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The attribution of incentive salience to reward associated cues is critical for motivation
and the pursuit of rewards. Disruptions in the integrity of the neural systems controlling
these processes can lead to avolition and anhedonia, symptoms that cross the diagnostic
boundaries of many neuropsychiatric illnesses. Here, we consider whether the habenula
(Hb), a region recently demonstrated to encode negatively valenced events, also modulates
the attribution of incentive salience to a neutral cue predicting a food reward.The Pavlovian
autoshaping paradigm was used in the rat as an investigative tool to dissociate Pavlovian
learning processes imparting strictly predictive value from learning that attributes incentive
motivational value. Electrolytic lesions of the fasciculus retroflexus (fr ), the sole pathway
through which descending Hb efferents are conveyed, significantly increased incentive
salience as measured by conditioned approaches to a cue light predictive of reward.
Conversely, generation of a fictive Hb signal via fr stimulation during CS+ presentation
significantly decreased the incentive salience of the predictive cue. Neither manipulation
altered the reward predictive value of the cue as measured by conditioned approach to
the food. Our results provide new evidence supporting a significant role for the Hb in
governing the attribution of incentive motivational salience to reward predictive cues and
further imply that pathological changes in Hb activity could contribute to the aberrant pursuit
of debilitating goals or avolition and depression-like symptoms.
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INTRODUCTION
Cues and imagery associated with rewards can evoke pleasure,
motivate approach, and lead to reward consumption. The integrity
of the motivational systems controlling these processes are critical
to an individual’s functional capacity and quality of life; disrup-
tions can lead to amotivation, avolition, and anhedonia, symptoms
that cross the diagnostic boundaries of many neuropsychiatric dis-
orders (Insel et al., 2010; Cohen et al., 2012; Morris and Cuthbert,
2012). While an imbalance in the opposing constructs mediating
approach and avoidance could contribute to the development of
these clinical symptoms, avoidance fails to faithfully capture the
clinical features of anhedonia and avolition. Rather, these mal-
adaptive behaviors could reflect functional changes in systems
encoding the incentive salience of stimuli predicting reward. For
example, increased attribution of incentive salience to reward cues
could lead to reduced impulse control and the aberrant pursuit of
rewards while a failure to appropriately assign incentive salience
to reward cues is likely to diminish motivation and volition.

The Pavlovian autoshaping paradigm is a method well suited
to investigate the circuitry underlying attribution of incentive
salience (Brown and Jenkins, 1968; Gamzu and Williams, 1973;
Pellegrini et al., 2008). In this procedure, repeated presentation
of a stimulus prior to reward delivery results in a quantifiable and
progressive increase in conditioned approach toward the goal (e.g.,
food) as the predictive value of the cue is learned. This conditioned
response is termed “goal-tracking.” A quantifiable and progressive
increase in conditioned approach to the stimuli can also occur

as it is increasingly endowed with incentive salience. This condi-
tioned response is termed“sign-tracking.” The paradigm offers the
possibility of separately assessing predictive value from the moti-
vational salience associated with cues predicting reward delivery.
Recent studies demonstrate that dopamine (DA) transmission is
required for sign-tracking but not for goal-tracking (Day et al.,
2007; Danna and Elmer, 2010; Flagel et al., 2011b).

The circuitry responsible for producing changes in DA cell
activity associated with the attribution of incentive salience is
incompletely understood. Considerable interest has developed in
the role of the lateral habenula (LHb) and rostral medial tegmen-
tum (RMTg) in mediating the transient suppression in DA cell
firing associated with negative reward prediction errors (Hong
et al., 2011). LHb neurons are coherently activated by the absence
of expected rewards (Matsumoto and Hikosaka, 2009) and are
presumed to mediate their influence on DA cell firing via con-
nections with GABAergic RMTg neurons (Hong et al., 2011). In
addition to its functional role in encoding negatively valenced
associations, increased LHb activity during reward anticipation
(Bromberg-Martin et al., 2010), and in animals predisposed to
assigning motivational properties to neutral cues (Flagel et al.,
2011a) suggest a role in governing the attribution of incentive
salience. To date, this possibility has not been systematically
explored.

In the present series of experiments, electrolytic lesions and
electrical stimulation of the fasciculus retroflexus (fr), the sole
pathway through which descending LHb efferents are conveyed,
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were used to assess the contribution of this pathway to specific
components of the Pavlovian autoshaping procedure. Our results
provide new evidence supporting a significant role for the Hb
in governing the attribution of incentive motivational salience to
reward predictive cues.

