Þ , ð1Þ

where ki is the number of edges connecting node i, and wij is the

edge weight (i.e., correlation coefficient) between node i and node

j. The clustering coefficient Cw of the network was calculated as the

mean of the clustering coefficients Ci of all the nodes in the

network. In network, a path between node i and node j refers to an

edge that directly connects them or a sequence of edges that link

them through other nodes. Then the shortest path length between

node i and node j is defined as the minimum one of the sum of the

edge lengths along all possible paths. Further, the shortest path

length Lw of a weighted graph was defined as the mean of the

shortest path length of all pairs of nodes. In the present study, the

reciprocal of the edge weight (1/wij) was denoted as the length of

an edge. To examine the small-world properties, the normalized

weighted clustering coefficient c~Cw

�
Crand

w and the normalized

shortest path length l~Lw

�
Lrand

w of brain networks were

computed, in which Crand
w and Lrand

w denote the average weighted

clustering coefficient and the average shortest path length of an

ensemble of 100 surrogate random networks. These random

networks were derived from the original brain network by

randomly rewiring the edges between nodes while preserving the

weight distribution [72]. These two metrics can be unified as one

metric, called small-worldness, i.e., s = c/l. A real network is

considered as small-world network if it meets the criteria: c&1 and

l<1 [71].

4.4.2 Regional nodal characteristics. In the current study,

regional nodal characteristics were assessed via node betweenness.

The betweenness centrality bci of a node i is defined as the number

of shortest paths between pairs of other nodes that pass through

the node [73]. We calculated the normalized betweenness as

BCi~bci=SbciT, where SbciT was the average betweenness of all

nodes. Hence, the BCi captures the influence of a node over

information flow between other nodes in the network. We then

averaged the normalized betweenness across the sparsity range

(10%,S,25%) to obtain the salient regional nodal characteristics

[74].

4.4.3 Modularity and regional role. Modularity is a

fundamental concept in systems neuroscience, referring to the

formation of local modules that nodes in the same module are

densely connected to each other while nodes in different modules

are sparsely connected [23]. Several algorithms have been

proposed to quantify the partition in terms of module separation,

i.e., how well a partition differentiates subsets of nodes tightly

connected [75]. The modularity value Q of a network G for a given

partition can be quantified as the proportion of G’s edges that fall

within modules, subtracted by the proportion that would be

expected due to random chance alone:

Q Gð Þ~ 1
2m

P
i=j

Aij{Pij

� �
d Mi,Mj

� �
, ð2Þ

where m is the total number of edges; Aij = 1 if an edge links node i

and j; d Mi,Mj

� �
is 1 if node i and j are in the same module and 0

otherwise (ensure that only intra-modular edges are added to the

sum), and Pij is the probability that there exist an edge between

node i and node j, given a random network comparable to G [23].

The value of Pij could be estimated by Pij~kikj

�
2m, where ki is

the total number of edges connecting node i. A strongly modular

network has modularity value close to 1 while a network without

modular organization has modularity value close to 0. It is
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generally accepted that maximal values of Q$0.3 are indicative of

non-random community structure. The spectral algorithm was

adopted here for community detection [39].

In the current study, the community structure for the group

averaged functional brain network were estimated at low

parcellation scale (90690) for the three groups respectively at a

specific sparsity threshold S~10% [20]. With this threshold, we

can capture the network backbone underlying the modular

organization of the most sparse yet maintain the connectedness

(the ability for every node to reach other node in the network) for

all the three groups [19] (see Figure S2). To further classify the

nodes according to their topological functions in the network, two

additional metrics, i.e., the within-module betweenness centrality

(sBCi) and participation coefficient (PCi), were employed

[19,76,77]. The sBCi is the betweenness centrality obtained within

the module where node i belongs. PCi measures the inter-module

connectivity of a node i:

PCi~1{
XNM

s~1

kis

ki

� �2

, ð3Þ

where ki is the total number of edges linking to node i, kis is the

number of edges linking node i to other nodes in the module s, and

NM is the total number of modules. PCi will be close to 1 if node i

has a homogeneous connection distribution with all the modules

and 0 if it is linked exclusively to other nodes in its own module. A

node could then be defined as modular hub if sBC . mean + S.D.

and as a non-hub otherwise. In terms of PC, the hub node could be

further characterized as connector hubs if PC.0.4, and otherwise

as provincial hub. For non-hub node, node with PC.0.4

corresponds to connector node and node with PC#0.4 is classified

as provincial node [19,45]. In addition to discrepancies in the

composition and numbers of modules, we further investigate the

topological roles of the modules in the brain networks. Connector

coefficient of each module was calculated as the ratio between the

number of connector nodes and the number of all nodes. The

connector-module could then be defined as the module that has a

high connector coefficient (connector coefficient w0:6) and a high

ratio of intermodule connections (.1/number of modules)

[19,20].