MATERIALS AND METHODS
SUBJECTS
Adult, male, Sprague-Dawley rats (Charles River Laboratories,
Wilmington, MA, USA) weighing approximately 225–250 g at the
start of the experiment were used as experimental subjects. Rats
were housed in a temperature controlled vivarium under a 12:12 h
light:dark cycle and provided unrestricted access to food prior to
the start of the behavioral experiments. All studies were conducted
in strict accordance with the principals outlined in the NIH Guide
for Care and Use of Laboratory Animals and were sanctioned by
the Institutional Animal Care and Use Committee of the University
of Maryland, Baltimore.

PAVLOVIAN AUTOSHAPING PROCEDURE
Six rat operant chambers (dimensions 25 cm L × 21 cm W × 20 cm
H; Med Associates, St. Albans, VT, USA) under the control of
Med Associates software were used during the completion of these
experiments. Each chamber was equipped with two custom cue
lights consisting of a translucent 6 × 6 cm panel positioned on
either side of a pellet delivery system. One light in each chamber
was covered with translucent blue plastic to enhance the differ-
ence between visual cues. A pellet delivery system provided a
single 45 mg sucrose pellet to a small recessed receptacle located
between the two cue lights. Entrances into the pellet receptacle and
approaches to each cue light were detected by separate infrared
photobeam detectors. Rats were required to be within 2 cm of the
cue light to interrupt the beam. A retractable lever was positioned
in the middle panel at the opposite end of the chamber from the
stimulus lights and pellet receptacle.

Subjects were maintained at 85% of their free feeding weight
by rationing daily food allotment. For nine consecutive days, rats
were placed in an operant chamber for a single session consisting
of 30 trials in which a single CS+ or CS− cue was presented
pseudo-randomly for a variable interval of 20 sec (±10 s).

Three experiments were conducted using the same autoshape
procedure, two using fr lesioned animals and one using electrical
stimulation (see Table 1). fr Lesion. In one group, a full contrast
conditioning schedule was used; subjects were reinforced 100%
of the time the CS+ was presented and 0% when the CS− was
presented. A separate group of fr lesioned rats, a partial con-
trast conditioning schedule was used (henceforth termed CS33).
Subjects were reinforced 100% of the time when the CS+ was pre-
sented and 33% of the time when the alternate CS was presented.
Electrical stimulation. Only the full contrast schedule was used
in the electrical stimulation study. In all conditions, a retractable
lever was presented at the rear of the chamber thirty sec after stim-
ulus presentation. The rat was required to press the lever in order
to advance to the next trial ensuring that the animal was equidis-
tant from both cues at the time of presentation (Parkinson et al.,
2000).

Table 1 | Experimental conditions for lesion and electrical stimulation

studies.

Experiment Groups Sub-groups n

fr Lesion full contrast Sham 10

Lesion 8

fr Lesion partial contrast Sham 6

Lesion 7

Stimulation Stim during CS+ Stim 7

Stim during US Stim 8

Sham 8

ELECTROLYTIC LESIONS OF THE FASCICULUS RETROFLEXUS
Prior to the start of autoshape training, two groups of rats
were anesthetized with ketamine (80 mg/kg, i.p.) and xylazine
(10 mg/kg, i.p.) and mounted in a stereotaxic apparatus using atra-
matic ear bars. The scalp was incised and two burr holes drilled
on both sides of the skull overlying the caudal diencephalon (AP:
−4.56 mm from Bregma, ML: 0.5 mm from midline, Paxinos
and Watson, 2007). A concentric bipolar stimulating electrode
(SNEX-100, Rhodes Medical Instruments) was lowered into the
region of the fr (7.3 mm below pial surface) and a DC current
(0.5 mA) was applied for 15 s using a constant current stimu-
lator. These parameters were empirically derived to produce a
lesion restricted to the diameter of the fr. Electrolytic fr lesions
were made consecutively on each side of the brain. Sham control
animals underwent an identical surgical procedure with the excep-
tion that no current was passed through the stimulating electrode.
Four days following surgery, rats entered the behavioral arm of the
study.

STIMULATION OF THE FASCICULUS RETROFLEXUS
A separate group of rats was prepared for surgery and implanted
with stimulating electrodes in the fr in a manner identical to that
described above for the sham control group. Once positioned, the
electrodes were affixed to the skull using DenMat dental cement
(Santa Maria, CA,USA). Four screws, affixed to parietal and frontal
skull, served as anchors. Rats recovered in their home cages for
4 days prior to entering the behavioral arm of the study. Prior
to the start of each session, rats were connected to a Med Asso-
ciates PHM-152 stimulator. Electrical stimulations consisted of
four 3-s trains of rectangular constant current pulses (0.25 mA;
3 Hz) and were applied during the CS+ presentation (CS+ Stim)
or simultaneously with reward delivery (US Stim). A concentric
bipolar stimulating electrode (SNEX-100, Rhodes Medical Instru-
ments) was used to deliver stimulation. Stimulation parameters
were based upon the approximate spontaneous firing rate of the
Hb projection neurons (between 2.2 and 4.3 Hz; Weiss and Veh,
2011) and results demonstrating significant DA inhibition in the
VTA and substantia nigra (97%; Ji and Shepard, 2007). A smaller
current was used in the present study (0.25 vs. 0.5 mA) to confine
the spread of electrical stimulation. Repeated stimulation with a
longer train was used to suppress DA neurons for a longer dura-
tion of the CS or US presentation. The Sham control rats were
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attached to the swivel but were not connected to the stimulator.
CS+ Stim, US Stim, and Sham groups were run concurrently to
allow joint comparison with the Sham controls.

Histology
Following the completion of experimental procedures, animals
were euthanized and the brains were removed, sectioned, and
stained with cresyl violet for verification of lesion and electrode
placements. In order to be included in the statistical analysis,
lesions were required to ablate at least 25% of the fr on a given
side and, at least 75% of the combined bilateral area of the fr.

Analysis
During the session, approach to the reward (US) and cue lights
(CS) were quantified by photobeam breaks. Approach to the
reward dispenser during the CS+ presentation is a conditioned
response that reflects anticipation of reward delivery, referred
to herein as goal-tracking. Approach to the CS+ cue during its
presentation is a conditioned response that reflects the transfer
of incentive motivational value to the predictive cue referred to
herein as sign-tracking. The number of approaches to the CS+
and CS− lights during illumination and the difference score (CS+
approaches minus CS− approaches) as well as the number of beam
breaks within the reward dispenser during CS+ and CS− pre-
sentation, and the corresponding difference score, were used as
dependent variables. The number of approaches and difference
scores were analyzed using one-, two-, or three-way repeated mea-
sures analysis of variance (RMANOVA) as appropriate. Tests for
unequal variance and all statistical analyzes were performed using
JMP software (Cary, NC, USA).

RESULTS
fr LESION
Full contrast conditioning schedule
Sham and lesioned animals learned the association between
stimulus presentation and reward delivery (Figure 1). In both
experimental groups, repeatedly presenting the CS+ cue prior
to reward delivery resulted in a gradual increase in goal-tracking
and sign-tracking during presentation of the CS+ compared to
the CS− (F(session × cue) = 9.9; df = 2,21, p = 0.009). Indi-
vidual subjects were equally likely to exhibit goal-tracking as
sign-tracking.

Sign-tracking: The effects of fr lesion on conditioned approach
to the CS+ and CS− as well as the difference score (CS+ approach
minus CS− approach) is presented in Figure 1, panels A and B,
respectively. fr lesion significantly increased sign-tracking com-
pared to the sham group (CS+: F(lesion) = 18.44, df = 1,11,
p = 0.002). Importantly, the number of approaches to the CS+ cue
was similar during the first several sessions; differences between
the two groups increased as they gained more exposure to CS+: US
pairings (CS+: F(lesion × session) = 10.75, df = 2,10, p = 0.003).
The sham and lesion groups did not differ in their approach to
the CS−.

Goal-tracking: Both groups of animals learned that the CS+
predicted reward delivery as demonstrated by increased goal-
tracking during the CS+ presentation across training sessions
(F(session) = 11.57; df = 2,17, p = 0.0007; Figures 1C,D). Neither

FIGURE 1 | Full contrast conditioning schedule. (A–D) represent the
effects of fr lesions on conditioned approach to each CS (A) and to the US
(C) during the CS+ and CS− presentation. (B,D) represent the difference
scores (CS+ minus CS−) derived from values represented in (A,C). n = 10
and 8 for the Sham and Lesion groups, respectively. Error bars represent
S.E.M. *p < 0.01.

the absolute number of entries into the pellet dispenser during the
CS+ or CS− presentation nor difference score was altered by fr
lesion.