4.5 Relationship between Functional Connectivity and
Structural Connectivity

As a neurodegenerative disease, it has been widely accepted that

AD is an anomaly of anatomic and/or functional connectivity

[8,37]. How the function-structural relationship varies as the

progression of AD, however, is only beginning to be revealed. In

the current study, structural connectivity (SC) was measured using

diffusion tensor imaging (DTI). DTI fiber tractography is a direct

way to depict the SC of brain network, by providing putative

bundle pathways of macroscopic white matter fibers linking

cortical areas. SC matrix was constructed with a toolbox for

analyzing brain diffusion images [78]. A detailed flowchart for the

SC network construction was shown in Figure S3. The nodes of

the structural network were taken in a similar manner as the nodes

in the functional network to enable the following analysis between

the two types of networks. The relationship between the strength

of FC and SC were firstly assessed in the three groups through

examining the probability densities of FC when SC is present or

absent [26]. We expect to observe a more robust relationship

between the strength of FC and SC when direct SC is present –

the mean value of the FC distribution should be significantly

higher than 0. To further quantify the relationship between FC

and SC and investigate the alternation of FC-SC coupling in AD

and aMCI, we estimated the correlation coefficient of all nonzero

entries of the SC matrix and their functional counterparts selected

from FC matrix in each group (Figure 1B). This resulted in a single

FC-SC coupling metric for each of the subjects. In order to obtain

the refined probability densities of FC, the FC-SC relationship was

estimated only at high-resolution (102461024) in the current

study.

4.6 Statistical Analysis
A one-way analysis of variance (ANOVA) model comprising

Group (AD, aMCI, & NC) as a between-subject factor was

employed in the present study. Such model was adopted for global

network metrics (i.e., c, l, and s) at a specific sparsity threshold of

S = 10%; and integrated network metrics (i.e., Ic, Il, and Is) which

corresponded to the areas of curves within the sparsity range of

10%{25% [6]. If main group effects were significant by ANOVA,

between-group differences of network metrics were then deter-

mined by post hoc least significant difference (LSD) analysis. For the

investigation of the nodal betweenness, ANOVA was performed to

reveal the significant difference of the nodal centrality among the

three groups. Bivariate association between the network param-

eters and clinical diagnostic results were assessed with Pearson’s

correlations. A value of p,0.05 was considered significant. Note

that the statistical results of the multiple ANOVAs entailed for the

regional nodal analysis were considered as significant if p,0.05

(uncorrected) and were reported as exploratory results in nature.

To investigate the influence of AD on the FC-SC coupling, a one-

way ANOVA was conducted. All analyses were performed using

SPSS (version 17.0, IBM, Armonk, New York).

Supporting Information

Figure S1 Two parcellation scales, (A) AAL-90 and (B)
AAL-1024, were overlaid on the brain surface at the
medium view.

(TIF)

Figure S2 The size of the largest connected component
of the functional brain networks for AD, aMCI and NC
groups as a function of sparsity threshold. The largest

connected component increases with the increment of sparsity.

The black vertical line indicates the sparsity for a fully connected

network among all the three groups.

(TIF)

Figure S3 The flowchart of the structural brain network
construction. (1) The rigid coregistration from structural T1-

weighted image (B) to the corresponding b0 image (C) through an

affine transformation was initially performed. (2) A nonlinear

transformation T was then obtained when registered the T1-

weighted image (B) to the ICBM152 template in the Montreal

Neurological Institute (MNI) space (A). (3) The inverse of the

transformation (T21) was applied to the high-resolution AAL

template (D) to generate the corresponding subject-specific AAL

mask (E). (4) The DTI (F) was constructed from the diffusion

weighted images (C). (5) White matter fiber (G) reconstruction in

the whole brain was performed using fiber assignment by

continuous tracking (FACT) algorithm. The weighted network

(SC network) of each subject was created by computing the fiber

numbers that connected each pair of brain regions.

(TIF)
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Table S1 Abbreviations of cortical regions of automated

anatomical labeling (AAL-90). The brain regions were defined in

terms of a prior template of an automated anatomical labeling

(AAL) atlas defined by Tzourio-Mazoyer et al. 2002 [66]. Odd

number index for left hemisphere and even number in the right

hemisphere.

(DOCX)

Table S2 Comparisons of the integrated global networks

measures over the sparsity range of 10%–25% among the AD,

aMCI and NC groups. Values are represented as the mean (S.D.).

For each participant, two functional connectivity networks were

obtained via different parcellation scales (low: 90690, and high:

102461024). The comparisons of the integrated global network

measures among the three groups (AD, aMCI, & NC) were

estimated using ANOVA. The bivariate correlation of the network

metrics with MMSE was performed using Pearson’s correlation.
{Post hoc test showed significant group difference between control

v.s. AD; Post hoc pairwise comparison was performed through

Fisher’s least significant difference (LSD) and p,0.05 was

considered significant. Bold data indicates statistical significance.

(DOCX)

Table S3 Neuropsychological data between NC and aMCI

patients. NC: normal control subjects; aMCI: amnestic mild

cognitive impairment patients; AVLT: auditory verbal learning

task (Chinese version) [79]; SCWT: Stroop color-word test [80];

CDT: clock-drawing test; AVF: animal verbal frequency. p,0.05

was considered significant, and bold data indicated statistical

significance. b Missing data of 1 subject in aMCI group.

(DOCX)
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