Figure 2 shows a representative photomicrograph of an fr
lesion. Additional analysis demonstrates a functional relationship
between lesion size and behavioral consequence. When animals
that did not meet lesion criteria were considered (partial lesion
but less than criteria), there was a significant correlation between
number of approaches to the CS+ during the last three sessions
of the training period and the extent of the fr lesion (n = 14 total;
r2 = 0.32; p = 0.03). There was no correlation between the extent
of the fr lesion and the number of approaches to the CS− or con-
ditioned approach to the pellet receptacle. Overall, histological
evidence of lesion, significant behavioral consequence of sham vs.
lesion, and significant correlation between lesion size and behav-
ioral are all supportive evidence for the argument that amperages
were sufficient to affect the fr. Interestingly, a 25% lesion to the
outer portion of the fr would suggest destruction of primarily LHb
output since the lateral habenular efferents compose the man-
tle portion of the bundle (Herkenham and Nauta, 1979). This
would explain why a partial fr lesion would be effective since it
would constitute a much larger portion of the reward-relevant
LHb. Furthermore, since there is contralateral innervation of mid-
brain structures from the LHb, a partial lesion would have bilateral
influence.

Partial contrast conditioning schedule
Introduction of a partially reinforced CS (33%; CS33) had a
marked effect on sign-tracking (Figure 2). Unlike the full contrast
schedule, sham treated rats were initially unable to distinguish
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FIGURE 2 | Representative photomicrograph of an fr lesion.

Photomicrograph of section stained with cresyl violet. Electrolytic fr
lesions were made consecutively on each side of the brain. Orange
shaded region on the right highlights fr location and the arrows on outline

the perimeter of the electrolytic region. Sham control animals underwent
an identical surgical procedure with the exception that no current was
passed through the stimulating electrode. Coronal section from Paxinos
and Watson (2007).

between the CS+ and CS33, approaching both with equal fre-
quency during the first three sessions of training. However, over
the course of the next six sessions, sham-treated rats showed a
greater number of approaches to the CS+ than the CS33 (F(CS+
vs. CS33) = 5.83; df = 1, 12, p = 0.03), reflecting the assign-
ment of increased salience to the cue paired with a more certain
outcome (Figures 3A,B). In contrast to the sham-treated rats,
fr lesioned animals were clearly able to discriminate between
CS+ and CS33 during the first three sessions of training (F(CS+
vs. CS33) = 7.52; df = 1, 5, p = 0.04), showing a twofold
greater increase in the number of approaches to the CS+ than
the CS33. However, during subsequent sessions, rats in the fr
lesioned group approached the CS33 with increasing frequency
while approaches to the CS+ showed a trend toward a decline as
demonstrated by a significant reduction in the difference score to
near zero (F = 7.81; df = 2,4, p = 0.04; Figure 3B). Divergent
response of sham and lesioned groups to partial contrast condi-
tioning was further evidenced statistically by a clear divergence in
their difference scores as reflected in a significant interaction as
a function of training session (difference score: F(lesion × ses-
sion) = 6.71; df = 2,10, p = 0.01; Figure 3B). Notably, no group

differences were observed in the conditioned approach to the pellet
dispenser (Figures 3C,D).

fr STIMULATION
There was no effect of fr stimulation on approach to the CS−,
therefore, in order to simplify the presentation, only the difference
score (number of CS+ approaches minus the number of CS−
approaches) is shown in Figure 4, panels A and B.

Sign-tracking : A two way repeated measures ANOVA con-
trasting the difference score in the three groups (CS-Stim,
US-Stim and Sham across training sessions) revealed a signifi-
cant main effect of stimulation group (F(stimulation) = 10.01,
df = 2,20, p = 0.001). Post hoc analysis of pair-wise compar-
isons (CS+ vs. Sham, CS+ vs. US and Sham vs. US using two
way repeated measures ANOVA) shows that stimulation dur-
ing CS+ decreased sign-tracking significantly from the sham
group overall (F(stimulation) = 17.36 df = 1,13, p = 0.001)
and as a function of session (F(stimulation × session) = 5.30,
df = 2,12, p = 0.022). Stimulation during US, while decreasing
sign-tracking less dramatically, also reached statistical signfi-
cance (F(stimulation) = 4.87, df = 1,14, p = 0.045) but did
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FIGURE 3 | Partial contrast conditioning schedule: (A,B) represent the

effects of fr lesion on conditioned approach to each CS (A) and to the

US (B) during the presentation of a 100% CS+ and 33% CS−
presentation. (C,D) represents the difference score (CS+ minus CS33)
derived from values represented in (A,B). n = 6, 7 for the Sham and Lesion
groups, respectively. Error bars represent S.E.M.

not differ as a function of training session. This comparison
was the only contrast in which statistical analysis of the differ-
ence score and the number of conditioned approaches to the
CS+ did not reach the same conclusion; conditioned approach
to the CS+ was marginally significant between the two groups
(F(stimulation) = 3.32, df = 1,13, p = 0.08). The con-
trast between the CS+ stimulation group and US stimulation
group reveals a significant difference between the two conditions
(F(stimulation) = 7.35, df = 1,13, p = 0.01). Except where
noted above, the statistical analysis of the difference score and
conditioned approach to CS+ yeild the same conclusions. Over-
all, these findings suggest that disruption of incentive valuation
was slightly more sensitive to stimulation during the CS+ than
during US.

Goal-tracking: Conditioned approach to the reward dispenser
was not altered by fr stimulation (Figure 4B). Both groups learned
the predictive association between CS+ presentation and reward
presentation.

DISCUSSION
A solid body of evidence establishes a key role for the Hb in process-
ing aversive events and error signaling (Hikosaka,2010; Jesuthasan,
2012; Shelton et al., 2012; Brown and Shepard, 2013; Jhou et al.,
2013). The capacity of the Hb for bidirectional signaling (Mat-
sumoto and Hikosaka, 2007) and cFos activation during incentive
motivational learning (Flagel et al., 2011a) suggested a possible role
in encoding positively valenced events such as reward learning and
the attribution of incentive salience. This proposition was empir-
ically tested in two complimentary studies. Eliminating the sole

FIGURE 4 | Electrical stimulation of the fr during CS+ or US

presentation. (A) represents the effects of fr stimulation during CS+
presentation on conditioned approach to the CS+ vs. the CS− as described
by the Difference Score (same dependent variable as seen in Figures 1

and 2). (B) represents the effects of fr stimulation during US presentation.
n = 8, 7, 8 for the Sham, CS+ Stim and US Stim groups. Error bars
represent S.E.M. Difference between experimental groups: ***p < 0.001,
**p < 0.01, *p < 0.05.

output of the Hb via fr lesion significantly increased the attribu-
tion of incentive salience to a reward predictive cue as evidenced by
increased sign-tracking. Conversely, producing a fictive Hb signal
via fr stimulation significantly decreased the attribution of incen-
tive salience to the reward predictive cue. Neither manipulation
altered reward predictive learning as measured by goal-tracking.
These results provide new evidence supporting a role for the Hb to
serve as a governor, in the sense of automatic control or limitation,
under conditions leading to the attribution of incentive salience.

The Hb can negatively modulate phasic DA release in brain
areas centrally involved in reward processing (e.g., nucleus accum-
bens, NAc, medial prefrontal cortex Lecourtier et al., 2008).
Therefore, loss of Hb output might be expected to enhance the
phasic DA response to CS+ presentation and in turn increase
the attribution of incentive salience to reward predictive cues. In
agreement with this hypothesis, sign-tracking was nearly doubled
when the sole output pathway of the Hb was lesioned. In accor-
dance with the associative opponent model of appetitive-aversive
conditioning, in which appetitive and aversive motivational sys-
tems are in linked opposition (Solomon and Corbit, 1974), the
removal of a tonic Hb-driven inhibitory bias on DA neurons would
be expected to diminish constraints on the appetitive salience
attributed to reward predicting cues. The role of the Hb in gov-
erning the attribution of incentive salience is further supported by
the results obtained using a partial-reinforcement schedule that
required scaling between two CS’s rather than an all or nothing
categorization. In the sham group, substituting the CS− with a
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partially reinforced cue (CS33) initially resulted in approach to
both the CS+ and CS33. However, a clear bias in the sign-tracking
toward the CS+ was observed across sessions. Removing Hb out-
put had an unexpected effect on task performance. Lesioned
animals initially exhibited a strong preference for the CS+ over
the CS33, a response pattern very similar to sham rats exposed to
the full contrast conditioning schedule. Interestingly, as the con-
ditioning sessions continued, conditioned approach to the CS33

increased as approaches to the CS+ declined, eventually merging
to levels that were not significantly different. Goal-tracking was not
altered by the lesion. Thus, removing Hb output eliminated the
incentive salience scaling that occurs during conditioning yet left
the predictive value of the cues intact. Unpredictable reward deliv-
ery requires greater discrimination of incentive value than a full
contrast condition and can actually increase sign-tracking to the
less-predictable cue (Anselme et al., 2013). On the other hand, it
is well established that in order to achieve discriminated approach
in an autoshaping paradigm, a cue must be uniquely predictive
of the reward (Egger and Miller, 1962, 1963). By “ungovern-
ing” incentive salience attributed to the CS33, lesioned rats would
respond as though both cues were equivalent in their incentive
value and would not develop conditioned approach to either stim-
ulus, much as we observed in the final sessions of the partial
contrast conditioning schedule. In both the full and the partial
contrast conditions, the consequences of the lesion grew more
prominent as a function of training; this pattern suggests selective
involvement in the process that attributes incentive salience.

A unique opportunity to parse the differences between goal
tracking and sign-tracking was provided by studies in which the
Hb was stimulated during discrete epochs of the autoshaping pro-
cedure (reward delivery, US vs. cue presentation, CS+). Had Hb
activation during reward delivery diminished the hedonic impact
of the reward or mimicked the neural signal that encodes ‘a less
than expected reward’ (i.e., negative temporal difference error) a
role for the Hb in strict reward prediction learning would have
been implied. However, this was not the case as goal-tracking
was not altered by stimulation. Rather, fr stimulation during pre-
sentation of the CS+ diminished sign-tracking as evidenced by a
significant reduction in conditioned approach to the CS+. Previ-
ous studies have shown that Hb stimulation suppresses operant
responding and induced place avoidance (Friedman et al., 2011;
Lammel et al., 2012; Stamatakis and Stuber, 2012), changes consis-
tent with an aversive effect. However, if fr stimulation were acting
merely as an aversive stimulus, stimulation during presentation of
the US would have led to a decrease in goal tracking.

Previous studies by Day et al. (2007) and Flagel et al. (2011b)
provide a neurochemical framework to contextualize the present
findings. These investigators have shown that during the initial
autoshape training period, DA release in the NAc is phasically
increased during all three components of a full contrast autoshape
conditioning schedule (i.e., reward delivery, CS+ and CS− pre-
sentation). As training progresses however, DA release is limited to
animals in which CS+ presentation gains incentive motivational
properties. It is the phasic increase in NAc DA release during CS+
presentation that is thought to be principally responsible for the
attribution of incentive salience to the cue. Further support for
this is notion is the demonstration of a correlation between the

development of a phasic DA response to a cocaine cue and the
probability of approaching that cue (Aragona et al., 2009) and
that pharmacological blockade of the DA receptor in the core of
the NAc decreases the performance of an already learned sign-
tracking conditioned response but not goal-tracking (Saunders
and Robinson, 2012). It is conceivable that by stimulating Hb effer-
ents during CS+ presentation, we suppressed VTA DA cell firing
and by extension, DA release in the NAc (Lecourtier et al., 2008),
thereby decreasing the attribution of incentive salience to the CS+.
Athough Hb stimulation during CS+ presentation was more effec-
tive in disrupting the attribution of incentive salience, smaller
changes were also observed in response to stimuli applied during
reward delivery. These changes could reflect an attenuation in the
increase in DA cell firing needed to stamp-in reward-relevant cues
(Wise, 2004) or a decrease in DA-mediated“reboosting” (Berridge,
2007). Overall, the current studies provide evidence to support a
role for the Hb and its downstream targets in encoding incen-
tive salience. The relevant circuit likely involves connections with
the RMTg, a collection of GABAergic neurons that provide an
important source of feedforward inhibitory input to midbrain DA
neurons (Jhou et al., 2009).

The attribution of incentive salience is critical for motivation
and the pursuit of rewards. Incentive salience attribution endows
a reward predicting stimulus with the capacity to initiate goal-
directed behavior and, under some conditions, support behavior
leading to their presentation (Rescorla and Solomon, 1967; Cools
et al., 2007, 2009). Taken together, the results of the present stud-
ies support the contention that the Hb is involved in regulating
or scaling the relative degree of incentive salience assigned to a
given cue. Accordingly, pathological changes in the activity of Hb
neurons could result in avolition and depression-like symptoms
or the aberrant pursuit of debilitating goals.
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